mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 20:49:31 +07:00
145c37084e
This patch fix a spelling typo found in API-z8530-sync-txdma-open.html. It is because this file was generated from comment in source, I have to fix comment in source. Signed-off-by: Masanari Iida <standby24x7@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1796 lines
39 KiB
C
1796 lines
39 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
|
|
* (c) Copyright 2000, 2001 Red Hat Inc
|
|
*
|
|
* Development of this driver was funded by Equiinet Ltd
|
|
* http://www.equiinet.com
|
|
*
|
|
* ChangeLog:
|
|
*
|
|
* Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
|
|
* unification of all the Z85x30 asynchronous drivers for real.
|
|
*
|
|
* DMA now uses get_free_page as kmalloc buffers may span a 64K
|
|
* boundary.
|
|
*
|
|
* Modified for SMP safety and SMP locking by Alan Cox
|
|
* <alan@lxorguk.ukuu.org.uk>
|
|
*
|
|
* Performance
|
|
*
|
|
* Z85230:
|
|
* Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
|
|
* X.25 is not unrealistic on all machines. DMA mode can in theory
|
|
* handle T1/E1 quite nicely. In practice the limit seems to be about
|
|
* 512Kbit->1Mbit depending on motherboard.
|
|
*
|
|
* Z85C30:
|
|
* 64K will take DMA, 9600 baud X.25 should be ok.
|
|
*
|
|
* Z8530:
|
|
* Synchronous mode without DMA is unlikely to pass about 2400 baud.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/net.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/hdlc.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/gfp.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/io.h>
|
|
#define RT_LOCK
|
|
#define RT_UNLOCK
|
|
#include <linux/spinlock.h>
|
|
|
|
#include "z85230.h"
|
|
|
|
|
|
/**
|
|
* z8530_read_port - Architecture specific interface function
|
|
* @p: port to read
|
|
*
|
|
* Provided port access methods. The Comtrol SV11 requires no delays
|
|
* between accesses and uses PC I/O. Some drivers may need a 5uS delay
|
|
*
|
|
* In the longer term this should become an architecture specific
|
|
* section so that this can become a generic driver interface for all
|
|
* platforms. For now we only handle PC I/O ports with or without the
|
|
* dread 5uS sanity delay.
|
|
*
|
|
* The caller must hold sufficient locks to avoid violating the horrible
|
|
* 5uS delay rule.
|
|
*/
|
|
|
|
static inline int z8530_read_port(unsigned long p)
|
|
{
|
|
u8 r=inb(Z8530_PORT_OF(p));
|
|
if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
|
|
udelay(5);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* z8530_write_port - Architecture specific interface function
|
|
* @p: port to write
|
|
* @d: value to write
|
|
*
|
|
* Write a value to a port with delays if need be. Note that the
|
|
* caller must hold locks to avoid read/writes from other contexts
|
|
* violating the 5uS rule
|
|
*
|
|
* In the longer term this should become an architecture specific
|
|
* section so that this can become a generic driver interface for all
|
|
* platforms. For now we only handle PC I/O ports with or without the
|
|
* dread 5uS sanity delay.
|
|
*/
|
|
|
|
|
|
static inline void z8530_write_port(unsigned long p, u8 d)
|
|
{
|
|
outb(d,Z8530_PORT_OF(p));
|
|
if(p&Z8530_PORT_SLEEP)
|
|
udelay(5);
|
|
}
|
|
|
|
|
|
|
|
static void z8530_rx_done(struct z8530_channel *c);
|
|
static void z8530_tx_done(struct z8530_channel *c);
|
|
|
|
|
|
/**
|
|
* read_zsreg - Read a register from a Z85230
|
|
* @c: Z8530 channel to read from (2 per chip)
|
|
* @reg: Register to read
|
|
* FIXME: Use a spinlock.
|
|
*
|
|
* Most of the Z8530 registers are indexed off the control registers.
|
|
* A read is done by writing to the control register and reading the
|
|
* register back. The caller must hold the lock
|
|
*/
|
|
|
|
static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
|
|
{
|
|
if(reg)
|
|
z8530_write_port(c->ctrlio, reg);
|
|
return z8530_read_port(c->ctrlio);
|
|
}
|
|
|
|
/**
|
|
* read_zsdata - Read the data port of a Z8530 channel
|
|
* @c: The Z8530 channel to read the data port from
|
|
*
|
|
* The data port provides fast access to some things. We still
|
|
* have all the 5uS delays to worry about.
|
|
*/
|
|
|
|
static inline u8 read_zsdata(struct z8530_channel *c)
|
|
{
|
|
u8 r;
|
|
r=z8530_read_port(c->dataio);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* write_zsreg - Write to a Z8530 channel register
|
|
* @c: The Z8530 channel
|
|
* @reg: Register number
|
|
* @val: Value to write
|
|
*
|
|
* Write a value to an indexed register. The caller must hold the lock
|
|
* to honour the irritating delay rules. We know about register 0
|
|
* being fast to access.
|
|
*
|
|
* Assumes c->lock is held.
|
|
*/
|
|
static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
|
|
{
|
|
if(reg)
|
|
z8530_write_port(c->ctrlio, reg);
|
|
z8530_write_port(c->ctrlio, val);
|
|
|
|
}
|
|
|
|
/**
|
|
* write_zsctrl - Write to a Z8530 control register
|
|
* @c: The Z8530 channel
|
|
* @val: Value to write
|
|
*
|
|
* Write directly to the control register on the Z8530
|
|
*/
|
|
|
|
static inline void write_zsctrl(struct z8530_channel *c, u8 val)
|
|
{
|
|
z8530_write_port(c->ctrlio, val);
|
|
}
|
|
|
|
/**
|
|
* write_zsdata - Write to a Z8530 control register
|
|
* @c: The Z8530 channel
|
|
* @val: Value to write
|
|
*
|
|
* Write directly to the data register on the Z8530
|
|
*/
|
|
|
|
|
|
static inline void write_zsdata(struct z8530_channel *c, u8 val)
|
|
{
|
|
z8530_write_port(c->dataio, val);
|
|
}
|
|
|
|
/*
|
|
* Register loading parameters for a dead port
|
|
*/
|
|
|
|
u8 z8530_dead_port[]=
|
|
{
|
|
255
|
|
};
|
|
|
|
EXPORT_SYMBOL(z8530_dead_port);
|
|
|
|
/*
|
|
* Register loading parameters for currently supported circuit types
|
|
*/
|
|
|
|
|
|
/*
|
|
* Data clocked by telco end. This is the correct data for the UK
|
|
* "kilostream" service, and most other similar services.
|
|
*/
|
|
|
|
u8 z8530_hdlc_kilostream[]=
|
|
{
|
|
4, SYNC_ENAB|SDLC|X1CLK,
|
|
2, 0, /* No vector */
|
|
1, 0,
|
|
3, ENT_HM|RxCRC_ENAB|Rx8,
|
|
5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
|
|
9, 0, /* Disable interrupts */
|
|
6, 0xFF,
|
|
7, FLAG,
|
|
10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
|
|
11, TCTRxCP,
|
|
14, DISDPLL,
|
|
15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
|
|
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
|
|
9, NV|MIE|NORESET,
|
|
255
|
|
};
|
|
|
|
EXPORT_SYMBOL(z8530_hdlc_kilostream);
|
|
|
|
/*
|
|
* As above but for enhanced chips.
|
|
*/
|
|
|
|
u8 z8530_hdlc_kilostream_85230[]=
|
|
{
|
|
4, SYNC_ENAB|SDLC|X1CLK,
|
|
2, 0, /* No vector */
|
|
1, 0,
|
|
3, ENT_HM|RxCRC_ENAB|Rx8,
|
|
5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
|
|
9, 0, /* Disable interrupts */
|
|
6, 0xFF,
|
|
7, FLAG,
|
|
10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
|
|
11, TCTRxCP,
|
|
14, DISDPLL,
|
|
15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
|
|
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
|
|
9, NV|MIE|NORESET,
|
|
23, 3, /* Extended mode AUTO TX and EOM*/
|
|
|
|
255
|
|
};
|
|
|
|
EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
|
|
|
|
/**
|
|
* z8530_flush_fifo - Flush on chip RX FIFO
|
|
* @c: Channel to flush
|
|
*
|
|
* Flush the receive FIFO. There is no specific option for this, we
|
|
* blindly read bytes and discard them. Reading when there is no data
|
|
* is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
|
|
*
|
|
* All locking is handled for the caller. On return data may still be
|
|
* present if it arrived during the flush.
|
|
*/
|
|
|
|
static void z8530_flush_fifo(struct z8530_channel *c)
|
|
{
|
|
read_zsreg(c, R1);
|
|
read_zsreg(c, R1);
|
|
read_zsreg(c, R1);
|
|
read_zsreg(c, R1);
|
|
if(c->dev->type==Z85230)
|
|
{
|
|
read_zsreg(c, R1);
|
|
read_zsreg(c, R1);
|
|
read_zsreg(c, R1);
|
|
read_zsreg(c, R1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* z8530_rtsdtr - Control the outgoing DTS/RTS line
|
|
* @c: The Z8530 channel to control;
|
|
* @set: 1 to set, 0 to clear
|
|
*
|
|
* Sets or clears DTR/RTS on the requested line. All locking is handled
|
|
* by the caller. For now we assume all boards use the actual RTS/DTR
|
|
* on the chip. Apparently one or two don't. We'll scream about them
|
|
* later.
|
|
*/
|
|
|
|
static void z8530_rtsdtr(struct z8530_channel *c, int set)
|
|
{
|
|
if (set)
|
|
c->regs[5] |= (RTS | DTR);
|
|
else
|
|
c->regs[5] &= ~(RTS | DTR);
|
|
write_zsreg(c, R5, c->regs[5]);
|
|
}
|
|
|
|
/**
|
|
* z8530_rx - Handle a PIO receive event
|
|
* @c: Z8530 channel to process
|
|
*
|
|
* Receive handler for receiving in PIO mode. This is much like the
|
|
* async one but not quite the same or as complex
|
|
*
|
|
* Note: Its intended that this handler can easily be separated from
|
|
* the main code to run realtime. That'll be needed for some machines
|
|
* (eg to ever clock 64kbits on a sparc ;)).
|
|
*
|
|
* The RT_LOCK macros don't do anything now. Keep the code covered
|
|
* by them as short as possible in all circumstances - clocks cost
|
|
* baud. The interrupt handler is assumed to be atomic w.r.t. to
|
|
* other code - this is true in the RT case too.
|
|
*
|
|
* We only cover the sync cases for this. If you want 2Mbit async
|
|
* do it yourself but consider medical assistance first. This non DMA
|
|
* synchronous mode is portable code. The DMA mode assumes PCI like
|
|
* ISA DMA
|
|
*
|
|
* Called with the device lock held
|
|
*/
|
|
|
|
static void z8530_rx(struct z8530_channel *c)
|
|
{
|
|
u8 ch,stat;
|
|
|
|
while(1)
|
|
{
|
|
/* FIFO empty ? */
|
|
if(!(read_zsreg(c, R0)&1))
|
|
break;
|
|
ch=read_zsdata(c);
|
|
stat=read_zsreg(c, R1);
|
|
|
|
/*
|
|
* Overrun ?
|
|
*/
|
|
if(c->count < c->max)
|
|
{
|
|
*c->dptr++=ch;
|
|
c->count++;
|
|
}
|
|
|
|
if(stat&END_FR)
|
|
{
|
|
|
|
/*
|
|
* Error ?
|
|
*/
|
|
if(stat&(Rx_OVR|CRC_ERR))
|
|
{
|
|
/* Rewind the buffer and return */
|
|
if(c->skb)
|
|
c->dptr=c->skb->data;
|
|
c->count=0;
|
|
if(stat&Rx_OVR)
|
|
{
|
|
pr_warn("%s: overrun\n", c->dev->name);
|
|
c->rx_overrun++;
|
|
}
|
|
if(stat&CRC_ERR)
|
|
{
|
|
c->rx_crc_err++;
|
|
/* printk("crc error\n"); */
|
|
}
|
|
/* Shove the frame upstream */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Drop the lock for RX processing, or
|
|
* there are deadlocks
|
|
*/
|
|
z8530_rx_done(c);
|
|
write_zsctrl(c, RES_Rx_CRC);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Clear irq
|
|
*/
|
|
write_zsctrl(c, ERR_RES);
|
|
write_zsctrl(c, RES_H_IUS);
|
|
}
|
|
|
|
|
|
/**
|
|
* z8530_tx - Handle a PIO transmit event
|
|
* @c: Z8530 channel to process
|
|
*
|
|
* Z8530 transmit interrupt handler for the PIO mode. The basic
|
|
* idea is to attempt to keep the FIFO fed. We fill as many bytes
|
|
* in as possible, its quite possible that we won't keep up with the
|
|
* data rate otherwise.
|
|
*/
|
|
|
|
static void z8530_tx(struct z8530_channel *c)
|
|
{
|
|
while(c->txcount) {
|
|
/* FIFO full ? */
|
|
if(!(read_zsreg(c, R0)&4))
|
|
return;
|
|
c->txcount--;
|
|
/*
|
|
* Shovel out the byte
|
|
*/
|
|
write_zsreg(c, R8, *c->tx_ptr++);
|
|
write_zsctrl(c, RES_H_IUS);
|
|
/* We are about to underflow */
|
|
if(c->txcount==0)
|
|
{
|
|
write_zsctrl(c, RES_EOM_L);
|
|
write_zsreg(c, R10, c->regs[10]&~ABUNDER);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* End of frame TX - fire another one
|
|
*/
|
|
|
|
write_zsctrl(c, RES_Tx_P);
|
|
|
|
z8530_tx_done(c);
|
|
write_zsctrl(c, RES_H_IUS);
|
|
}
|
|
|
|
/**
|
|
* z8530_status - Handle a PIO status exception
|
|
* @chan: Z8530 channel to process
|
|
*
|
|
* A status event occurred in PIO synchronous mode. There are several
|
|
* reasons the chip will bother us here. A transmit underrun means we
|
|
* failed to feed the chip fast enough and just broke a packet. A DCD
|
|
* change is a line up or down.
|
|
*/
|
|
|
|
static void z8530_status(struct z8530_channel *chan)
|
|
{
|
|
u8 status, altered;
|
|
|
|
status = read_zsreg(chan, R0);
|
|
altered = chan->status ^ status;
|
|
|
|
chan->status = status;
|
|
|
|
if (status & TxEOM) {
|
|
/* printk("%s: Tx underrun.\n", chan->dev->name); */
|
|
chan->netdevice->stats.tx_fifo_errors++;
|
|
write_zsctrl(chan, ERR_RES);
|
|
z8530_tx_done(chan);
|
|
}
|
|
|
|
if (altered & chan->dcdcheck)
|
|
{
|
|
if (status & chan->dcdcheck) {
|
|
pr_info("%s: DCD raised\n", chan->dev->name);
|
|
write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
|
|
if (chan->netdevice)
|
|
netif_carrier_on(chan->netdevice);
|
|
} else {
|
|
pr_info("%s: DCD lost\n", chan->dev->name);
|
|
write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
|
|
z8530_flush_fifo(chan);
|
|
if (chan->netdevice)
|
|
netif_carrier_off(chan->netdevice);
|
|
}
|
|
|
|
}
|
|
write_zsctrl(chan, RES_EXT_INT);
|
|
write_zsctrl(chan, RES_H_IUS);
|
|
}
|
|
|
|
struct z8530_irqhandler z8530_sync =
|
|
{
|
|
z8530_rx,
|
|
z8530_tx,
|
|
z8530_status
|
|
};
|
|
|
|
EXPORT_SYMBOL(z8530_sync);
|
|
|
|
/**
|
|
* z8530_dma_rx - Handle a DMA RX event
|
|
* @chan: Channel to handle
|
|
*
|
|
* Non bus mastering DMA interfaces for the Z8x30 devices. This
|
|
* is really pretty PC specific. The DMA mode means that most receive
|
|
* events are handled by the DMA hardware. We get a kick here only if
|
|
* a frame ended.
|
|
*/
|
|
|
|
static void z8530_dma_rx(struct z8530_channel *chan)
|
|
{
|
|
if(chan->rxdma_on)
|
|
{
|
|
/* Special condition check only */
|
|
u8 status;
|
|
|
|
read_zsreg(chan, R7);
|
|
read_zsreg(chan, R6);
|
|
|
|
status=read_zsreg(chan, R1);
|
|
|
|
if(status&END_FR)
|
|
{
|
|
z8530_rx_done(chan); /* Fire up the next one */
|
|
}
|
|
write_zsctrl(chan, ERR_RES);
|
|
write_zsctrl(chan, RES_H_IUS);
|
|
}
|
|
else
|
|
{
|
|
/* DMA is off right now, drain the slow way */
|
|
z8530_rx(chan);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* z8530_dma_tx - Handle a DMA TX event
|
|
* @chan: The Z8530 channel to handle
|
|
*
|
|
* We have received an interrupt while doing DMA transmissions. It
|
|
* shouldn't happen. Scream loudly if it does.
|
|
*/
|
|
|
|
static void z8530_dma_tx(struct z8530_channel *chan)
|
|
{
|
|
if(!chan->dma_tx)
|
|
{
|
|
pr_warn("Hey who turned the DMA off?\n");
|
|
z8530_tx(chan);
|
|
return;
|
|
}
|
|
/* This shouldn't occur in DMA mode */
|
|
pr_err("DMA tx - bogus event!\n");
|
|
z8530_tx(chan);
|
|
}
|
|
|
|
/**
|
|
* z8530_dma_status - Handle a DMA status exception
|
|
* @chan: Z8530 channel to process
|
|
*
|
|
* A status event occurred on the Z8530. We receive these for two reasons
|
|
* when in DMA mode. Firstly if we finished a packet transfer we get one
|
|
* and kick the next packet out. Secondly we may see a DCD change.
|
|
*
|
|
*/
|
|
|
|
static void z8530_dma_status(struct z8530_channel *chan)
|
|
{
|
|
u8 status, altered;
|
|
|
|
status=read_zsreg(chan, R0);
|
|
altered=chan->status^status;
|
|
|
|
chan->status=status;
|
|
|
|
|
|
if(chan->dma_tx)
|
|
{
|
|
if(status&TxEOM)
|
|
{
|
|
unsigned long flags;
|
|
|
|
flags=claim_dma_lock();
|
|
disable_dma(chan->txdma);
|
|
clear_dma_ff(chan->txdma);
|
|
chan->txdma_on=0;
|
|
release_dma_lock(flags);
|
|
z8530_tx_done(chan);
|
|
}
|
|
}
|
|
|
|
if (altered & chan->dcdcheck)
|
|
{
|
|
if (status & chan->dcdcheck) {
|
|
pr_info("%s: DCD raised\n", chan->dev->name);
|
|
write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
|
|
if (chan->netdevice)
|
|
netif_carrier_on(chan->netdevice);
|
|
} else {
|
|
pr_info("%s: DCD lost\n", chan->dev->name);
|
|
write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
|
|
z8530_flush_fifo(chan);
|
|
if (chan->netdevice)
|
|
netif_carrier_off(chan->netdevice);
|
|
}
|
|
}
|
|
|
|
write_zsctrl(chan, RES_EXT_INT);
|
|
write_zsctrl(chan, RES_H_IUS);
|
|
}
|
|
|
|
static struct z8530_irqhandler z8530_dma_sync = {
|
|
z8530_dma_rx,
|
|
z8530_dma_tx,
|
|
z8530_dma_status
|
|
};
|
|
|
|
static struct z8530_irqhandler z8530_txdma_sync = {
|
|
z8530_rx,
|
|
z8530_dma_tx,
|
|
z8530_dma_status
|
|
};
|
|
|
|
/**
|
|
* z8530_rx_clear - Handle RX events from a stopped chip
|
|
* @c: Z8530 channel to shut up
|
|
*
|
|
* Receive interrupt vectors for a Z8530 that is in 'parked' mode.
|
|
* For machines with PCI Z85x30 cards, or level triggered interrupts
|
|
* (eg the MacII) we must clear the interrupt cause or die.
|
|
*/
|
|
|
|
|
|
static void z8530_rx_clear(struct z8530_channel *c)
|
|
{
|
|
/*
|
|
* Data and status bytes
|
|
*/
|
|
u8 stat;
|
|
|
|
read_zsdata(c);
|
|
stat=read_zsreg(c, R1);
|
|
|
|
if(stat&END_FR)
|
|
write_zsctrl(c, RES_Rx_CRC);
|
|
/*
|
|
* Clear irq
|
|
*/
|
|
write_zsctrl(c, ERR_RES);
|
|
write_zsctrl(c, RES_H_IUS);
|
|
}
|
|
|
|
/**
|
|
* z8530_tx_clear - Handle TX events from a stopped chip
|
|
* @c: Z8530 channel to shut up
|
|
*
|
|
* Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
|
|
* For machines with PCI Z85x30 cards, or level triggered interrupts
|
|
* (eg the MacII) we must clear the interrupt cause or die.
|
|
*/
|
|
|
|
static void z8530_tx_clear(struct z8530_channel *c)
|
|
{
|
|
write_zsctrl(c, RES_Tx_P);
|
|
write_zsctrl(c, RES_H_IUS);
|
|
}
|
|
|
|
/**
|
|
* z8530_status_clear - Handle status events from a stopped chip
|
|
* @chan: Z8530 channel to shut up
|
|
*
|
|
* Status interrupt vectors for a Z8530 that is in 'parked' mode.
|
|
* For machines with PCI Z85x30 cards, or level triggered interrupts
|
|
* (eg the MacII) we must clear the interrupt cause or die.
|
|
*/
|
|
|
|
static void z8530_status_clear(struct z8530_channel *chan)
|
|
{
|
|
u8 status=read_zsreg(chan, R0);
|
|
if(status&TxEOM)
|
|
write_zsctrl(chan, ERR_RES);
|
|
write_zsctrl(chan, RES_EXT_INT);
|
|
write_zsctrl(chan, RES_H_IUS);
|
|
}
|
|
|
|
struct z8530_irqhandler z8530_nop=
|
|
{
|
|
z8530_rx_clear,
|
|
z8530_tx_clear,
|
|
z8530_status_clear
|
|
};
|
|
|
|
|
|
EXPORT_SYMBOL(z8530_nop);
|
|
|
|
/**
|
|
* z8530_interrupt - Handle an interrupt from a Z8530
|
|
* @irq: Interrupt number
|
|
* @dev_id: The Z8530 device that is interrupting.
|
|
*
|
|
* A Z85[2]30 device has stuck its hand in the air for attention.
|
|
* We scan both the channels on the chip for events and then call
|
|
* the channel specific call backs for each channel that has events.
|
|
* We have to use callback functions because the two channels can be
|
|
* in different modes.
|
|
*
|
|
* Locking is done for the handlers. Note that locking is done
|
|
* at the chip level (the 5uS delay issue is per chip not per
|
|
* channel). c->lock for both channels points to dev->lock
|
|
*/
|
|
|
|
irqreturn_t z8530_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct z8530_dev *dev=dev_id;
|
|
u8 uninitialized_var(intr);
|
|
static volatile int locker=0;
|
|
int work=0;
|
|
struct z8530_irqhandler *irqs;
|
|
|
|
if(locker)
|
|
{
|
|
pr_err("IRQ re-enter\n");
|
|
return IRQ_NONE;
|
|
}
|
|
locker=1;
|
|
|
|
spin_lock(&dev->lock);
|
|
|
|
while(++work<5000)
|
|
{
|
|
|
|
intr = read_zsreg(&dev->chanA, R3);
|
|
if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
|
|
break;
|
|
|
|
/* This holds the IRQ status. On the 8530 you must read it from chan
|
|
A even though it applies to the whole chip */
|
|
|
|
/* Now walk the chip and see what it is wanting - it may be
|
|
an IRQ for someone else remember */
|
|
|
|
irqs=dev->chanA.irqs;
|
|
|
|
if(intr & (CHARxIP|CHATxIP|CHAEXT))
|
|
{
|
|
if(intr&CHARxIP)
|
|
irqs->rx(&dev->chanA);
|
|
if(intr&CHATxIP)
|
|
irqs->tx(&dev->chanA);
|
|
if(intr&CHAEXT)
|
|
irqs->status(&dev->chanA);
|
|
}
|
|
|
|
irqs=dev->chanB.irqs;
|
|
|
|
if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
|
|
{
|
|
if(intr&CHBRxIP)
|
|
irqs->rx(&dev->chanB);
|
|
if(intr&CHBTxIP)
|
|
irqs->tx(&dev->chanB);
|
|
if(intr&CHBEXT)
|
|
irqs->status(&dev->chanB);
|
|
}
|
|
}
|
|
spin_unlock(&dev->lock);
|
|
if(work==5000)
|
|
pr_err("%s: interrupt jammed - abort(0x%X)!\n",
|
|
dev->name, intr);
|
|
/* Ok all done */
|
|
locker=0;
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_interrupt);
|
|
|
|
static const u8 reg_init[16]=
|
|
{
|
|
0,0,0,0,
|
|
0,0,0,0,
|
|
0,0,0,0,
|
|
0x55,0,0,0
|
|
};
|
|
|
|
|
|
/**
|
|
* z8530_sync_open - Open a Z8530 channel for PIO
|
|
* @dev: The network interface we are using
|
|
* @c: The Z8530 channel to open in synchronous PIO mode
|
|
*
|
|
* Switch a Z8530 into synchronous mode without DMA assist. We
|
|
* raise the RTS/DTR and commence network operation.
|
|
*/
|
|
|
|
int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(c->lock, flags);
|
|
|
|
c->sync = 1;
|
|
c->mtu = dev->mtu+64;
|
|
c->count = 0;
|
|
c->skb = NULL;
|
|
c->skb2 = NULL;
|
|
c->irqs = &z8530_sync;
|
|
|
|
/* This loads the double buffer up */
|
|
z8530_rx_done(c); /* Load the frame ring */
|
|
z8530_rx_done(c); /* Load the backup frame */
|
|
z8530_rtsdtr(c,1);
|
|
c->dma_tx = 0;
|
|
c->regs[R1]|=TxINT_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
|
|
|
|
spin_unlock_irqrestore(c->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(z8530_sync_open);
|
|
|
|
/**
|
|
* z8530_sync_close - Close a PIO Z8530 channel
|
|
* @dev: Network device to close
|
|
* @c: Z8530 channel to disassociate and move to idle
|
|
*
|
|
* Close down a Z8530 interface and switch its interrupt handlers
|
|
* to discard future events.
|
|
*/
|
|
|
|
int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
|
|
{
|
|
u8 chk;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(c->lock, flags);
|
|
c->irqs = &z8530_nop;
|
|
c->max = 0;
|
|
c->sync = 0;
|
|
|
|
chk=read_zsreg(c,R0);
|
|
write_zsreg(c, R3, c->regs[R3]);
|
|
z8530_rtsdtr(c,0);
|
|
|
|
spin_unlock_irqrestore(c->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_sync_close);
|
|
|
|
/**
|
|
* z8530_sync_dma_open - Open a Z8530 for DMA I/O
|
|
* @dev: The network device to attach
|
|
* @c: The Z8530 channel to configure in sync DMA mode.
|
|
*
|
|
* Set up a Z85x30 device for synchronous DMA in both directions. Two
|
|
* ISA DMA channels must be available for this to work. We assume ISA
|
|
* DMA driven I/O and PC limits on access.
|
|
*/
|
|
|
|
int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
|
|
{
|
|
unsigned long cflags, dflags;
|
|
|
|
c->sync = 1;
|
|
c->mtu = dev->mtu+64;
|
|
c->count = 0;
|
|
c->skb = NULL;
|
|
c->skb2 = NULL;
|
|
/*
|
|
* Load the DMA interfaces up
|
|
*/
|
|
c->rxdma_on = 0;
|
|
c->txdma_on = 0;
|
|
|
|
/*
|
|
* Allocate the DMA flip buffers. Limit by page size.
|
|
* Everyone runs 1500 mtu or less on wan links so this
|
|
* should be fine.
|
|
*/
|
|
|
|
if(c->mtu > PAGE_SIZE/2)
|
|
return -EMSGSIZE;
|
|
|
|
c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
|
|
if(c->rx_buf[0]==NULL)
|
|
return -ENOBUFS;
|
|
c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
|
|
|
|
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
|
|
if(c->tx_dma_buf[0]==NULL)
|
|
{
|
|
free_page((unsigned long)c->rx_buf[0]);
|
|
c->rx_buf[0]=NULL;
|
|
return -ENOBUFS;
|
|
}
|
|
c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
|
|
|
|
c->tx_dma_used=0;
|
|
c->dma_tx = 1;
|
|
c->dma_num=0;
|
|
c->dma_ready=1;
|
|
|
|
/*
|
|
* Enable DMA control mode
|
|
*/
|
|
|
|
spin_lock_irqsave(c->lock, cflags);
|
|
|
|
/*
|
|
* TX DMA via DIR/REQ
|
|
*/
|
|
|
|
c->regs[R14]|= DTRREQ;
|
|
write_zsreg(c, R14, c->regs[R14]);
|
|
|
|
c->regs[R1]&= ~TxINT_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
|
|
/*
|
|
* RX DMA via W/Req
|
|
*/
|
|
|
|
c->regs[R1]|= WT_FN_RDYFN;
|
|
c->regs[R1]|= WT_RDY_RT;
|
|
c->regs[R1]|= INT_ERR_Rx;
|
|
c->regs[R1]&= ~TxINT_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
c->regs[R1]|= WT_RDY_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
|
|
/*
|
|
* DMA interrupts
|
|
*/
|
|
|
|
/*
|
|
* Set up the DMA configuration
|
|
*/
|
|
|
|
dflags=claim_dma_lock();
|
|
|
|
disable_dma(c->rxdma);
|
|
clear_dma_ff(c->rxdma);
|
|
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
|
|
set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
|
|
set_dma_count(c->rxdma, c->mtu);
|
|
enable_dma(c->rxdma);
|
|
|
|
disable_dma(c->txdma);
|
|
clear_dma_ff(c->txdma);
|
|
set_dma_mode(c->txdma, DMA_MODE_WRITE);
|
|
disable_dma(c->txdma);
|
|
|
|
release_dma_lock(dflags);
|
|
|
|
/*
|
|
* Select the DMA interrupt handlers
|
|
*/
|
|
|
|
c->rxdma_on = 1;
|
|
c->txdma_on = 1;
|
|
c->tx_dma_used = 1;
|
|
|
|
c->irqs = &z8530_dma_sync;
|
|
z8530_rtsdtr(c,1);
|
|
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
|
|
|
|
spin_unlock_irqrestore(c->lock, cflags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_sync_dma_open);
|
|
|
|
/**
|
|
* z8530_sync_dma_close - Close down DMA I/O
|
|
* @dev: Network device to detach
|
|
* @c: Z8530 channel to move into discard mode
|
|
*
|
|
* Shut down a DMA mode synchronous interface. Halt the DMA, and
|
|
* free the buffers.
|
|
*/
|
|
|
|
int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
|
|
{
|
|
u8 chk;
|
|
unsigned long flags;
|
|
|
|
c->irqs = &z8530_nop;
|
|
c->max = 0;
|
|
c->sync = 0;
|
|
|
|
/*
|
|
* Disable the PC DMA channels
|
|
*/
|
|
|
|
flags=claim_dma_lock();
|
|
disable_dma(c->rxdma);
|
|
clear_dma_ff(c->rxdma);
|
|
|
|
c->rxdma_on = 0;
|
|
|
|
disable_dma(c->txdma);
|
|
clear_dma_ff(c->txdma);
|
|
release_dma_lock(flags);
|
|
|
|
c->txdma_on = 0;
|
|
c->tx_dma_used = 0;
|
|
|
|
spin_lock_irqsave(c->lock, flags);
|
|
|
|
/*
|
|
* Disable DMA control mode
|
|
*/
|
|
|
|
c->regs[R1]&= ~WT_RDY_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
|
|
c->regs[R1]|= INT_ALL_Rx;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
c->regs[R14]&= ~DTRREQ;
|
|
write_zsreg(c, R14, c->regs[R14]);
|
|
|
|
if(c->rx_buf[0])
|
|
{
|
|
free_page((unsigned long)c->rx_buf[0]);
|
|
c->rx_buf[0]=NULL;
|
|
}
|
|
if(c->tx_dma_buf[0])
|
|
{
|
|
free_page((unsigned long)c->tx_dma_buf[0]);
|
|
c->tx_dma_buf[0]=NULL;
|
|
}
|
|
chk=read_zsreg(c,R0);
|
|
write_zsreg(c, R3, c->regs[R3]);
|
|
z8530_rtsdtr(c,0);
|
|
|
|
spin_unlock_irqrestore(c->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_sync_dma_close);
|
|
|
|
/**
|
|
* z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
|
|
* @dev: The network device to attach
|
|
* @c: The Z8530 channel to configure in sync DMA mode.
|
|
*
|
|
* Set up a Z85x30 device for synchronous DMA transmission. One
|
|
* ISA DMA channel must be available for this to work. The receive
|
|
* side is run in PIO mode, but then it has the bigger FIFO.
|
|
*/
|
|
|
|
int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
|
|
{
|
|
unsigned long cflags, dflags;
|
|
|
|
printk("Opening sync interface for TX-DMA\n");
|
|
c->sync = 1;
|
|
c->mtu = dev->mtu+64;
|
|
c->count = 0;
|
|
c->skb = NULL;
|
|
c->skb2 = NULL;
|
|
|
|
/*
|
|
* Allocate the DMA flip buffers. Limit by page size.
|
|
* Everyone runs 1500 mtu or less on wan links so this
|
|
* should be fine.
|
|
*/
|
|
|
|
if(c->mtu > PAGE_SIZE/2)
|
|
return -EMSGSIZE;
|
|
|
|
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
|
|
if(c->tx_dma_buf[0]==NULL)
|
|
return -ENOBUFS;
|
|
|
|
c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
|
|
|
|
|
|
spin_lock_irqsave(c->lock, cflags);
|
|
|
|
/*
|
|
* Load the PIO receive ring
|
|
*/
|
|
|
|
z8530_rx_done(c);
|
|
z8530_rx_done(c);
|
|
|
|
/*
|
|
* Load the DMA interfaces up
|
|
*/
|
|
|
|
c->rxdma_on = 0;
|
|
c->txdma_on = 0;
|
|
|
|
c->tx_dma_used=0;
|
|
c->dma_num=0;
|
|
c->dma_ready=1;
|
|
c->dma_tx = 1;
|
|
|
|
/*
|
|
* Enable DMA control mode
|
|
*/
|
|
|
|
/*
|
|
* TX DMA via DIR/REQ
|
|
*/
|
|
c->regs[R14]|= DTRREQ;
|
|
write_zsreg(c, R14, c->regs[R14]);
|
|
|
|
c->regs[R1]&= ~TxINT_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
|
|
/*
|
|
* Set up the DMA configuration
|
|
*/
|
|
|
|
dflags = claim_dma_lock();
|
|
|
|
disable_dma(c->txdma);
|
|
clear_dma_ff(c->txdma);
|
|
set_dma_mode(c->txdma, DMA_MODE_WRITE);
|
|
disable_dma(c->txdma);
|
|
|
|
release_dma_lock(dflags);
|
|
|
|
/*
|
|
* Select the DMA interrupt handlers
|
|
*/
|
|
|
|
c->rxdma_on = 0;
|
|
c->txdma_on = 1;
|
|
c->tx_dma_used = 1;
|
|
|
|
c->irqs = &z8530_txdma_sync;
|
|
z8530_rtsdtr(c,1);
|
|
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
|
|
spin_unlock_irqrestore(c->lock, cflags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_sync_txdma_open);
|
|
|
|
/**
|
|
* z8530_sync_txdma_close - Close down a TX driven DMA channel
|
|
* @dev: Network device to detach
|
|
* @c: Z8530 channel to move into discard mode
|
|
*
|
|
* Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
|
|
* and free the buffers.
|
|
*/
|
|
|
|
int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
|
|
{
|
|
unsigned long dflags, cflags;
|
|
u8 chk;
|
|
|
|
|
|
spin_lock_irqsave(c->lock, cflags);
|
|
|
|
c->irqs = &z8530_nop;
|
|
c->max = 0;
|
|
c->sync = 0;
|
|
|
|
/*
|
|
* Disable the PC DMA channels
|
|
*/
|
|
|
|
dflags = claim_dma_lock();
|
|
|
|
disable_dma(c->txdma);
|
|
clear_dma_ff(c->txdma);
|
|
c->txdma_on = 0;
|
|
c->tx_dma_used = 0;
|
|
|
|
release_dma_lock(dflags);
|
|
|
|
/*
|
|
* Disable DMA control mode
|
|
*/
|
|
|
|
c->regs[R1]&= ~WT_RDY_ENAB;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
|
|
c->regs[R1]|= INT_ALL_Rx;
|
|
write_zsreg(c, R1, c->regs[R1]);
|
|
c->regs[R14]&= ~DTRREQ;
|
|
write_zsreg(c, R14, c->regs[R14]);
|
|
|
|
if(c->tx_dma_buf[0])
|
|
{
|
|
free_page((unsigned long)c->tx_dma_buf[0]);
|
|
c->tx_dma_buf[0]=NULL;
|
|
}
|
|
chk=read_zsreg(c,R0);
|
|
write_zsreg(c, R3, c->regs[R3]);
|
|
z8530_rtsdtr(c,0);
|
|
|
|
spin_unlock_irqrestore(c->lock, cflags);
|
|
return 0;
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(z8530_sync_txdma_close);
|
|
|
|
|
|
/*
|
|
* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
|
|
* it exists...
|
|
*/
|
|
|
|
static const char *z8530_type_name[]={
|
|
"Z8530",
|
|
"Z85C30",
|
|
"Z85230"
|
|
};
|
|
|
|
/**
|
|
* z8530_describe - Uniformly describe a Z8530 port
|
|
* @dev: Z8530 device to describe
|
|
* @mapping: string holding mapping type (eg "I/O" or "Mem")
|
|
* @io: the port value in question
|
|
*
|
|
* Describe a Z8530 in a standard format. We must pass the I/O as
|
|
* the port offset isn't predictable. The main reason for this function
|
|
* is to try and get a common format of report.
|
|
*/
|
|
|
|
void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
|
|
{
|
|
pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
|
|
dev->name,
|
|
z8530_type_name[dev->type],
|
|
mapping,
|
|
Z8530_PORT_OF(io),
|
|
dev->irq);
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_describe);
|
|
|
|
/*
|
|
* Locked operation part of the z8530 init code
|
|
*/
|
|
|
|
static inline int do_z8530_init(struct z8530_dev *dev)
|
|
{
|
|
/* NOP the interrupt handlers first - we might get a
|
|
floating IRQ transition when we reset the chip */
|
|
dev->chanA.irqs=&z8530_nop;
|
|
dev->chanB.irqs=&z8530_nop;
|
|
dev->chanA.dcdcheck=DCD;
|
|
dev->chanB.dcdcheck=DCD;
|
|
|
|
/* Reset the chip */
|
|
write_zsreg(&dev->chanA, R9, 0xC0);
|
|
udelay(200);
|
|
/* Now check its valid */
|
|
write_zsreg(&dev->chanA, R12, 0xAA);
|
|
if(read_zsreg(&dev->chanA, R12)!=0xAA)
|
|
return -ENODEV;
|
|
write_zsreg(&dev->chanA, R12, 0x55);
|
|
if(read_zsreg(&dev->chanA, R12)!=0x55)
|
|
return -ENODEV;
|
|
|
|
dev->type=Z8530;
|
|
|
|
/*
|
|
* See the application note.
|
|
*/
|
|
|
|
write_zsreg(&dev->chanA, R15, 0x01);
|
|
|
|
/*
|
|
* If we can set the low bit of R15 then
|
|
* the chip is enhanced.
|
|
*/
|
|
|
|
if(read_zsreg(&dev->chanA, R15)==0x01)
|
|
{
|
|
/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
|
|
/* Put a char in the fifo */
|
|
write_zsreg(&dev->chanA, R8, 0);
|
|
if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
|
|
dev->type = Z85230; /* Has a FIFO */
|
|
else
|
|
dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
|
|
}
|
|
|
|
/*
|
|
* The code assumes R7' and friends are
|
|
* off. Use write_zsext() for these and keep
|
|
* this bit clear.
|
|
*/
|
|
|
|
write_zsreg(&dev->chanA, R15, 0);
|
|
|
|
/*
|
|
* At this point it looks like the chip is behaving
|
|
*/
|
|
|
|
memcpy(dev->chanA.regs, reg_init, 16);
|
|
memcpy(dev->chanB.regs, reg_init ,16);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* z8530_init - Initialise a Z8530 device
|
|
* @dev: Z8530 device to initialise.
|
|
*
|
|
* Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
|
|
* is present, identify the type and then program it to hopefully
|
|
* keep quite and behave. This matters a lot, a Z8530 in the wrong
|
|
* state will sometimes get into stupid modes generating 10Khz
|
|
* interrupt streams and the like.
|
|
*
|
|
* We set the interrupt handler up to discard any events, in case
|
|
* we get them during reset or setp.
|
|
*
|
|
* Return 0 for success, or a negative value indicating the problem
|
|
* in errno form.
|
|
*/
|
|
|
|
int z8530_init(struct z8530_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/* Set up the chip level lock */
|
|
spin_lock_init(&dev->lock);
|
|
dev->chanA.lock = &dev->lock;
|
|
dev->chanB.lock = &dev->lock;
|
|
|
|
spin_lock_irqsave(&dev->lock, flags);
|
|
ret = do_z8530_init(dev);
|
|
spin_unlock_irqrestore(&dev->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(z8530_init);
|
|
|
|
/**
|
|
* z8530_shutdown - Shutdown a Z8530 device
|
|
* @dev: The Z8530 chip to shutdown
|
|
*
|
|
* We set the interrupt handlers to silence any interrupts. We then
|
|
* reset the chip and wait 100uS to be sure the reset completed. Just
|
|
* in case the caller then tries to do stuff.
|
|
*
|
|
* This is called without the lock held
|
|
*/
|
|
|
|
int z8530_shutdown(struct z8530_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
/* Reset the chip */
|
|
|
|
spin_lock_irqsave(&dev->lock, flags);
|
|
dev->chanA.irqs=&z8530_nop;
|
|
dev->chanB.irqs=&z8530_nop;
|
|
write_zsreg(&dev->chanA, R9, 0xC0);
|
|
/* We must lock the udelay, the chip is offlimits here */
|
|
udelay(100);
|
|
spin_unlock_irqrestore(&dev->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_shutdown);
|
|
|
|
/**
|
|
* z8530_channel_load - Load channel data
|
|
* @c: Z8530 channel to configure
|
|
* @rtable: table of register, value pairs
|
|
* FIXME: ioctl to allow user uploaded tables
|
|
*
|
|
* Load a Z8530 channel up from the system data. We use +16 to
|
|
* indicate the "prime" registers. The value 255 terminates the
|
|
* table.
|
|
*/
|
|
|
|
int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(c->lock, flags);
|
|
|
|
while(*rtable!=255)
|
|
{
|
|
int reg=*rtable++;
|
|
if(reg>0x0F)
|
|
write_zsreg(c, R15, c->regs[15]|1);
|
|
write_zsreg(c, reg&0x0F, *rtable);
|
|
if(reg>0x0F)
|
|
write_zsreg(c, R15, c->regs[15]&~1);
|
|
c->regs[reg]=*rtable++;
|
|
}
|
|
c->rx_function=z8530_null_rx;
|
|
c->skb=NULL;
|
|
c->tx_skb=NULL;
|
|
c->tx_next_skb=NULL;
|
|
c->mtu=1500;
|
|
c->max=0;
|
|
c->count=0;
|
|
c->status=read_zsreg(c, R0);
|
|
c->sync=1;
|
|
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
|
|
|
|
spin_unlock_irqrestore(c->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_channel_load);
|
|
|
|
|
|
/**
|
|
* z8530_tx_begin - Begin packet transmission
|
|
* @c: The Z8530 channel to kick
|
|
*
|
|
* This is the speed sensitive side of transmission. If we are called
|
|
* and no buffer is being transmitted we commence the next buffer. If
|
|
* nothing is queued we idle the sync.
|
|
*
|
|
* Note: We are handling this code path in the interrupt path, keep it
|
|
* fast or bad things will happen.
|
|
*
|
|
* Called with the lock held.
|
|
*/
|
|
|
|
static void z8530_tx_begin(struct z8530_channel *c)
|
|
{
|
|
unsigned long flags;
|
|
if(c->tx_skb)
|
|
return;
|
|
|
|
c->tx_skb=c->tx_next_skb;
|
|
c->tx_next_skb=NULL;
|
|
c->tx_ptr=c->tx_next_ptr;
|
|
|
|
if(c->tx_skb==NULL)
|
|
{
|
|
/* Idle on */
|
|
if(c->dma_tx)
|
|
{
|
|
flags=claim_dma_lock();
|
|
disable_dma(c->txdma);
|
|
/*
|
|
* Check if we crapped out.
|
|
*/
|
|
if (get_dma_residue(c->txdma))
|
|
{
|
|
c->netdevice->stats.tx_dropped++;
|
|
c->netdevice->stats.tx_fifo_errors++;
|
|
}
|
|
release_dma_lock(flags);
|
|
}
|
|
c->txcount=0;
|
|
}
|
|
else
|
|
{
|
|
c->txcount=c->tx_skb->len;
|
|
|
|
|
|
if(c->dma_tx)
|
|
{
|
|
/*
|
|
* FIXME. DMA is broken for the original 8530,
|
|
* on the older parts we need to set a flag and
|
|
* wait for a further TX interrupt to fire this
|
|
* stage off
|
|
*/
|
|
|
|
flags=claim_dma_lock();
|
|
disable_dma(c->txdma);
|
|
|
|
/*
|
|
* These two are needed by the 8530/85C30
|
|
* and must be issued when idling.
|
|
*/
|
|
|
|
if(c->dev->type!=Z85230)
|
|
{
|
|
write_zsctrl(c, RES_Tx_CRC);
|
|
write_zsctrl(c, RES_EOM_L);
|
|
}
|
|
write_zsreg(c, R10, c->regs[10]&~ABUNDER);
|
|
clear_dma_ff(c->txdma);
|
|
set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
|
|
set_dma_count(c->txdma, c->txcount);
|
|
enable_dma(c->txdma);
|
|
release_dma_lock(flags);
|
|
write_zsctrl(c, RES_EOM_L);
|
|
write_zsreg(c, R5, c->regs[R5]|TxENAB);
|
|
}
|
|
else
|
|
{
|
|
|
|
/* ABUNDER off */
|
|
write_zsreg(c, R10, c->regs[10]);
|
|
write_zsctrl(c, RES_Tx_CRC);
|
|
|
|
while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
|
|
{
|
|
write_zsreg(c, R8, *c->tx_ptr++);
|
|
c->txcount--;
|
|
}
|
|
|
|
}
|
|
}
|
|
/*
|
|
* Since we emptied tx_skb we can ask for more
|
|
*/
|
|
netif_wake_queue(c->netdevice);
|
|
}
|
|
|
|
/**
|
|
* z8530_tx_done - TX complete callback
|
|
* @c: The channel that completed a transmit.
|
|
*
|
|
* This is called when we complete a packet send. We wake the queue,
|
|
* start the next packet going and then free the buffer of the existing
|
|
* packet. This code is fairly timing sensitive.
|
|
*
|
|
* Called with the register lock held.
|
|
*/
|
|
|
|
static void z8530_tx_done(struct z8530_channel *c)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
/* Actually this can happen.*/
|
|
if (c->tx_skb == NULL)
|
|
return;
|
|
|
|
skb = c->tx_skb;
|
|
c->tx_skb = NULL;
|
|
z8530_tx_begin(c);
|
|
c->netdevice->stats.tx_packets++;
|
|
c->netdevice->stats.tx_bytes += skb->len;
|
|
dev_kfree_skb_irq(skb);
|
|
}
|
|
|
|
/**
|
|
* z8530_null_rx - Discard a packet
|
|
* @c: The channel the packet arrived on
|
|
* @skb: The buffer
|
|
*
|
|
* We point the receive handler at this function when idle. Instead
|
|
* of processing the frames we get to throw them away.
|
|
*/
|
|
|
|
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
|
|
{
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_null_rx);
|
|
|
|
/**
|
|
* z8530_rx_done - Receive completion callback
|
|
* @c: The channel that completed a receive
|
|
*
|
|
* A new packet is complete. Our goal here is to get back into receive
|
|
* mode as fast as possible. On the Z85230 we could change to using
|
|
* ESCC mode, but on the older chips we have no choice. We flip to the
|
|
* new buffer immediately in DMA mode so that the DMA of the next
|
|
* frame can occur while we are copying the previous buffer to an sk_buff
|
|
*
|
|
* Called with the lock held
|
|
*/
|
|
|
|
static void z8530_rx_done(struct z8530_channel *c)
|
|
{
|
|
struct sk_buff *skb;
|
|
int ct;
|
|
|
|
/*
|
|
* Is our receive engine in DMA mode
|
|
*/
|
|
|
|
if(c->rxdma_on)
|
|
{
|
|
/*
|
|
* Save the ready state and the buffer currently
|
|
* being used as the DMA target
|
|
*/
|
|
|
|
int ready=c->dma_ready;
|
|
unsigned char *rxb=c->rx_buf[c->dma_num];
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Complete this DMA. Necessary to find the length
|
|
*/
|
|
|
|
flags=claim_dma_lock();
|
|
|
|
disable_dma(c->rxdma);
|
|
clear_dma_ff(c->rxdma);
|
|
c->rxdma_on=0;
|
|
ct=c->mtu-get_dma_residue(c->rxdma);
|
|
if(ct<0)
|
|
ct=2; /* Shit happens.. */
|
|
c->dma_ready=0;
|
|
|
|
/*
|
|
* Normal case: the other slot is free, start the next DMA
|
|
* into it immediately.
|
|
*/
|
|
|
|
if(ready)
|
|
{
|
|
c->dma_num^=1;
|
|
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
|
|
set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
|
|
set_dma_count(c->rxdma, c->mtu);
|
|
c->rxdma_on = 1;
|
|
enable_dma(c->rxdma);
|
|
/* Stop any frames that we missed the head of
|
|
from passing */
|
|
write_zsreg(c, R0, RES_Rx_CRC);
|
|
}
|
|
else
|
|
/* Can't occur as we dont reenable the DMA irq until
|
|
after the flip is done */
|
|
netdev_warn(c->netdevice, "DMA flip overrun!\n");
|
|
|
|
release_dma_lock(flags);
|
|
|
|
/*
|
|
* Shove the old buffer into an sk_buff. We can't DMA
|
|
* directly into one on a PC - it might be above the 16Mb
|
|
* boundary. Optimisation - we could check to see if we
|
|
* can avoid the copy. Optimisation 2 - make the memcpy
|
|
* a copychecksum.
|
|
*/
|
|
|
|
skb = dev_alloc_skb(ct);
|
|
if (skb == NULL) {
|
|
c->netdevice->stats.rx_dropped++;
|
|
netdev_warn(c->netdevice, "Memory squeeze\n");
|
|
} else {
|
|
skb_put(skb, ct);
|
|
skb_copy_to_linear_data(skb, rxb, ct);
|
|
c->netdevice->stats.rx_packets++;
|
|
c->netdevice->stats.rx_bytes += ct;
|
|
}
|
|
c->dma_ready = 1;
|
|
} else {
|
|
RT_LOCK;
|
|
skb = c->skb;
|
|
|
|
/*
|
|
* The game we play for non DMA is similar. We want to
|
|
* get the controller set up for the next packet as fast
|
|
* as possible. We potentially only have one byte + the
|
|
* fifo length for this. Thus we want to flip to the new
|
|
* buffer and then mess around copying and allocating
|
|
* things. For the current case it doesn't matter but
|
|
* if you build a system where the sync irq isn't blocked
|
|
* by the kernel IRQ disable then you need only block the
|
|
* sync IRQ for the RT_LOCK area.
|
|
*
|
|
*/
|
|
ct=c->count;
|
|
|
|
c->skb = c->skb2;
|
|
c->count = 0;
|
|
c->max = c->mtu;
|
|
if (c->skb) {
|
|
c->dptr = c->skb->data;
|
|
c->max = c->mtu;
|
|
} else {
|
|
c->count = 0;
|
|
c->max = 0;
|
|
}
|
|
RT_UNLOCK;
|
|
|
|
c->skb2 = dev_alloc_skb(c->mtu);
|
|
if (c->skb2 == NULL)
|
|
netdev_warn(c->netdevice, "memory squeeze\n");
|
|
else
|
|
skb_put(c->skb2, c->mtu);
|
|
c->netdevice->stats.rx_packets++;
|
|
c->netdevice->stats.rx_bytes += ct;
|
|
}
|
|
/*
|
|
* If we received a frame we must now process it.
|
|
*/
|
|
if (skb) {
|
|
skb_trim(skb, ct);
|
|
c->rx_function(c, skb);
|
|
} else {
|
|
c->netdevice->stats.rx_dropped++;
|
|
netdev_err(c->netdevice, "Lost a frame\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spans_boundary - Check a packet can be ISA DMA'd
|
|
* @skb: The buffer to check
|
|
*
|
|
* Returns true if the buffer cross a DMA boundary on a PC. The poor
|
|
* thing can only DMA within a 64K block not across the edges of it.
|
|
*/
|
|
|
|
static inline int spans_boundary(struct sk_buff *skb)
|
|
{
|
|
unsigned long a=(unsigned long)skb->data;
|
|
a^=(a+skb->len);
|
|
if(a&0x00010000) /* If the 64K bit is different.. */
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* z8530_queue_xmit - Queue a packet
|
|
* @c: The channel to use
|
|
* @skb: The packet to kick down the channel
|
|
*
|
|
* Queue a packet for transmission. Because we have rather
|
|
* hard to hit interrupt latencies for the Z85230 per packet
|
|
* even in DMA mode we do the flip to DMA buffer if needed here
|
|
* not in the IRQ.
|
|
*
|
|
* Called from the network code. The lock is not held at this
|
|
* point.
|
|
*/
|
|
|
|
netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
netif_stop_queue(c->netdevice);
|
|
if(c->tx_next_skb)
|
|
return NETDEV_TX_BUSY;
|
|
|
|
|
|
/* PC SPECIFIC - DMA limits */
|
|
|
|
/*
|
|
* If we will DMA the transmit and its gone over the ISA bus
|
|
* limit, then copy to the flip buffer
|
|
*/
|
|
|
|
if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
|
|
{
|
|
/*
|
|
* Send the flip buffer, and flip the flippy bit.
|
|
* We don't care which is used when just so long as
|
|
* we never use the same buffer twice in a row. Since
|
|
* only one buffer can be going out at a time the other
|
|
* has to be safe.
|
|
*/
|
|
c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
|
|
c->tx_dma_used^=1; /* Flip temp buffer */
|
|
skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
|
|
}
|
|
else
|
|
c->tx_next_ptr=skb->data;
|
|
RT_LOCK;
|
|
c->tx_next_skb=skb;
|
|
RT_UNLOCK;
|
|
|
|
spin_lock_irqsave(c->lock, flags);
|
|
z8530_tx_begin(c);
|
|
spin_unlock_irqrestore(c->lock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
EXPORT_SYMBOL(z8530_queue_xmit);
|
|
|
|
/*
|
|
* Module support
|
|
*/
|
|
static const char banner[] __initconst =
|
|
KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
|
|
|
|
static int __init z85230_init_driver(void)
|
|
{
|
|
printk(banner);
|
|
return 0;
|
|
}
|
|
module_init(z85230_init_driver);
|
|
|
|
static void __exit z85230_cleanup_driver(void)
|
|
{
|
|
}
|
|
module_exit(z85230_cleanup_driver);
|
|
|
|
MODULE_AUTHOR("Red Hat Inc.");
|
|
MODULE_DESCRIPTION("Z85x30 synchronous driver core");
|
|
MODULE_LICENSE("GPL");
|