mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 07:26:48 +07:00
698d0831ba
Kai Heng Feng has noticed that BUG_ON(PageHighMem(pg)) triggers in drivers/media/common/saa7146/saa7146_core.c since19809c2da2
("mm, vmalloc: use __GFP_HIGHMEM implicitly"). saa7146_vmalloc_build_pgtable uses vmalloc_32 and it is reasonable to expect that the resulting page is not in highmem. The above commit aimed to add __GFP_HIGHMEM only for those requests which do not specify any zone modifier gfp flag. vmalloc_32 relies on GFP_VMALLOC32 which should do the right thing. Except it has been missed that GFP_VMALLOC32 is an alias for GFP_KERNEL on 32b architectures. Thanks to Matthew to notice this. Fix the problem by unconditionally setting GFP_DMA32 in GFP_VMALLOC32 for !64b arches (as a bailout). This should do the right thing and use ZONE_NORMAL which should be always below 4G on 32b systems. Debugged by Matthew Wilcox. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20180212095019.GX21609@dhcp22.suse.cz Fixes:19809c2da2
("mm, vmalloc: use __GFP_HIGHMEM implicitly”) Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Kai Heng Feng <kai.heng.feng@canonical.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2779 lines
70 KiB
C
2779 lines
70 KiB
C
/*
|
|
* linux/mm/vmalloc.c
|
|
*
|
|
* Copyright (C) 1993 Linus Torvalds
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
|
|
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
|
|
* Numa awareness, Christoph Lameter, SGI, June 2005
|
|
*/
|
|
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugobjects.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/list.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/llist.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/shmparam.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct vfree_deferred {
|
|
struct llist_head list;
|
|
struct work_struct wq;
|
|
};
|
|
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
|
|
|
|
static void __vunmap(const void *, int);
|
|
|
|
static void free_work(struct work_struct *w)
|
|
{
|
|
struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
|
|
struct llist_node *t, *llnode;
|
|
|
|
llist_for_each_safe(llnode, t, llist_del_all(&p->list))
|
|
__vunmap((void *)llnode, 1);
|
|
}
|
|
|
|
/*** Page table manipulation functions ***/
|
|
|
|
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
|
|
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_clear_huge(pmd))
|
|
continue;
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
vunmap_pte_range(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_clear_huge(pud))
|
|
continue;
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
vunmap_pmd_range(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (p4d_clear_huge(p4d))
|
|
continue;
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
continue;
|
|
vunmap_pud_range(p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_page_range(unsigned long addr, unsigned long end)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
vunmap_p4d_range(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
/*
|
|
* nr is a running index into the array which helps higher level
|
|
* callers keep track of where we're up to.
|
|
*/
|
|
|
|
pte = pte_alloc_kernel(pmd, addr);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
do {
|
|
struct page *page = pages[*nr];
|
|
|
|
if (WARN_ON(!pte_none(*pte)))
|
|
return -EBUSY;
|
|
if (WARN_ON(!page))
|
|
return -ENOMEM;
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
|
|
(*nr)++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_alloc(&init_mm, pud, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_alloc(&init_mm, p4d, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
p4d = p4d_alloc(&init_mm, pgd, addr);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (p4d++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
|
|
* will have pfns corresponding to the "pages" array.
|
|
*
|
|
* Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
|
|
*/
|
|
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
int err = 0;
|
|
int nr = 0;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
|
|
if (err)
|
|
return err;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int vmap_page_range(unsigned long start, unsigned long end,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
int ret;
|
|
|
|
ret = vmap_page_range_noflush(start, end, prot, pages);
|
|
flush_cache_vmap(start, end);
|
|
return ret;
|
|
}
|
|
|
|
int is_vmalloc_or_module_addr(const void *x)
|
|
{
|
|
/*
|
|
* ARM, x86-64 and sparc64 put modules in a special place,
|
|
* and fall back on vmalloc() if that fails. Others
|
|
* just put it in the vmalloc space.
|
|
*/
|
|
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
|
|
unsigned long addr = (unsigned long)x;
|
|
if (addr >= MODULES_VADDR && addr < MODULES_END)
|
|
return 1;
|
|
#endif
|
|
return is_vmalloc_addr(x);
|
|
}
|
|
|
|
/*
|
|
* Walk a vmap address to the struct page it maps.
|
|
*/
|
|
struct page *vmalloc_to_page(const void *vmalloc_addr)
|
|
{
|
|
unsigned long addr = (unsigned long) vmalloc_addr;
|
|
struct page *page = NULL;
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
/*
|
|
* XXX we might need to change this if we add VIRTUAL_BUG_ON for
|
|
* architectures that do not vmalloc module space
|
|
*/
|
|
VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
|
|
|
|
if (pgd_none(*pgd))
|
|
return NULL;
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d))
|
|
return NULL;
|
|
pud = pud_offset(p4d, addr);
|
|
|
|
/*
|
|
* Don't dereference bad PUD or PMD (below) entries. This will also
|
|
* identify huge mappings, which we may encounter on architectures
|
|
* that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
|
|
* identified as vmalloc addresses by is_vmalloc_addr(), but are
|
|
* not [unambiguously] associated with a struct page, so there is
|
|
* no correct value to return for them.
|
|
*/
|
|
WARN_ON_ONCE(pud_bad(*pud));
|
|
if (pud_none(*pud) || pud_bad(*pud))
|
|
return NULL;
|
|
pmd = pmd_offset(pud, addr);
|
|
WARN_ON_ONCE(pmd_bad(*pmd));
|
|
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
|
return NULL;
|
|
|
|
ptep = pte_offset_map(pmd, addr);
|
|
pte = *ptep;
|
|
if (pte_present(pte))
|
|
page = pte_page(pte);
|
|
pte_unmap(ptep);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_page);
|
|
|
|
/*
|
|
* Map a vmalloc()-space virtual address to the physical page frame number.
|
|
*/
|
|
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
|
|
{
|
|
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_pfn);
|
|
|
|
|
|
/*** Global kva allocator ***/
|
|
|
|
#define VM_LAZY_FREE 0x02
|
|
#define VM_VM_AREA 0x04
|
|
|
|
static DEFINE_SPINLOCK(vmap_area_lock);
|
|
/* Export for kexec only */
|
|
LIST_HEAD(vmap_area_list);
|
|
static LLIST_HEAD(vmap_purge_list);
|
|
static struct rb_root vmap_area_root = RB_ROOT;
|
|
|
|
/* The vmap cache globals are protected by vmap_area_lock */
|
|
static struct rb_node *free_vmap_cache;
|
|
static unsigned long cached_hole_size;
|
|
static unsigned long cached_vstart;
|
|
static unsigned long cached_align;
|
|
|
|
static unsigned long vmap_area_pcpu_hole;
|
|
|
|
static struct vmap_area *__find_vmap_area(unsigned long addr)
|
|
{
|
|
struct rb_node *n = vmap_area_root.rb_node;
|
|
|
|
while (n) {
|
|
struct vmap_area *va;
|
|
|
|
va = rb_entry(n, struct vmap_area, rb_node);
|
|
if (addr < va->va_start)
|
|
n = n->rb_left;
|
|
else if (addr >= va->va_end)
|
|
n = n->rb_right;
|
|
else
|
|
return va;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __insert_vmap_area(struct vmap_area *va)
|
|
{
|
|
struct rb_node **p = &vmap_area_root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct rb_node *tmp;
|
|
|
|
while (*p) {
|
|
struct vmap_area *tmp_va;
|
|
|
|
parent = *p;
|
|
tmp_va = rb_entry(parent, struct vmap_area, rb_node);
|
|
if (va->va_start < tmp_va->va_end)
|
|
p = &(*p)->rb_left;
|
|
else if (va->va_end > tmp_va->va_start)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(&va->rb_node, parent, p);
|
|
rb_insert_color(&va->rb_node, &vmap_area_root);
|
|
|
|
/* address-sort this list */
|
|
tmp = rb_prev(&va->rb_node);
|
|
if (tmp) {
|
|
struct vmap_area *prev;
|
|
prev = rb_entry(tmp, struct vmap_area, rb_node);
|
|
list_add_rcu(&va->list, &prev->list);
|
|
} else
|
|
list_add_rcu(&va->list, &vmap_area_list);
|
|
}
|
|
|
|
static void purge_vmap_area_lazy(void);
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
|
|
|
|
/*
|
|
* Allocate a region of KVA of the specified size and alignment, within the
|
|
* vstart and vend.
|
|
*/
|
|
static struct vmap_area *alloc_vmap_area(unsigned long size,
|
|
unsigned long align,
|
|
unsigned long vstart, unsigned long vend,
|
|
int node, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_area *va;
|
|
struct rb_node *n;
|
|
unsigned long addr;
|
|
int purged = 0;
|
|
struct vmap_area *first;
|
|
|
|
BUG_ON(!size);
|
|
BUG_ON(offset_in_page(size));
|
|
BUG_ON(!is_power_of_2(align));
|
|
|
|
might_sleep();
|
|
|
|
va = kmalloc_node(sizeof(struct vmap_area),
|
|
gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!va))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Only scan the relevant parts containing pointers to other objects
|
|
* to avoid false negatives.
|
|
*/
|
|
kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
|
|
|
|
retry:
|
|
spin_lock(&vmap_area_lock);
|
|
/*
|
|
* Invalidate cache if we have more permissive parameters.
|
|
* cached_hole_size notes the largest hole noticed _below_
|
|
* the vmap_area cached in free_vmap_cache: if size fits
|
|
* into that hole, we want to scan from vstart to reuse
|
|
* the hole instead of allocating above free_vmap_cache.
|
|
* Note that __free_vmap_area may update free_vmap_cache
|
|
* without updating cached_hole_size or cached_align.
|
|
*/
|
|
if (!free_vmap_cache ||
|
|
size < cached_hole_size ||
|
|
vstart < cached_vstart ||
|
|
align < cached_align) {
|
|
nocache:
|
|
cached_hole_size = 0;
|
|
free_vmap_cache = NULL;
|
|
}
|
|
/* record if we encounter less permissive parameters */
|
|
cached_vstart = vstart;
|
|
cached_align = align;
|
|
|
|
/* find starting point for our search */
|
|
if (free_vmap_cache) {
|
|
first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
|
|
addr = ALIGN(first->va_end, align);
|
|
if (addr < vstart)
|
|
goto nocache;
|
|
if (addr + size < addr)
|
|
goto overflow;
|
|
|
|
} else {
|
|
addr = ALIGN(vstart, align);
|
|
if (addr + size < addr)
|
|
goto overflow;
|
|
|
|
n = vmap_area_root.rb_node;
|
|
first = NULL;
|
|
|
|
while (n) {
|
|
struct vmap_area *tmp;
|
|
tmp = rb_entry(n, struct vmap_area, rb_node);
|
|
if (tmp->va_end >= addr) {
|
|
first = tmp;
|
|
if (tmp->va_start <= addr)
|
|
break;
|
|
n = n->rb_left;
|
|
} else
|
|
n = n->rb_right;
|
|
}
|
|
|
|
if (!first)
|
|
goto found;
|
|
}
|
|
|
|
/* from the starting point, walk areas until a suitable hole is found */
|
|
while (addr + size > first->va_start && addr + size <= vend) {
|
|
if (addr + cached_hole_size < first->va_start)
|
|
cached_hole_size = first->va_start - addr;
|
|
addr = ALIGN(first->va_end, align);
|
|
if (addr + size < addr)
|
|
goto overflow;
|
|
|
|
if (list_is_last(&first->list, &vmap_area_list))
|
|
goto found;
|
|
|
|
first = list_next_entry(first, list);
|
|
}
|
|
|
|
found:
|
|
if (addr + size > vend)
|
|
goto overflow;
|
|
|
|
va->va_start = addr;
|
|
va->va_end = addr + size;
|
|
va->flags = 0;
|
|
__insert_vmap_area(va);
|
|
free_vmap_cache = &va->rb_node;
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
BUG_ON(!IS_ALIGNED(va->va_start, align));
|
|
BUG_ON(va->va_start < vstart);
|
|
BUG_ON(va->va_end > vend);
|
|
|
|
return va;
|
|
|
|
overflow:
|
|
spin_unlock(&vmap_area_lock);
|
|
if (!purged) {
|
|
purge_vmap_area_lazy();
|
|
purged = 1;
|
|
goto retry;
|
|
}
|
|
|
|
if (gfpflags_allow_blocking(gfp_mask)) {
|
|
unsigned long freed = 0;
|
|
blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
|
|
if (freed > 0) {
|
|
purged = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
|
|
pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
|
|
size);
|
|
kfree(va);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
int register_vmap_purge_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&vmap_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
|
|
|
|
int unregister_vmap_purge_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
|
|
|
|
static void __free_vmap_area(struct vmap_area *va)
|
|
{
|
|
BUG_ON(RB_EMPTY_NODE(&va->rb_node));
|
|
|
|
if (free_vmap_cache) {
|
|
if (va->va_end < cached_vstart) {
|
|
free_vmap_cache = NULL;
|
|
} else {
|
|
struct vmap_area *cache;
|
|
cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
|
|
if (va->va_start <= cache->va_start) {
|
|
free_vmap_cache = rb_prev(&va->rb_node);
|
|
/*
|
|
* We don't try to update cached_hole_size or
|
|
* cached_align, but it won't go very wrong.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
rb_erase(&va->rb_node, &vmap_area_root);
|
|
RB_CLEAR_NODE(&va->rb_node);
|
|
list_del_rcu(&va->list);
|
|
|
|
/*
|
|
* Track the highest possible candidate for pcpu area
|
|
* allocation. Areas outside of vmalloc area can be returned
|
|
* here too, consider only end addresses which fall inside
|
|
* vmalloc area proper.
|
|
*/
|
|
if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
|
|
vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
|
|
|
|
kfree_rcu(va, rcu_head);
|
|
}
|
|
|
|
/*
|
|
* Free a region of KVA allocated by alloc_vmap_area
|
|
*/
|
|
static void free_vmap_area(struct vmap_area *va)
|
|
{
|
|
spin_lock(&vmap_area_lock);
|
|
__free_vmap_area(va);
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear the pagetable entries of a given vmap_area
|
|
*/
|
|
static void unmap_vmap_area(struct vmap_area *va)
|
|
{
|
|
vunmap_page_range(va->va_start, va->va_end);
|
|
}
|
|
|
|
static void vmap_debug_free_range(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* Unmap page tables and force a TLB flush immediately if pagealloc
|
|
* debugging is enabled. This catches use after free bugs similarly to
|
|
* those in linear kernel virtual address space after a page has been
|
|
* freed.
|
|
*
|
|
* All the lazy freeing logic is still retained, in order to minimise
|
|
* intrusiveness of this debugging feature.
|
|
*
|
|
* This is going to be *slow* (linear kernel virtual address debugging
|
|
* doesn't do a broadcast TLB flush so it is a lot faster).
|
|
*/
|
|
if (debug_pagealloc_enabled()) {
|
|
vunmap_page_range(start, end);
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* lazy_max_pages is the maximum amount of virtual address space we gather up
|
|
* before attempting to purge with a TLB flush.
|
|
*
|
|
* There is a tradeoff here: a larger number will cover more kernel page tables
|
|
* and take slightly longer to purge, but it will linearly reduce the number of
|
|
* global TLB flushes that must be performed. It would seem natural to scale
|
|
* this number up linearly with the number of CPUs (because vmapping activity
|
|
* could also scale linearly with the number of CPUs), however it is likely
|
|
* that in practice, workloads might be constrained in other ways that mean
|
|
* vmap activity will not scale linearly with CPUs. Also, I want to be
|
|
* conservative and not introduce a big latency on huge systems, so go with
|
|
* a less aggressive log scale. It will still be an improvement over the old
|
|
* code, and it will be simple to change the scale factor if we find that it
|
|
* becomes a problem on bigger systems.
|
|
*/
|
|
static unsigned long lazy_max_pages(void)
|
|
{
|
|
unsigned int log;
|
|
|
|
log = fls(num_online_cpus());
|
|
|
|
return log * (32UL * 1024 * 1024 / PAGE_SIZE);
|
|
}
|
|
|
|
static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* Serialize vmap purging. There is no actual criticial section protected
|
|
* by this look, but we want to avoid concurrent calls for performance
|
|
* reasons and to make the pcpu_get_vm_areas more deterministic.
|
|
*/
|
|
static DEFINE_MUTEX(vmap_purge_lock);
|
|
|
|
/* for per-CPU blocks */
|
|
static void purge_fragmented_blocks_allcpus(void);
|
|
|
|
/*
|
|
* called before a call to iounmap() if the caller wants vm_area_struct's
|
|
* immediately freed.
|
|
*/
|
|
void set_iounmap_nonlazy(void)
|
|
{
|
|
atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
|
|
}
|
|
|
|
/*
|
|
* Purges all lazily-freed vmap areas.
|
|
*/
|
|
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
|
|
{
|
|
struct llist_node *valist;
|
|
struct vmap_area *va;
|
|
struct vmap_area *n_va;
|
|
bool do_free = false;
|
|
|
|
lockdep_assert_held(&vmap_purge_lock);
|
|
|
|
valist = llist_del_all(&vmap_purge_list);
|
|
llist_for_each_entry(va, valist, purge_list) {
|
|
if (va->va_start < start)
|
|
start = va->va_start;
|
|
if (va->va_end > end)
|
|
end = va->va_end;
|
|
do_free = true;
|
|
}
|
|
|
|
if (!do_free)
|
|
return false;
|
|
|
|
flush_tlb_kernel_range(start, end);
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
llist_for_each_entry_safe(va, n_va, valist, purge_list) {
|
|
int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
|
|
|
|
__free_vmap_area(va);
|
|
atomic_sub(nr, &vmap_lazy_nr);
|
|
cond_resched_lock(&vmap_area_lock);
|
|
}
|
|
spin_unlock(&vmap_area_lock);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Kick off a purge of the outstanding lazy areas. Don't bother if somebody
|
|
* is already purging.
|
|
*/
|
|
static void try_purge_vmap_area_lazy(void)
|
|
{
|
|
if (mutex_trylock(&vmap_purge_lock)) {
|
|
__purge_vmap_area_lazy(ULONG_MAX, 0);
|
|
mutex_unlock(&vmap_purge_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kick off a purge of the outstanding lazy areas.
|
|
*/
|
|
static void purge_vmap_area_lazy(void)
|
|
{
|
|
mutex_lock(&vmap_purge_lock);
|
|
purge_fragmented_blocks_allcpus();
|
|
__purge_vmap_area_lazy(ULONG_MAX, 0);
|
|
mutex_unlock(&vmap_purge_lock);
|
|
}
|
|
|
|
/*
|
|
* Free a vmap area, caller ensuring that the area has been unmapped
|
|
* and flush_cache_vunmap had been called for the correct range
|
|
* previously.
|
|
*/
|
|
static void free_vmap_area_noflush(struct vmap_area *va)
|
|
{
|
|
int nr_lazy;
|
|
|
|
nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
|
|
&vmap_lazy_nr);
|
|
|
|
/* After this point, we may free va at any time */
|
|
llist_add(&va->purge_list, &vmap_purge_list);
|
|
|
|
if (unlikely(nr_lazy > lazy_max_pages()))
|
|
try_purge_vmap_area_lazy();
|
|
}
|
|
|
|
/*
|
|
* Free and unmap a vmap area
|
|
*/
|
|
static void free_unmap_vmap_area(struct vmap_area *va)
|
|
{
|
|
flush_cache_vunmap(va->va_start, va->va_end);
|
|
unmap_vmap_area(va);
|
|
free_vmap_area_noflush(va);
|
|
}
|
|
|
|
static struct vmap_area *find_vmap_area(unsigned long addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
va = __find_vmap_area(addr);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
return va;
|
|
}
|
|
|
|
/*** Per cpu kva allocator ***/
|
|
|
|
/*
|
|
* vmap space is limited especially on 32 bit architectures. Ensure there is
|
|
* room for at least 16 percpu vmap blocks per CPU.
|
|
*/
|
|
/*
|
|
* If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
|
|
* to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
|
|
* instead (we just need a rough idea)
|
|
*/
|
|
#if BITS_PER_LONG == 32
|
|
#define VMALLOC_SPACE (128UL*1024*1024)
|
|
#else
|
|
#define VMALLOC_SPACE (128UL*1024*1024*1024)
|
|
#endif
|
|
|
|
#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
|
|
#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
|
|
#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
|
|
#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
|
|
#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
|
|
#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
|
|
#define VMAP_BBMAP_BITS \
|
|
VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
|
|
VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
|
|
VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
|
|
|
|
#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
|
|
|
|
static bool vmap_initialized __read_mostly = false;
|
|
|
|
struct vmap_block_queue {
|
|
spinlock_t lock;
|
|
struct list_head free;
|
|
};
|
|
|
|
struct vmap_block {
|
|
spinlock_t lock;
|
|
struct vmap_area *va;
|
|
unsigned long free, dirty;
|
|
unsigned long dirty_min, dirty_max; /*< dirty range */
|
|
struct list_head free_list;
|
|
struct rcu_head rcu_head;
|
|
struct list_head purge;
|
|
};
|
|
|
|
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
|
|
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
|
|
|
|
/*
|
|
* Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
|
|
* in the free path. Could get rid of this if we change the API to return a
|
|
* "cookie" from alloc, to be passed to free. But no big deal yet.
|
|
*/
|
|
static DEFINE_SPINLOCK(vmap_block_tree_lock);
|
|
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
|
|
|
|
/*
|
|
* We should probably have a fallback mechanism to allocate virtual memory
|
|
* out of partially filled vmap blocks. However vmap block sizing should be
|
|
* fairly reasonable according to the vmalloc size, so it shouldn't be a
|
|
* big problem.
|
|
*/
|
|
|
|
static unsigned long addr_to_vb_idx(unsigned long addr)
|
|
{
|
|
addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
|
|
addr /= VMAP_BLOCK_SIZE;
|
|
return addr;
|
|
}
|
|
|
|
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = va_start + (pages_off << PAGE_SHIFT);
|
|
BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
|
|
return (void *)addr;
|
|
}
|
|
|
|
/**
|
|
* new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
|
|
* block. Of course pages number can't exceed VMAP_BBMAP_BITS
|
|
* @order: how many 2^order pages should be occupied in newly allocated block
|
|
* @gfp_mask: flags for the page level allocator
|
|
*
|
|
* Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
|
|
*/
|
|
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_block_queue *vbq;
|
|
struct vmap_block *vb;
|
|
struct vmap_area *va;
|
|
unsigned long vb_idx;
|
|
int node, err;
|
|
void *vaddr;
|
|
|
|
node = numa_node_id();
|
|
|
|
vb = kmalloc_node(sizeof(struct vmap_block),
|
|
gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!vb))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
|
|
VMALLOC_START, VMALLOC_END,
|
|
node, gfp_mask);
|
|
if (IS_ERR(va)) {
|
|
kfree(vb);
|
|
return ERR_CAST(va);
|
|
}
|
|
|
|
err = radix_tree_preload(gfp_mask);
|
|
if (unlikely(err)) {
|
|
kfree(vb);
|
|
free_vmap_area(va);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
vaddr = vmap_block_vaddr(va->va_start, 0);
|
|
spin_lock_init(&vb->lock);
|
|
vb->va = va;
|
|
/* At least something should be left free */
|
|
BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
|
|
vb->free = VMAP_BBMAP_BITS - (1UL << order);
|
|
vb->dirty = 0;
|
|
vb->dirty_min = VMAP_BBMAP_BITS;
|
|
vb->dirty_max = 0;
|
|
INIT_LIST_HEAD(&vb->free_list);
|
|
|
|
vb_idx = addr_to_vb_idx(va->va_start);
|
|
spin_lock(&vmap_block_tree_lock);
|
|
err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
|
|
spin_unlock(&vmap_block_tree_lock);
|
|
BUG_ON(err);
|
|
radix_tree_preload_end();
|
|
|
|
vbq = &get_cpu_var(vmap_block_queue);
|
|
spin_lock(&vbq->lock);
|
|
list_add_tail_rcu(&vb->free_list, &vbq->free);
|
|
spin_unlock(&vbq->lock);
|
|
put_cpu_var(vmap_block_queue);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void free_vmap_block(struct vmap_block *vb)
|
|
{
|
|
struct vmap_block *tmp;
|
|
unsigned long vb_idx;
|
|
|
|
vb_idx = addr_to_vb_idx(vb->va->va_start);
|
|
spin_lock(&vmap_block_tree_lock);
|
|
tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
|
|
spin_unlock(&vmap_block_tree_lock);
|
|
BUG_ON(tmp != vb);
|
|
|
|
free_vmap_area_noflush(vb->va);
|
|
kfree_rcu(vb, rcu_head);
|
|
}
|
|
|
|
static void purge_fragmented_blocks(int cpu)
|
|
{
|
|
LIST_HEAD(purge);
|
|
struct vmap_block *vb;
|
|
struct vmap_block *n_vb;
|
|
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
|
|
if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
|
|
continue;
|
|
|
|
spin_lock(&vb->lock);
|
|
if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
|
|
vb->free = 0; /* prevent further allocs after releasing lock */
|
|
vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
|
|
vb->dirty_min = 0;
|
|
vb->dirty_max = VMAP_BBMAP_BITS;
|
|
spin_lock(&vbq->lock);
|
|
list_del_rcu(&vb->free_list);
|
|
spin_unlock(&vbq->lock);
|
|
spin_unlock(&vb->lock);
|
|
list_add_tail(&vb->purge, &purge);
|
|
} else
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
list_for_each_entry_safe(vb, n_vb, &purge, purge) {
|
|
list_del(&vb->purge);
|
|
free_vmap_block(vb);
|
|
}
|
|
}
|
|
|
|
static void purge_fragmented_blocks_allcpus(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
purge_fragmented_blocks(cpu);
|
|
}
|
|
|
|
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_block_queue *vbq;
|
|
struct vmap_block *vb;
|
|
void *vaddr = NULL;
|
|
unsigned int order;
|
|
|
|
BUG_ON(offset_in_page(size));
|
|
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
|
|
if (WARN_ON(size == 0)) {
|
|
/*
|
|
* Allocating 0 bytes isn't what caller wants since
|
|
* get_order(0) returns funny result. Just warn and terminate
|
|
* early.
|
|
*/
|
|
return NULL;
|
|
}
|
|
order = get_order(size);
|
|
|
|
rcu_read_lock();
|
|
vbq = &get_cpu_var(vmap_block_queue);
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
unsigned long pages_off;
|
|
|
|
spin_lock(&vb->lock);
|
|
if (vb->free < (1UL << order)) {
|
|
spin_unlock(&vb->lock);
|
|
continue;
|
|
}
|
|
|
|
pages_off = VMAP_BBMAP_BITS - vb->free;
|
|
vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
|
|
vb->free -= 1UL << order;
|
|
if (vb->free == 0) {
|
|
spin_lock(&vbq->lock);
|
|
list_del_rcu(&vb->free_list);
|
|
spin_unlock(&vbq->lock);
|
|
}
|
|
|
|
spin_unlock(&vb->lock);
|
|
break;
|
|
}
|
|
|
|
put_cpu_var(vmap_block_queue);
|
|
rcu_read_unlock();
|
|
|
|
/* Allocate new block if nothing was found */
|
|
if (!vaddr)
|
|
vaddr = new_vmap_block(order, gfp_mask);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void vb_free(const void *addr, unsigned long size)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long vb_idx;
|
|
unsigned int order;
|
|
struct vmap_block *vb;
|
|
|
|
BUG_ON(offset_in_page(size));
|
|
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
|
|
|
|
flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
|
|
|
|
order = get_order(size);
|
|
|
|
offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
|
|
offset >>= PAGE_SHIFT;
|
|
|
|
vb_idx = addr_to_vb_idx((unsigned long)addr);
|
|
rcu_read_lock();
|
|
vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
|
|
rcu_read_unlock();
|
|
BUG_ON(!vb);
|
|
|
|
vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
|
|
|
|
spin_lock(&vb->lock);
|
|
|
|
/* Expand dirty range */
|
|
vb->dirty_min = min(vb->dirty_min, offset);
|
|
vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
|
|
|
|
vb->dirty += 1UL << order;
|
|
if (vb->dirty == VMAP_BBMAP_BITS) {
|
|
BUG_ON(vb->free);
|
|
spin_unlock(&vb->lock);
|
|
free_vmap_block(vb);
|
|
} else
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
|
|
/**
|
|
* vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
|
|
*
|
|
* The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
|
|
* to amortize TLB flushing overheads. What this means is that any page you
|
|
* have now, may, in a former life, have been mapped into kernel virtual
|
|
* address by the vmap layer and so there might be some CPUs with TLB entries
|
|
* still referencing that page (additional to the regular 1:1 kernel mapping).
|
|
*
|
|
* vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
|
|
* be sure that none of the pages we have control over will have any aliases
|
|
* from the vmap layer.
|
|
*/
|
|
void vm_unmap_aliases(void)
|
|
{
|
|
unsigned long start = ULONG_MAX, end = 0;
|
|
int cpu;
|
|
int flush = 0;
|
|
|
|
if (unlikely(!vmap_initialized))
|
|
return;
|
|
|
|
might_sleep();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
|
|
struct vmap_block *vb;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
spin_lock(&vb->lock);
|
|
if (vb->dirty) {
|
|
unsigned long va_start = vb->va->va_start;
|
|
unsigned long s, e;
|
|
|
|
s = va_start + (vb->dirty_min << PAGE_SHIFT);
|
|
e = va_start + (vb->dirty_max << PAGE_SHIFT);
|
|
|
|
start = min(s, start);
|
|
end = max(e, end);
|
|
|
|
flush = 1;
|
|
}
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
mutex_lock(&vmap_purge_lock);
|
|
purge_fragmented_blocks_allcpus();
|
|
if (!__purge_vmap_area_lazy(start, end) && flush)
|
|
flush_tlb_kernel_range(start, end);
|
|
mutex_unlock(&vmap_purge_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
|
|
|
|
/**
|
|
* vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
|
|
* @mem: the pointer returned by vm_map_ram
|
|
* @count: the count passed to that vm_map_ram call (cannot unmap partial)
|
|
*/
|
|
void vm_unmap_ram(const void *mem, unsigned int count)
|
|
{
|
|
unsigned long size = (unsigned long)count << PAGE_SHIFT;
|
|
unsigned long addr = (unsigned long)mem;
|
|
struct vmap_area *va;
|
|
|
|
might_sleep();
|
|
BUG_ON(!addr);
|
|
BUG_ON(addr < VMALLOC_START);
|
|
BUG_ON(addr > VMALLOC_END);
|
|
BUG_ON(!PAGE_ALIGNED(addr));
|
|
|
|
debug_check_no_locks_freed(mem, size);
|
|
vmap_debug_free_range(addr, addr+size);
|
|
|
|
if (likely(count <= VMAP_MAX_ALLOC)) {
|
|
vb_free(mem, size);
|
|
return;
|
|
}
|
|
|
|
va = find_vmap_area(addr);
|
|
BUG_ON(!va);
|
|
free_unmap_vmap_area(va);
|
|
}
|
|
EXPORT_SYMBOL(vm_unmap_ram);
|
|
|
|
/**
|
|
* vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
|
|
* @pages: an array of pointers to the pages to be mapped
|
|
* @count: number of pages
|
|
* @node: prefer to allocate data structures on this node
|
|
* @prot: memory protection to use. PAGE_KERNEL for regular RAM
|
|
*
|
|
* If you use this function for less than VMAP_MAX_ALLOC pages, it could be
|
|
* faster than vmap so it's good. But if you mix long-life and short-life
|
|
* objects with vm_map_ram(), it could consume lots of address space through
|
|
* fragmentation (especially on a 32bit machine). You could see failures in
|
|
* the end. Please use this function for short-lived objects.
|
|
*
|
|
* Returns: a pointer to the address that has been mapped, or %NULL on failure
|
|
*/
|
|
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
|
|
{
|
|
unsigned long size = (unsigned long)count << PAGE_SHIFT;
|
|
unsigned long addr;
|
|
void *mem;
|
|
|
|
if (likely(count <= VMAP_MAX_ALLOC)) {
|
|
mem = vb_alloc(size, GFP_KERNEL);
|
|
if (IS_ERR(mem))
|
|
return NULL;
|
|
addr = (unsigned long)mem;
|
|
} else {
|
|
struct vmap_area *va;
|
|
va = alloc_vmap_area(size, PAGE_SIZE,
|
|
VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
|
|
if (IS_ERR(va))
|
|
return NULL;
|
|
|
|
addr = va->va_start;
|
|
mem = (void *)addr;
|
|
}
|
|
if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
|
|
vm_unmap_ram(mem, count);
|
|
return NULL;
|
|
}
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(vm_map_ram);
|
|
|
|
static struct vm_struct *vmlist __initdata;
|
|
/**
|
|
* vm_area_add_early - add vmap area early during boot
|
|
* @vm: vm_struct to add
|
|
*
|
|
* This function is used to add fixed kernel vm area to vmlist before
|
|
* vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
|
|
* should contain proper values and the other fields should be zero.
|
|
*
|
|
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
|
|
*/
|
|
void __init vm_area_add_early(struct vm_struct *vm)
|
|
{
|
|
struct vm_struct *tmp, **p;
|
|
|
|
BUG_ON(vmap_initialized);
|
|
for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
|
|
if (tmp->addr >= vm->addr) {
|
|
BUG_ON(tmp->addr < vm->addr + vm->size);
|
|
break;
|
|
} else
|
|
BUG_ON(tmp->addr + tmp->size > vm->addr);
|
|
}
|
|
vm->next = *p;
|
|
*p = vm;
|
|
}
|
|
|
|
/**
|
|
* vm_area_register_early - register vmap area early during boot
|
|
* @vm: vm_struct to register
|
|
* @align: requested alignment
|
|
*
|
|
* This function is used to register kernel vm area before
|
|
* vmalloc_init() is called. @vm->size and @vm->flags should contain
|
|
* proper values on entry and other fields should be zero. On return,
|
|
* vm->addr contains the allocated address.
|
|
*
|
|
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
|
|
*/
|
|
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
|
|
{
|
|
static size_t vm_init_off __initdata;
|
|
unsigned long addr;
|
|
|
|
addr = ALIGN(VMALLOC_START + vm_init_off, align);
|
|
vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
|
|
|
|
vm->addr = (void *)addr;
|
|
|
|
vm_area_add_early(vm);
|
|
}
|
|
|
|
void __init vmalloc_init(void)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *tmp;
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct vmap_block_queue *vbq;
|
|
struct vfree_deferred *p;
|
|
|
|
vbq = &per_cpu(vmap_block_queue, i);
|
|
spin_lock_init(&vbq->lock);
|
|
INIT_LIST_HEAD(&vbq->free);
|
|
p = &per_cpu(vfree_deferred, i);
|
|
init_llist_head(&p->list);
|
|
INIT_WORK(&p->wq, free_work);
|
|
}
|
|
|
|
/* Import existing vmlist entries. */
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
|
|
va->flags = VM_VM_AREA;
|
|
va->va_start = (unsigned long)tmp->addr;
|
|
va->va_end = va->va_start + tmp->size;
|
|
va->vm = tmp;
|
|
__insert_vmap_area(va);
|
|
}
|
|
|
|
vmap_area_pcpu_hole = VMALLOC_END;
|
|
|
|
vmap_initialized = true;
|
|
}
|
|
|
|
/**
|
|
* map_kernel_range_noflush - map kernel VM area with the specified pages
|
|
* @addr: start of the VM area to map
|
|
* @size: size of the VM area to map
|
|
* @prot: page protection flags to use
|
|
* @pages: pages to map
|
|
*
|
|
* Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
|
|
* specify should have been allocated using get_vm_area() and its
|
|
* friends.
|
|
*
|
|
* NOTE:
|
|
* This function does NOT do any cache flushing. The caller is
|
|
* responsible for calling flush_cache_vmap() on to-be-mapped areas
|
|
* before calling this function.
|
|
*
|
|
* RETURNS:
|
|
* The number of pages mapped on success, -errno on failure.
|
|
*/
|
|
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
return vmap_page_range_noflush(addr, addr + size, prot, pages);
|
|
}
|
|
|
|
/**
|
|
* unmap_kernel_range_noflush - unmap kernel VM area
|
|
* @addr: start of the VM area to unmap
|
|
* @size: size of the VM area to unmap
|
|
*
|
|
* Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
|
|
* specify should have been allocated using get_vm_area() and its
|
|
* friends.
|
|
*
|
|
* NOTE:
|
|
* This function does NOT do any cache flushing. The caller is
|
|
* responsible for calling flush_cache_vunmap() on to-be-mapped areas
|
|
* before calling this function and flush_tlb_kernel_range() after.
|
|
*/
|
|
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
|
|
{
|
|
vunmap_page_range(addr, addr + size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
|
|
|
|
/**
|
|
* unmap_kernel_range - unmap kernel VM area and flush cache and TLB
|
|
* @addr: start of the VM area to unmap
|
|
* @size: size of the VM area to unmap
|
|
*
|
|
* Similar to unmap_kernel_range_noflush() but flushes vcache before
|
|
* the unmapping and tlb after.
|
|
*/
|
|
void unmap_kernel_range(unsigned long addr, unsigned long size)
|
|
{
|
|
unsigned long end = addr + size;
|
|
|
|
flush_cache_vunmap(addr, end);
|
|
vunmap_page_range(addr, end);
|
|
flush_tlb_kernel_range(addr, end);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unmap_kernel_range);
|
|
|
|
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
|
|
{
|
|
unsigned long addr = (unsigned long)area->addr;
|
|
unsigned long end = addr + get_vm_area_size(area);
|
|
int err;
|
|
|
|
err = vmap_page_range(addr, end, prot, pages);
|
|
|
|
return err > 0 ? 0 : err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(map_vm_area);
|
|
|
|
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
|
|
unsigned long flags, const void *caller)
|
|
{
|
|
spin_lock(&vmap_area_lock);
|
|
vm->flags = flags;
|
|
vm->addr = (void *)va->va_start;
|
|
vm->size = va->va_end - va->va_start;
|
|
vm->caller = caller;
|
|
va->vm = vm;
|
|
va->flags |= VM_VM_AREA;
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
|
|
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
|
|
{
|
|
/*
|
|
* Before removing VM_UNINITIALIZED,
|
|
* we should make sure that vm has proper values.
|
|
* Pair with smp_rmb() in show_numa_info().
|
|
*/
|
|
smp_wmb();
|
|
vm->flags &= ~VM_UNINITIALIZED;
|
|
}
|
|
|
|
static struct vm_struct *__get_vm_area_node(unsigned long size,
|
|
unsigned long align, unsigned long flags, unsigned long start,
|
|
unsigned long end, int node, gfp_t gfp_mask, const void *caller)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *area;
|
|
|
|
BUG_ON(in_interrupt());
|
|
size = PAGE_ALIGN(size);
|
|
if (unlikely(!size))
|
|
return NULL;
|
|
|
|
if (flags & VM_IOREMAP)
|
|
align = 1ul << clamp_t(int, get_count_order_long(size),
|
|
PAGE_SHIFT, IOREMAP_MAX_ORDER);
|
|
|
|
area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!area))
|
|
return NULL;
|
|
|
|
if (!(flags & VM_NO_GUARD))
|
|
size += PAGE_SIZE;
|
|
|
|
va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
|
|
if (IS_ERR(va)) {
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
setup_vmalloc_vm(area, va, flags, caller);
|
|
|
|
return area;
|
|
}
|
|
|
|
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
|
|
GFP_KERNEL, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL_GPL(__get_vm_area);
|
|
|
|
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end,
|
|
const void *caller)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
|
|
GFP_KERNEL, caller);
|
|
}
|
|
|
|
/**
|
|
* get_vm_area - reserve a contiguous kernel virtual area
|
|
* @size: size of the area
|
|
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
|
|
*
|
|
* Search an area of @size in the kernel virtual mapping area,
|
|
* and reserved it for out purposes. Returns the area descriptor
|
|
* on success or %NULL on failure.
|
|
*/
|
|
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
|
|
NUMA_NO_NODE, GFP_KERNEL,
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
const void *caller)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
|
|
NUMA_NO_NODE, GFP_KERNEL, caller);
|
|
}
|
|
|
|
/**
|
|
* find_vm_area - find a continuous kernel virtual area
|
|
* @addr: base address
|
|
*
|
|
* Search for the kernel VM area starting at @addr, and return it.
|
|
* It is up to the caller to do all required locking to keep the returned
|
|
* pointer valid.
|
|
*/
|
|
struct vm_struct *find_vm_area(const void *addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
va = find_vmap_area((unsigned long)addr);
|
|
if (va && va->flags & VM_VM_AREA)
|
|
return va->vm;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* remove_vm_area - find and remove a continuous kernel virtual area
|
|
* @addr: base address
|
|
*
|
|
* Search for the kernel VM area starting at @addr, and remove it.
|
|
* This function returns the found VM area, but using it is NOT safe
|
|
* on SMP machines, except for its size or flags.
|
|
*/
|
|
struct vm_struct *remove_vm_area(const void *addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
might_sleep();
|
|
|
|
va = find_vmap_area((unsigned long)addr);
|
|
if (va && va->flags & VM_VM_AREA) {
|
|
struct vm_struct *vm = va->vm;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
va->vm = NULL;
|
|
va->flags &= ~VM_VM_AREA;
|
|
va->flags |= VM_LAZY_FREE;
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
vmap_debug_free_range(va->va_start, va->va_end);
|
|
kasan_free_shadow(vm);
|
|
free_unmap_vmap_area(va);
|
|
|
|
return vm;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __vunmap(const void *addr, int deallocate_pages)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
if (!addr)
|
|
return;
|
|
|
|
if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
|
|
addr))
|
|
return;
|
|
|
|
area = remove_vm_area(addr);
|
|
if (unlikely(!area)) {
|
|
WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
debug_check_no_locks_freed(addr, get_vm_area_size(area));
|
|
debug_check_no_obj_freed(addr, get_vm_area_size(area));
|
|
|
|
if (deallocate_pages) {
|
|
int i;
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page = area->pages[i];
|
|
|
|
BUG_ON(!page);
|
|
__free_pages(page, 0);
|
|
}
|
|
|
|
kvfree(area->pages);
|
|
}
|
|
|
|
kfree(area);
|
|
return;
|
|
}
|
|
|
|
static inline void __vfree_deferred(const void *addr)
|
|
{
|
|
/*
|
|
* Use raw_cpu_ptr() because this can be called from preemptible
|
|
* context. Preemption is absolutely fine here, because the llist_add()
|
|
* implementation is lockless, so it works even if we are adding to
|
|
* nother cpu's list. schedule_work() should be fine with this too.
|
|
*/
|
|
struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
|
|
|
|
if (llist_add((struct llist_node *)addr, &p->list))
|
|
schedule_work(&p->wq);
|
|
}
|
|
|
|
/**
|
|
* vfree_atomic - release memory allocated by vmalloc()
|
|
* @addr: memory base address
|
|
*
|
|
* This one is just like vfree() but can be called in any atomic context
|
|
* except NMIs.
|
|
*/
|
|
void vfree_atomic(const void *addr)
|
|
{
|
|
BUG_ON(in_nmi());
|
|
|
|
kmemleak_free(addr);
|
|
|
|
if (!addr)
|
|
return;
|
|
__vfree_deferred(addr);
|
|
}
|
|
|
|
/**
|
|
* vfree - release memory allocated by vmalloc()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually continuous memory area starting at @addr, as
|
|
* obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
|
|
* NULL, no operation is performed.
|
|
*
|
|
* Must not be called in NMI context (strictly speaking, only if we don't
|
|
* have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
|
|
* conventions for vfree() arch-depenedent would be a really bad idea)
|
|
*
|
|
* NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
|
|
*/
|
|
void vfree(const void *addr)
|
|
{
|
|
BUG_ON(in_nmi());
|
|
|
|
kmemleak_free(addr);
|
|
|
|
if (!addr)
|
|
return;
|
|
if (unlikely(in_interrupt()))
|
|
__vfree_deferred(addr);
|
|
else
|
|
__vunmap(addr, 1);
|
|
}
|
|
EXPORT_SYMBOL(vfree);
|
|
|
|
/**
|
|
* vunmap - release virtual mapping obtained by vmap()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually contiguous memory area starting at @addr,
|
|
* which was created from the page array passed to vmap().
|
|
*
|
|
* Must not be called in interrupt context.
|
|
*/
|
|
void vunmap(const void *addr)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
might_sleep();
|
|
if (addr)
|
|
__vunmap(addr, 0);
|
|
}
|
|
EXPORT_SYMBOL(vunmap);
|
|
|
|
/**
|
|
* vmap - map an array of pages into virtually contiguous space
|
|
* @pages: array of page pointers
|
|
* @count: number of pages to map
|
|
* @flags: vm_area->flags
|
|
* @prot: page protection for the mapping
|
|
*
|
|
* Maps @count pages from @pages into contiguous kernel virtual
|
|
* space.
|
|
*/
|
|
void *vmap(struct page **pages, unsigned int count,
|
|
unsigned long flags, pgprot_t prot)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long size; /* In bytes */
|
|
|
|
might_sleep();
|
|
|
|
if (count > totalram_pages)
|
|
return NULL;
|
|
|
|
size = (unsigned long)count << PAGE_SHIFT;
|
|
area = get_vm_area_caller(size, flags, __builtin_return_address(0));
|
|
if (!area)
|
|
return NULL;
|
|
|
|
if (map_vm_area(area, prot, pages)) {
|
|
vunmap(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
return area->addr;
|
|
}
|
|
EXPORT_SYMBOL(vmap);
|
|
|
|
static void *__vmalloc_node(unsigned long size, unsigned long align,
|
|
gfp_t gfp_mask, pgprot_t prot,
|
|
int node, const void *caller);
|
|
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
|
|
pgprot_t prot, int node)
|
|
{
|
|
struct page **pages;
|
|
unsigned int nr_pages, array_size, i;
|
|
const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
|
|
const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
|
|
const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
|
|
0 :
|
|
__GFP_HIGHMEM;
|
|
|
|
nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
|
|
array_size = (nr_pages * sizeof(struct page *));
|
|
|
|
area->nr_pages = nr_pages;
|
|
/* Please note that the recursion is strictly bounded. */
|
|
if (array_size > PAGE_SIZE) {
|
|
pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
|
|
PAGE_KERNEL, node, area->caller);
|
|
} else {
|
|
pages = kmalloc_node(array_size, nested_gfp, node);
|
|
}
|
|
area->pages = pages;
|
|
if (!area->pages) {
|
|
remove_vm_area(area->addr);
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page;
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
page = alloc_page(alloc_mask|highmem_mask);
|
|
else
|
|
page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
|
|
|
|
if (unlikely(!page)) {
|
|
/* Successfully allocated i pages, free them in __vunmap() */
|
|
area->nr_pages = i;
|
|
goto fail;
|
|
}
|
|
area->pages[i] = page;
|
|
if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
|
|
cond_resched();
|
|
}
|
|
|
|
if (map_vm_area(area, prot, pages))
|
|
goto fail;
|
|
return area->addr;
|
|
|
|
fail:
|
|
warn_alloc(gfp_mask, NULL,
|
|
"vmalloc: allocation failure, allocated %ld of %ld bytes",
|
|
(area->nr_pages*PAGE_SIZE), area->size);
|
|
vfree(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __vmalloc_node_range - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* @align: desired alignment
|
|
* @start: vm area range start
|
|
* @end: vm area range end
|
|
* @gfp_mask: flags for the page level allocator
|
|
* @prot: protection mask for the allocated pages
|
|
* @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
|
|
* @node: node to use for allocation or NUMA_NO_NODE
|
|
* @caller: caller's return address
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator with @gfp_mask flags. Map them into contiguous
|
|
* kernel virtual space, using a pagetable protection of @prot.
|
|
*/
|
|
void *__vmalloc_node_range(unsigned long size, unsigned long align,
|
|
unsigned long start, unsigned long end, gfp_t gfp_mask,
|
|
pgprot_t prot, unsigned long vm_flags, int node,
|
|
const void *caller)
|
|
{
|
|
struct vm_struct *area;
|
|
void *addr;
|
|
unsigned long real_size = size;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
if (!size || (size >> PAGE_SHIFT) > totalram_pages)
|
|
goto fail;
|
|
|
|
area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
|
|
vm_flags, start, end, node, gfp_mask, caller);
|
|
if (!area)
|
|
goto fail;
|
|
|
|
addr = __vmalloc_area_node(area, gfp_mask, prot, node);
|
|
if (!addr)
|
|
return NULL;
|
|
|
|
/*
|
|
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
|
|
* flag. It means that vm_struct is not fully initialized.
|
|
* Now, it is fully initialized, so remove this flag here.
|
|
*/
|
|
clear_vm_uninitialized_flag(area);
|
|
|
|
kmemleak_vmalloc(area, size, gfp_mask);
|
|
|
|
return addr;
|
|
|
|
fail:
|
|
warn_alloc(gfp_mask, NULL,
|
|
"vmalloc: allocation failure: %lu bytes", real_size);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __vmalloc_node - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* @align: desired alignment
|
|
* @gfp_mask: flags for the page level allocator
|
|
* @prot: protection mask for the allocated pages
|
|
* @node: node to use for allocation or NUMA_NO_NODE
|
|
* @caller: caller's return address
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator with @gfp_mask flags. Map them into contiguous
|
|
* kernel virtual space, using a pagetable protection of @prot.
|
|
*
|
|
* Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
|
|
* and __GFP_NOFAIL are not supported
|
|
*
|
|
* Any use of gfp flags outside of GFP_KERNEL should be consulted
|
|
* with mm people.
|
|
*
|
|
*/
|
|
static void *__vmalloc_node(unsigned long size, unsigned long align,
|
|
gfp_t gfp_mask, pgprot_t prot,
|
|
int node, const void *caller)
|
|
{
|
|
return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
|
|
gfp_mask, prot, 0, node, caller);
|
|
}
|
|
|
|
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
|
|
{
|
|
return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(__vmalloc);
|
|
|
|
static inline void *__vmalloc_node_flags(unsigned long size,
|
|
int node, gfp_t flags)
|
|
{
|
|
return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
|
|
node, __builtin_return_address(0));
|
|
}
|
|
|
|
|
|
void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
|
|
void *caller)
|
|
{
|
|
return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
|
|
}
|
|
|
|
/**
|
|
* vmalloc - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vmalloc(unsigned long size)
|
|
{
|
|
return __vmalloc_node_flags(size, NUMA_NO_NODE,
|
|
GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL(vmalloc);
|
|
|
|
/**
|
|
* vzalloc - allocate virtually contiguous memory with zero fill
|
|
* @size: allocation size
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
* The memory allocated is set to zero.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vzalloc(unsigned long size)
|
|
{
|
|
return __vmalloc_node_flags(size, NUMA_NO_NODE,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
}
|
|
EXPORT_SYMBOL(vzalloc);
|
|
|
|
/**
|
|
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is zeroed so it can be mapped to userspace
|
|
* without leaking data.
|
|
*/
|
|
void *vmalloc_user(unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
void *ret;
|
|
|
|
ret = __vmalloc_node(size, SHMLBA,
|
|
GFP_KERNEL | __GFP_ZERO,
|
|
PAGE_KERNEL, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
if (ret) {
|
|
area = find_vm_area(ret);
|
|
area->flags |= VM_USERMAP;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_user);
|
|
|
|
/**
|
|
* vmalloc_node - allocate memory on a specific node
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vmalloc_node(unsigned long size, int node)
|
|
{
|
|
return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
|
|
node, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_node);
|
|
|
|
/**
|
|
* vzalloc_node - allocate memory on a specific node with zero fill
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
* The memory allocated is set to zero.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc_node() instead.
|
|
*/
|
|
void *vzalloc_node(unsigned long size, int node)
|
|
{
|
|
return __vmalloc_node_flags(size, node,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
}
|
|
EXPORT_SYMBOL(vzalloc_node);
|
|
|
|
#ifndef PAGE_KERNEL_EXEC
|
|
# define PAGE_KERNEL_EXEC PAGE_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_exec - allocate virtually contiguous, executable memory
|
|
* @size: allocation size
|
|
*
|
|
* Kernel-internal function to allocate enough pages to cover @size
|
|
* the page level allocator and map them into contiguous and
|
|
* executable kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
|
|
void *vmalloc_exec(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
|
|
NUMA_NO_NODE, __builtin_return_address(0));
|
|
}
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
|
|
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
|
|
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
|
|
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
|
|
#else
|
|
/*
|
|
* 64b systems should always have either DMA or DMA32 zones. For others
|
|
* GFP_DMA32 should do the right thing and use the normal zone.
|
|
*/
|
|
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
|
|
* @size: allocation size
|
|
*
|
|
* Allocate enough 32bit PA addressable pages to cover @size from the
|
|
* page level allocator and map them into contiguous kernel virtual space.
|
|
*/
|
|
void *vmalloc_32(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
|
|
NUMA_NO_NODE, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32);
|
|
|
|
/**
|
|
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is 32bit addressable and zeroed so it can be
|
|
* mapped to userspace without leaking data.
|
|
*/
|
|
void *vmalloc_32_user(unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
void *ret;
|
|
|
|
ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
|
|
NUMA_NO_NODE, __builtin_return_address(0));
|
|
if (ret) {
|
|
area = find_vm_area(ret);
|
|
area->flags |= VM_USERMAP;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32_user);
|
|
|
|
/*
|
|
* small helper routine , copy contents to buf from addr.
|
|
* If the page is not present, fill zero.
|
|
*/
|
|
|
|
static int aligned_vread(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct page *p;
|
|
int copied = 0;
|
|
|
|
while (count) {
|
|
unsigned long offset, length;
|
|
|
|
offset = offset_in_page(addr);
|
|
length = PAGE_SIZE - offset;
|
|
if (length > count)
|
|
length = count;
|
|
p = vmalloc_to_page(addr);
|
|
/*
|
|
* To do safe access to this _mapped_ area, we need
|
|
* lock. But adding lock here means that we need to add
|
|
* overhead of vmalloc()/vfree() calles for this _debug_
|
|
* interface, rarely used. Instead of that, we'll use
|
|
* kmap() and get small overhead in this access function.
|
|
*/
|
|
if (p) {
|
|
/*
|
|
* we can expect USER0 is not used (see vread/vwrite's
|
|
* function description)
|
|
*/
|
|
void *map = kmap_atomic(p);
|
|
memcpy(buf, map + offset, length);
|
|
kunmap_atomic(map);
|
|
} else
|
|
memset(buf, 0, length);
|
|
|
|
addr += length;
|
|
buf += length;
|
|
copied += length;
|
|
count -= length;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
static int aligned_vwrite(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct page *p;
|
|
int copied = 0;
|
|
|
|
while (count) {
|
|
unsigned long offset, length;
|
|
|
|
offset = offset_in_page(addr);
|
|
length = PAGE_SIZE - offset;
|
|
if (length > count)
|
|
length = count;
|
|
p = vmalloc_to_page(addr);
|
|
/*
|
|
* To do safe access to this _mapped_ area, we need
|
|
* lock. But adding lock here means that we need to add
|
|
* overhead of vmalloc()/vfree() calles for this _debug_
|
|
* interface, rarely used. Instead of that, we'll use
|
|
* kmap() and get small overhead in this access function.
|
|
*/
|
|
if (p) {
|
|
/*
|
|
* we can expect USER0 is not used (see vread/vwrite's
|
|
* function description)
|
|
*/
|
|
void *map = kmap_atomic(p);
|
|
memcpy(map + offset, buf, length);
|
|
kunmap_atomic(map);
|
|
}
|
|
addr += length;
|
|
buf += length;
|
|
copied += length;
|
|
count -= length;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
/**
|
|
* vread() - read vmalloc area in a safe way.
|
|
* @buf: buffer for reading data
|
|
* @addr: vm address.
|
|
* @count: number of bytes to be read.
|
|
*
|
|
* Returns # of bytes which addr and buf should be increased.
|
|
* (same number to @count). Returns 0 if [addr...addr+count) doesn't
|
|
* includes any intersect with alive vmalloc area.
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* copy data from that area to a given buffer. If the given memory range
|
|
* of [addr...addr+count) includes some valid address, data is copied to
|
|
* proper area of @buf. If there are memory holes, they'll be zero-filled.
|
|
* IOREMAP area is treated as memory hole and no copy is done.
|
|
*
|
|
* If [addr...addr+count) doesn't includes any intersects with alive
|
|
* vm_struct area, returns 0. @buf should be kernel's buffer.
|
|
*
|
|
* Note: In usual ops, vread() is never necessary because the caller
|
|
* should know vmalloc() area is valid and can use memcpy().
|
|
* This is for routines which have to access vmalloc area without
|
|
* any informaion, as /dev/kmem.
|
|
*
|
|
*/
|
|
|
|
long vread(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *vm;
|
|
char *vaddr, *buf_start = buf;
|
|
unsigned long buflen = count;
|
|
unsigned long n;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
list_for_each_entry(va, &vmap_area_list, list) {
|
|
if (!count)
|
|
break;
|
|
|
|
if (!(va->flags & VM_VM_AREA))
|
|
continue;
|
|
|
|
vm = va->vm;
|
|
vaddr = (char *) vm->addr;
|
|
if (addr >= vaddr + get_vm_area_size(vm))
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
*buf = '\0';
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + get_vm_area_size(vm) - addr;
|
|
if (n > count)
|
|
n = count;
|
|
if (!(vm->flags & VM_IOREMAP))
|
|
aligned_vread(buf, addr, n);
|
|
else /* IOREMAP area is treated as memory hole */
|
|
memset(buf, 0, n);
|
|
buf += n;
|
|
addr += n;
|
|
count -= n;
|
|
}
|
|
finished:
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
if (buf == buf_start)
|
|
return 0;
|
|
/* zero-fill memory holes */
|
|
if (buf != buf_start + buflen)
|
|
memset(buf, 0, buflen - (buf - buf_start));
|
|
|
|
return buflen;
|
|
}
|
|
|
|
/**
|
|
* vwrite() - write vmalloc area in a safe way.
|
|
* @buf: buffer for source data
|
|
* @addr: vm address.
|
|
* @count: number of bytes to be read.
|
|
*
|
|
* Returns # of bytes which addr and buf should be incresed.
|
|
* (same number to @count).
|
|
* If [addr...addr+count) doesn't includes any intersect with valid
|
|
* vmalloc area, returns 0.
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* copy data from a buffer to the given addr. If specified range of
|
|
* [addr...addr+count) includes some valid address, data is copied from
|
|
* proper area of @buf. If there are memory holes, no copy to hole.
|
|
* IOREMAP area is treated as memory hole and no copy is done.
|
|
*
|
|
* If [addr...addr+count) doesn't includes any intersects with alive
|
|
* vm_struct area, returns 0. @buf should be kernel's buffer.
|
|
*
|
|
* Note: In usual ops, vwrite() is never necessary because the caller
|
|
* should know vmalloc() area is valid and can use memcpy().
|
|
* This is for routines which have to access vmalloc area without
|
|
* any informaion, as /dev/kmem.
|
|
*/
|
|
|
|
long vwrite(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *vm;
|
|
char *vaddr;
|
|
unsigned long n, buflen;
|
|
int copied = 0;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
buflen = count;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
list_for_each_entry(va, &vmap_area_list, list) {
|
|
if (!count)
|
|
break;
|
|
|
|
if (!(va->flags & VM_VM_AREA))
|
|
continue;
|
|
|
|
vm = va->vm;
|
|
vaddr = (char *) vm->addr;
|
|
if (addr >= vaddr + get_vm_area_size(vm))
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + get_vm_area_size(vm) - addr;
|
|
if (n > count)
|
|
n = count;
|
|
if (!(vm->flags & VM_IOREMAP)) {
|
|
aligned_vwrite(buf, addr, n);
|
|
copied++;
|
|
}
|
|
buf += n;
|
|
addr += n;
|
|
count -= n;
|
|
}
|
|
finished:
|
|
spin_unlock(&vmap_area_lock);
|
|
if (!copied)
|
|
return 0;
|
|
return buflen;
|
|
}
|
|
|
|
/**
|
|
* remap_vmalloc_range_partial - map vmalloc pages to userspace
|
|
* @vma: vma to cover
|
|
* @uaddr: target user address to start at
|
|
* @kaddr: virtual address of vmalloc kernel memory
|
|
* @size: size of map area
|
|
*
|
|
* Returns: 0 for success, -Exxx on failure
|
|
*
|
|
* This function checks that @kaddr is a valid vmalloc'ed area,
|
|
* and that it is big enough to cover the range starting at
|
|
* @uaddr in @vma. Will return failure if that criteria isn't
|
|
* met.
|
|
*
|
|
* Similar to remap_pfn_range() (see mm/memory.c)
|
|
*/
|
|
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
|
|
void *kaddr, unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
|
|
return -EINVAL;
|
|
|
|
area = find_vm_area(kaddr);
|
|
if (!area)
|
|
return -EINVAL;
|
|
|
|
if (!(area->flags & VM_USERMAP))
|
|
return -EINVAL;
|
|
|
|
if (kaddr + size > area->addr + area->size)
|
|
return -EINVAL;
|
|
|
|
do {
|
|
struct page *page = vmalloc_to_page(kaddr);
|
|
int ret;
|
|
|
|
ret = vm_insert_page(vma, uaddr, page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uaddr += PAGE_SIZE;
|
|
kaddr += PAGE_SIZE;
|
|
size -= PAGE_SIZE;
|
|
} while (size > 0);
|
|
|
|
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(remap_vmalloc_range_partial);
|
|
|
|
/**
|
|
* remap_vmalloc_range - map vmalloc pages to userspace
|
|
* @vma: vma to cover (map full range of vma)
|
|
* @addr: vmalloc memory
|
|
* @pgoff: number of pages into addr before first page to map
|
|
*
|
|
* Returns: 0 for success, -Exxx on failure
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* that it is big enough to cover the vma. Will return failure if
|
|
* that criteria isn't met.
|
|
*
|
|
* Similar to remap_pfn_range() (see mm/memory.c)
|
|
*/
|
|
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
|
|
unsigned long pgoff)
|
|
{
|
|
return remap_vmalloc_range_partial(vma, vma->vm_start,
|
|
addr + (pgoff << PAGE_SHIFT),
|
|
vma->vm_end - vma->vm_start);
|
|
}
|
|
EXPORT_SYMBOL(remap_vmalloc_range);
|
|
|
|
/*
|
|
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
|
|
* have one.
|
|
*/
|
|
void __weak vmalloc_sync_all(void)
|
|
{
|
|
}
|
|
|
|
|
|
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
|
|
{
|
|
pte_t ***p = data;
|
|
|
|
if (p) {
|
|
*(*p) = pte;
|
|
(*p)++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* alloc_vm_area - allocate a range of kernel address space
|
|
* @size: size of the area
|
|
* @ptes: returns the PTEs for the address space
|
|
*
|
|
* Returns: NULL on failure, vm_struct on success
|
|
*
|
|
* This function reserves a range of kernel address space, and
|
|
* allocates pagetables to map that range. No actual mappings
|
|
* are created.
|
|
*
|
|
* If @ptes is non-NULL, pointers to the PTEs (in init_mm)
|
|
* allocated for the VM area are returned.
|
|
*/
|
|
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
area = get_vm_area_caller(size, VM_IOREMAP,
|
|
__builtin_return_address(0));
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* This ensures that page tables are constructed for this region
|
|
* of kernel virtual address space and mapped into init_mm.
|
|
*/
|
|
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
|
|
size, f, ptes ? &ptes : NULL)) {
|
|
free_vm_area(area);
|
|
return NULL;
|
|
}
|
|
|
|
return area;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_vm_area);
|
|
|
|
void free_vm_area(struct vm_struct *area)
|
|
{
|
|
struct vm_struct *ret;
|
|
ret = remove_vm_area(area->addr);
|
|
BUG_ON(ret != area);
|
|
kfree(area);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_vm_area);
|
|
|
|
#ifdef CONFIG_SMP
|
|
static struct vmap_area *node_to_va(struct rb_node *n)
|
|
{
|
|
return rb_entry_safe(n, struct vmap_area, rb_node);
|
|
}
|
|
|
|
/**
|
|
* pvm_find_next_prev - find the next and prev vmap_area surrounding @end
|
|
* @end: target address
|
|
* @pnext: out arg for the next vmap_area
|
|
* @pprev: out arg for the previous vmap_area
|
|
*
|
|
* Returns: %true if either or both of next and prev are found,
|
|
* %false if no vmap_area exists
|
|
*
|
|
* Find vmap_areas end addresses of which enclose @end. ie. if not
|
|
* NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
|
|
*/
|
|
static bool pvm_find_next_prev(unsigned long end,
|
|
struct vmap_area **pnext,
|
|
struct vmap_area **pprev)
|
|
{
|
|
struct rb_node *n = vmap_area_root.rb_node;
|
|
struct vmap_area *va = NULL;
|
|
|
|
while (n) {
|
|
va = rb_entry(n, struct vmap_area, rb_node);
|
|
if (end < va->va_end)
|
|
n = n->rb_left;
|
|
else if (end > va->va_end)
|
|
n = n->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (!va)
|
|
return false;
|
|
|
|
if (va->va_end > end) {
|
|
*pnext = va;
|
|
*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
|
|
} else {
|
|
*pprev = va;
|
|
*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* pvm_determine_end - find the highest aligned address between two vmap_areas
|
|
* @pnext: in/out arg for the next vmap_area
|
|
* @pprev: in/out arg for the previous vmap_area
|
|
* @align: alignment
|
|
*
|
|
* Returns: determined end address
|
|
*
|
|
* Find the highest aligned address between *@pnext and *@pprev below
|
|
* VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
|
|
* down address is between the end addresses of the two vmap_areas.
|
|
*
|
|
* Please note that the address returned by this function may fall
|
|
* inside *@pnext vmap_area. The caller is responsible for checking
|
|
* that.
|
|
*/
|
|
static unsigned long pvm_determine_end(struct vmap_area **pnext,
|
|
struct vmap_area **pprev,
|
|
unsigned long align)
|
|
{
|
|
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
|
|
unsigned long addr;
|
|
|
|
if (*pnext)
|
|
addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
|
|
else
|
|
addr = vmalloc_end;
|
|
|
|
while (*pprev && (*pprev)->va_end > addr) {
|
|
*pnext = *pprev;
|
|
*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
|
|
* @offsets: array containing offset of each area
|
|
* @sizes: array containing size of each area
|
|
* @nr_vms: the number of areas to allocate
|
|
* @align: alignment, all entries in @offsets and @sizes must be aligned to this
|
|
*
|
|
* Returns: kmalloc'd vm_struct pointer array pointing to allocated
|
|
* vm_structs on success, %NULL on failure
|
|
*
|
|
* Percpu allocator wants to use congruent vm areas so that it can
|
|
* maintain the offsets among percpu areas. This function allocates
|
|
* congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
|
|
* be scattered pretty far, distance between two areas easily going up
|
|
* to gigabytes. To avoid interacting with regular vmallocs, these
|
|
* areas are allocated from top.
|
|
*
|
|
* Despite its complicated look, this allocator is rather simple. It
|
|
* does everything top-down and scans areas from the end looking for
|
|
* matching slot. While scanning, if any of the areas overlaps with
|
|
* existing vmap_area, the base address is pulled down to fit the
|
|
* area. Scanning is repeated till all the areas fit and then all
|
|
* necessary data structures are inserted and the result is returned.
|
|
*/
|
|
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
|
|
const size_t *sizes, int nr_vms,
|
|
size_t align)
|
|
{
|
|
const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
|
|
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
|
|
struct vmap_area **vas, *prev, *next;
|
|
struct vm_struct **vms;
|
|
int area, area2, last_area, term_area;
|
|
unsigned long base, start, end, last_end;
|
|
bool purged = false;
|
|
|
|
/* verify parameters and allocate data structures */
|
|
BUG_ON(offset_in_page(align) || !is_power_of_2(align));
|
|
for (last_area = 0, area = 0; area < nr_vms; area++) {
|
|
start = offsets[area];
|
|
end = start + sizes[area];
|
|
|
|
/* is everything aligned properly? */
|
|
BUG_ON(!IS_ALIGNED(offsets[area], align));
|
|
BUG_ON(!IS_ALIGNED(sizes[area], align));
|
|
|
|
/* detect the area with the highest address */
|
|
if (start > offsets[last_area])
|
|
last_area = area;
|
|
|
|
for (area2 = area + 1; area2 < nr_vms; area2++) {
|
|
unsigned long start2 = offsets[area2];
|
|
unsigned long end2 = start2 + sizes[area2];
|
|
|
|
BUG_ON(start2 < end && start < end2);
|
|
}
|
|
}
|
|
last_end = offsets[last_area] + sizes[last_area];
|
|
|
|
if (vmalloc_end - vmalloc_start < last_end) {
|
|
WARN_ON(true);
|
|
return NULL;
|
|
}
|
|
|
|
vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
|
|
vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
|
|
if (!vas || !vms)
|
|
goto err_free2;
|
|
|
|
for (area = 0; area < nr_vms; area++) {
|
|
vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
|
|
vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
|
|
if (!vas[area] || !vms[area])
|
|
goto err_free;
|
|
}
|
|
retry:
|
|
spin_lock(&vmap_area_lock);
|
|
|
|
/* start scanning - we scan from the top, begin with the last area */
|
|
area = term_area = last_area;
|
|
start = offsets[area];
|
|
end = start + sizes[area];
|
|
|
|
if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
|
|
base = vmalloc_end - last_end;
|
|
goto found;
|
|
}
|
|
base = pvm_determine_end(&next, &prev, align) - end;
|
|
|
|
while (true) {
|
|
BUG_ON(next && next->va_end <= base + end);
|
|
BUG_ON(prev && prev->va_end > base + end);
|
|
|
|
/*
|
|
* base might have underflowed, add last_end before
|
|
* comparing.
|
|
*/
|
|
if (base + last_end < vmalloc_start + last_end) {
|
|
spin_unlock(&vmap_area_lock);
|
|
if (!purged) {
|
|
purge_vmap_area_lazy();
|
|
purged = true;
|
|
goto retry;
|
|
}
|
|
goto err_free;
|
|
}
|
|
|
|
/*
|
|
* If next overlaps, move base downwards so that it's
|
|
* right below next and then recheck.
|
|
*/
|
|
if (next && next->va_start < base + end) {
|
|
base = pvm_determine_end(&next, &prev, align) - end;
|
|
term_area = area;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If prev overlaps, shift down next and prev and move
|
|
* base so that it's right below new next and then
|
|
* recheck.
|
|
*/
|
|
if (prev && prev->va_end > base + start) {
|
|
next = prev;
|
|
prev = node_to_va(rb_prev(&next->rb_node));
|
|
base = pvm_determine_end(&next, &prev, align) - end;
|
|
term_area = area;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This area fits, move on to the previous one. If
|
|
* the previous one is the terminal one, we're done.
|
|
*/
|
|
area = (area + nr_vms - 1) % nr_vms;
|
|
if (area == term_area)
|
|
break;
|
|
start = offsets[area];
|
|
end = start + sizes[area];
|
|
pvm_find_next_prev(base + end, &next, &prev);
|
|
}
|
|
found:
|
|
/* we've found a fitting base, insert all va's */
|
|
for (area = 0; area < nr_vms; area++) {
|
|
struct vmap_area *va = vas[area];
|
|
|
|
va->va_start = base + offsets[area];
|
|
va->va_end = va->va_start + sizes[area];
|
|
__insert_vmap_area(va);
|
|
}
|
|
|
|
vmap_area_pcpu_hole = base + offsets[last_area];
|
|
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
/* insert all vm's */
|
|
for (area = 0; area < nr_vms; area++)
|
|
setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
|
|
pcpu_get_vm_areas);
|
|
|
|
kfree(vas);
|
|
return vms;
|
|
|
|
err_free:
|
|
for (area = 0; area < nr_vms; area++) {
|
|
kfree(vas[area]);
|
|
kfree(vms[area]);
|
|
}
|
|
err_free2:
|
|
kfree(vas);
|
|
kfree(vms);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* pcpu_free_vm_areas - free vmalloc areas for percpu allocator
|
|
* @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
|
|
* @nr_vms: the number of allocated areas
|
|
*
|
|
* Free vm_structs and the array allocated by pcpu_get_vm_areas().
|
|
*/
|
|
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_vms; i++)
|
|
free_vm_area(vms[i]);
|
|
kfree(vms);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
__acquires(&vmap_area_lock)
|
|
{
|
|
spin_lock(&vmap_area_lock);
|
|
return seq_list_start(&vmap_area_list, *pos);
|
|
}
|
|
|
|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
return seq_list_next(p, &vmap_area_list, pos);
|
|
}
|
|
|
|
static void s_stop(struct seq_file *m, void *p)
|
|
__releases(&vmap_area_lock)
|
|
{
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
|
|
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA)) {
|
|
unsigned int nr, *counters = m->private;
|
|
|
|
if (!counters)
|
|
return;
|
|
|
|
if (v->flags & VM_UNINITIALIZED)
|
|
return;
|
|
/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
|
|
smp_rmb();
|
|
|
|
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
|
|
|
|
for (nr = 0; nr < v->nr_pages; nr++)
|
|
counters[page_to_nid(v->pages[nr])]++;
|
|
|
|
for_each_node_state(nr, N_HIGH_MEMORY)
|
|
if (counters[nr])
|
|
seq_printf(m, " N%u=%u", nr, counters[nr]);
|
|
}
|
|
}
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *v;
|
|
|
|
va = list_entry(p, struct vmap_area, list);
|
|
|
|
/*
|
|
* s_show can encounter race with remove_vm_area, !VM_VM_AREA on
|
|
* behalf of vmap area is being tear down or vm_map_ram allocation.
|
|
*/
|
|
if (!(va->flags & VM_VM_AREA)) {
|
|
seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
|
|
(void *)va->va_start, (void *)va->va_end,
|
|
va->va_end - va->va_start,
|
|
va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
|
|
|
|
return 0;
|
|
}
|
|
|
|
v = va->vm;
|
|
|
|
seq_printf(m, "0x%pK-0x%pK %7ld",
|
|
v->addr, v->addr + v->size, v->size);
|
|
|
|
if (v->caller)
|
|
seq_printf(m, " %pS", v->caller);
|
|
|
|
if (v->nr_pages)
|
|
seq_printf(m, " pages=%d", v->nr_pages);
|
|
|
|
if (v->phys_addr)
|
|
seq_printf(m, " phys=%pa", &v->phys_addr);
|
|
|
|
if (v->flags & VM_IOREMAP)
|
|
seq_puts(m, " ioremap");
|
|
|
|
if (v->flags & VM_ALLOC)
|
|
seq_puts(m, " vmalloc");
|
|
|
|
if (v->flags & VM_MAP)
|
|
seq_puts(m, " vmap");
|
|
|
|
if (v->flags & VM_USERMAP)
|
|
seq_puts(m, " user");
|
|
|
|
if (is_vmalloc_addr(v->pages))
|
|
seq_puts(m, " vpages");
|
|
|
|
show_numa_info(m, v);
|
|
seq_putc(m, '\n');
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations vmalloc_op = {
|
|
.start = s_start,
|
|
.next = s_next,
|
|
.stop = s_stop,
|
|
.show = s_show,
|
|
};
|
|
|
|
static int vmalloc_open(struct inode *inode, struct file *file)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
|
return seq_open_private(file, &vmalloc_op,
|
|
nr_node_ids * sizeof(unsigned int));
|
|
else
|
|
return seq_open(file, &vmalloc_op);
|
|
}
|
|
|
|
static const struct file_operations proc_vmalloc_operations = {
|
|
.open = vmalloc_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
static int __init proc_vmalloc_init(void)
|
|
{
|
|
proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
|
|
return 0;
|
|
}
|
|
module_init(proc_vmalloc_init);
|
|
|
|
#endif
|
|
|