linux_dsm_epyc7002/drivers/gpu/drm/amd/powerplay/amdgpu_smu.c
Prike Liang 51b9121af0 drm/amd/powerplay: Disable renoir smu feature retrieve for the moment
To avoid the dpm frequence range get failed when DPM enabled and it
will be enabled later once handle well the feature bit map struct.

Signed-off-by: Prike Liang <Prike.Liang@amd.com>
Reviewed-by: Kevin Wang <kevin1.wang@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-08-22 17:48:23 -05:00

1826 lines
42 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/firmware.h>
#include "pp_debug.h"
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "soc15_common.h"
#include "smu_v11_0.h"
#include "smu_v12_0.h"
#include "atom.h"
#include "amd_pcie.h"
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type) #type
static const char* __smu_message_names[] = {
SMU_MESSAGE_TYPES
};
const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
if (type < 0 || type >= SMU_MSG_MAX_COUNT)
return "unknown smu message";
return __smu_message_names[type];
}
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea) #fea
static const char* __smu_feature_names[] = {
SMU_FEATURE_MASKS
};
const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
if (feature < 0 || feature >= SMU_FEATURE_COUNT)
return "unknown smu feature";
return __smu_feature_names[feature];
}
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
size_t size = 0;
int ret = 0, i = 0;
uint32_t feature_mask[2] = { 0 };
int32_t feature_index = 0;
uint32_t count = 0;
uint32_t sort_feature[SMU_FEATURE_COUNT];
uint64_t hw_feature_count = 0;
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
if (ret)
goto failed;
size = sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
feature_mask[1], feature_mask[0]);
for (i = 0; i < SMU_FEATURE_COUNT; i++) {
feature_index = smu_feature_get_index(smu, i);
if (feature_index < 0)
continue;
sort_feature[feature_index] = i;
hw_feature_count++;
}
for (i = 0; i < hw_feature_count; i++) {
size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
count++,
smu_get_feature_name(smu, sort_feature[i]),
i,
!!smu_feature_is_enabled(smu, sort_feature[i]) ?
"enabled" : "disabled");
}
failed:
return size;
}
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
int ret = 0;
uint32_t feature_mask[2] = { 0 };
uint64_t feature_2_enabled = 0;
uint64_t feature_2_disabled = 0;
uint64_t feature_enables = 0;
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
if (ret)
return ret;
feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);
feature_2_enabled = ~feature_enables & new_mask;
feature_2_disabled = feature_enables & ~new_mask;
if (feature_2_enabled) {
ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
if (ret)
return ret;
}
if (feature_2_disabled) {
ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
if (ret)
return ret;
}
return ret;
}
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
int ret = 0;
if (!if_version && !smu_version)
return -EINVAL;
if (if_version) {
ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, if_version);
if (ret)
return ret;
}
if (smu_version) {
ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, smu_version);
if (ret)
return ret;
}
return ret;
}
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t min, uint32_t max)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (min <= 0 && max <= 0)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
if (max > 0) {
param = (uint32_t)((clk_id << 16) | (max & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
param);
if (ret)
return ret;
}
if (min > 0) {
param = (uint32_t)((clk_id << 16) | (min & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
param);
if (ret)
return ret;
}
return ret;
}
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t min, uint32_t max)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (min <= 0 && max <= 0)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
if (max > 0) {
param = (uint32_t)((clk_id << 16) | (max & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
param);
if (ret)
return ret;
}
if (min > 0) {
param = (uint32_t)((clk_id << 16) | (min & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
param);
if (ret)
return ret;
}
return ret;
}
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t *min, uint32_t *max)
{
int ret = 0, clk_id = 0;
uint32_t param = 0;
uint32_t clock_limit;
if (!min && !max)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
clock_limit = smu->smu_table.boot_values.uclk;
break;
case SMU_GFXCLK:
case SMU_SCLK:
clock_limit = smu->smu_table.boot_values.gfxclk;
break;
case SMU_SOCCLK:
clock_limit = smu->smu_table.boot_values.socclk;
break;
default:
clock_limit = 0;
break;
}
/* clock in Mhz unit */
if (min)
*min = clock_limit / 100;
if (max)
*max = clock_limit / 100;
return 0;
}
mutex_lock(&smu->mutex);
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0) {
ret = -EINVAL;
goto failed;
}
param = (clk_id & 0xffff) << 16;
if (max) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param);
if (ret)
goto failed;
ret = smu_read_smc_arg(smu, max);
if (ret)
goto failed;
}
if (min) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param);
if (ret)
goto failed;
ret = smu_read_smc_arg(smu, min);
if (ret)
goto failed;
}
failed:
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
uint16_t level, uint32_t *value)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (!value)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));
ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
param);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &param);
if (ret)
return ret;
/* BIT31: 0 - Fine grained DPM, 1 - Dicrete DPM
* now, we un-support it */
*value = param & 0x7fffffff;
return ret;
}
int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t *value)
{
return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
enum smu_feature_mask feature_id = 0;
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
feature_id = SMU_FEATURE_DPM_UCLK_BIT;
break;
case SMU_GFXCLK:
case SMU_SCLK:
feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
break;
case SMU_SOCCLK:
feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
break;
default:
return true;
}
if(!smu_feature_is_enabled(smu, feature_id)) {
return false;
}
return true;
}
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
bool gate)
{
int ret = 0;
switch (block_type) {
case AMD_IP_BLOCK_TYPE_UVD:
ret = smu_dpm_set_uvd_enable(smu, gate);
break;
case AMD_IP_BLOCK_TYPE_VCE:
ret = smu_dpm_set_vce_enable(smu, gate);
break;
case AMD_IP_BLOCK_TYPE_GFX:
ret = smu_gfx_off_control(smu, gate);
break;
default:
break;
}
return ret;
}
enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
/* not support power state */
return POWER_STATE_TYPE_DEFAULT;
}
int smu_get_power_num_states(struct smu_context *smu,
struct pp_states_info *state_info)
{
if (!state_info)
return -EINVAL;
/* not support power state */
memset(state_info, 0, sizeof(struct pp_states_info));
state_info->nums = 1;
state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
return 0;
}
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if(!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
*((uint32_t *)data) = smu->pstate_sclk;
*size = 4;
break;
case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
*((uint32_t *)data) = smu->pstate_mclk;
*size = 4;
break;
case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
*size = 8;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
*size = 4;
break;
default:
ret = -EINVAL;
break;
}
if (ret)
*size = 0;
return ret;
}
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
void *table_data, bool drv2smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct amdgpu_device *adev = smu->adev;
struct smu_table *table = NULL;
int ret = 0;
int table_id = smu_table_get_index(smu, table_index);
if (!table_data || table_id >= smu_table->table_count || table_id < 0)
return -EINVAL;
table = &smu_table->tables[table_index];
if (drv2smu)
memcpy(table->cpu_addr, table_data, table->size);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
upper_32_bits(table->mc_address));
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
lower_32_bits(table->mc_address));
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, drv2smu ?
SMU_MSG_TransferTableDram2Smu :
SMU_MSG_TransferTableSmu2Dram,
table_id | ((argument & 0xFFFF) << 16));
if (ret)
return ret;
/* flush hdp cache */
adev->nbio_funcs->hdp_flush(adev, NULL);
if (!drv2smu)
memcpy(table_data, table->cpu_addr, table->size);
return ret;
}
bool is_support_sw_smu(struct amdgpu_device *adev)
{
if (adev->asic_type == CHIP_VEGA20)
return (amdgpu_dpm == 2) ? true : false;
else if (adev->asic_type >= CHIP_ARCTURUS)
return true;
else
return false;
}
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
if (amdgpu_dpm != 1)
return false;
if (adev->asic_type == CHIP_VEGA20)
return true;
return false;
}
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
return -EINVAL;
if (smu_table->hardcode_pptable)
*table = smu_table->hardcode_pptable;
else
*table = smu_table->power_play_table;
return smu_table->power_play_table_size;
}
int smu_sys_set_pp_table(struct smu_context *smu, void *buf, size_t size)
{
struct smu_table_context *smu_table = &smu->smu_table;
ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
int ret = 0;
if (!smu->pm_enabled)
return -EINVAL;
if (header->usStructureSize != size) {
pr_err("pp table size not matched !\n");
return -EIO;
}
mutex_lock(&smu->mutex);
if (!smu_table->hardcode_pptable)
smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
if (!smu_table->hardcode_pptable) {
ret = -ENOMEM;
goto failed;
}
memcpy(smu_table->hardcode_pptable, buf, size);
smu_table->power_play_table = smu_table->hardcode_pptable;
smu_table->power_play_table_size = size;
mutex_unlock(&smu->mutex);
ret = smu_reset(smu);
if (ret)
pr_info("smu reset failed, ret = %d\n", ret);
return ret;
failed:
mutex_unlock(&smu->mutex);
return ret;
}
int smu_feature_init_dpm(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
int ret = 0;
uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
if (!smu->pm_enabled)
return ret;
mutex_lock(&feature->mutex);
bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
mutex_unlock(&feature->mutex);
ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
SMU_FEATURE_MAX/32);
if (ret)
return ret;
mutex_lock(&feature->mutex);
bitmap_or(feature->allowed, feature->allowed,
(unsigned long *)allowed_feature_mask,
feature->feature_num);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_update_enable_state(struct smu_context *smu, uint64_t feature_mask, bool enabled)
{
uint32_t feature_low = 0, feature_high = 0;
int ret = 0;
if (!smu->pm_enabled)
return ret;
feature_low = (feature_mask >> 0 ) & 0xffffffff;
feature_high = (feature_mask >> 32) & 0xffffffff;
if (enabled) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
feature_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
feature_high);
if (ret)
return ret;
} else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
feature_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
feature_high);
if (ret)
return ret;
}
return ret;
}
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
{
struct amdgpu_device *adev = smu->adev;
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
int ret = 0;
if (adev->flags & AMD_IS_APU)
return 0;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return 0;
WARN_ON(feature_id > feature->feature_num);
mutex_lock(&feature->mutex);
ret = test_bit(feature_id, feature->enabled);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
bool enable)
{
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
uint64_t feature_mask = 0;
int ret = 0;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return -EINVAL;
WARN_ON(feature_id > feature->feature_num);
feature_mask = 1ULL << feature_id;
mutex_lock(&feature->mutex);
ret = smu_feature_update_enable_state(smu, feature_mask, enable);
if (ret)
goto failed;
if (enable)
test_and_set_bit(feature_id, feature->enabled);
else
test_and_clear_bit(feature_id, feature->enabled);
failed:
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
{
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
int ret = 0;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return 0;
WARN_ON(feature_id > feature->feature_num);
mutex_lock(&feature->mutex);
ret = test_bit(feature_id, feature->supported);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_set_supported(struct smu_context *smu,
enum smu_feature_mask mask,
bool enable)
{
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
int ret = 0;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return -EINVAL;
WARN_ON(feature_id > feature->feature_num);
mutex_lock(&feature->mutex);
if (enable)
test_and_set_bit(feature_id, feature->supported);
else
test_and_clear_bit(feature_id, feature->supported);
mutex_unlock(&feature->mutex);
return ret;
}
static int smu_set_funcs(struct amdgpu_device *adev)
{
struct smu_context *smu = &adev->smu;
switch (adev->asic_type) {
case CHIP_VEGA20:
case CHIP_NAVI10:
case CHIP_NAVI14:
case CHIP_NAVI12:
case CHIP_ARCTURUS:
if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
smu->od_enabled = true;
smu_v11_0_set_smu_funcs(smu);
break;
case CHIP_RENOIR:
if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
smu->od_enabled = true;
smu_v12_0_set_smu_funcs(smu);
break;
default:
return -EINVAL;
}
return 0;
}
static int smu_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
smu->adev = adev;
smu->pm_enabled = !!amdgpu_dpm;
mutex_init(&smu->mutex);
return smu_set_funcs(adev);
}
static int smu_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
if (!smu->pm_enabled)
return 0;
mutex_lock(&smu->mutex);
smu_handle_task(&adev->smu,
smu->smu_dpm.dpm_level,
AMD_PP_TASK_COMPLETE_INIT);
mutex_unlock(&smu->mutex);
return 0;
}
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
uint16_t *size, uint8_t *frev, uint8_t *crev,
uint8_t **addr)
{
struct amdgpu_device *adev = smu->adev;
uint16_t data_start;
if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
size, frev, crev, &data_start))
return -EINVAL;
*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;
return 0;
}
static int smu_initialize_pptable(struct smu_context *smu)
{
/* TODO */
return 0;
}
static int smu_smc_table_sw_init(struct smu_context *smu)
{
int ret;
ret = smu_initialize_pptable(smu);
if (ret) {
pr_err("Failed to init smu_initialize_pptable!\n");
return ret;
}
/**
* Create smu_table structure, and init smc tables such as
* TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
*/
ret = smu_init_smc_tables(smu);
if (ret) {
pr_err("Failed to init smc tables!\n");
return ret;
}
/**
* Create smu_power_context structure, and allocate smu_dpm_context and
* context size to fill the smu_power_context data.
*/
ret = smu_init_power(smu);
if (ret) {
pr_err("Failed to init smu_init_power!\n");
return ret;
}
return 0;
}
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
int ret;
ret = smu_fini_smc_tables(smu);
if (ret) {
pr_err("Failed to smu_fini_smc_tables!\n");
return ret;
}
return 0;
}
static int smu_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
int ret;
smu->pool_size = adev->pm.smu_prv_buffer_size;
smu->smu_feature.feature_num = SMU_FEATURE_MAX;
mutex_init(&smu->smu_feature.mutex);
bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
mutex_init(&smu->smu_baco.mutex);
smu->smu_baco.state = SMU_BACO_STATE_EXIT;
smu->smu_baco.platform_support = false;
smu->watermarks_bitmap = 0;
smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;
smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
smu->display_config = &adev->pm.pm_display_cfg;
smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
ret = smu_init_microcode(smu);
if (ret) {
pr_err("Failed to load smu firmware!\n");
return ret;
}
ret = smu_smc_table_sw_init(smu);
if (ret) {
pr_err("Failed to sw init smc table!\n");
return ret;
}
ret = smu_register_irq_handler(smu);
if (ret) {
pr_err("Failed to register smc irq handler!\n");
return ret;
}
return 0;
}
static int smu_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
int ret;
kfree(smu->irq_source);
smu->irq_source = NULL;
ret = smu_smc_table_sw_fini(smu);
if (ret) {
pr_err("Failed to sw fini smc table!\n");
return ret;
}
ret = smu_fini_power(smu);
if (ret) {
pr_err("Failed to init smu_fini_power!\n");
return ret;
}
return 0;
}
static int smu_init_fb_allocations(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
uint32_t table_count = smu_table->table_count;
uint32_t i = 0;
int32_t ret = 0;
if (table_count <= 0)
return -EINVAL;
for (i = 0 ; i < table_count; i++) {
if (tables[i].size == 0)
continue;
ret = amdgpu_bo_create_kernel(adev,
tables[i].size,
tables[i].align,
tables[i].domain,
&tables[i].bo,
&tables[i].mc_address,
&tables[i].cpu_addr);
if (ret)
goto failed;
}
return 0;
failed:
for (; i > 0; i--) {
if (tables[i].size == 0)
continue;
amdgpu_bo_free_kernel(&tables[i].bo,
&tables[i].mc_address,
&tables[i].cpu_addr);
}
return ret;
}
static int smu_fini_fb_allocations(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
uint32_t table_count = smu_table->table_count;
uint32_t i = 0;
if (table_count == 0 || tables == NULL)
return 0;
for (i = 0 ; i < table_count; i++) {
if (tables[i].size == 0)
continue;
amdgpu_bo_free_kernel(&tables[i].bo,
&tables[i].mc_address,
&tables[i].cpu_addr);
}
return 0;
}
static int smu_override_pcie_parameters(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg;
int ret;
if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
pcie_gen = 3;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
pcie_gen = 2;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
pcie_gen = 1;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
pcie_gen = 0;
/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
* Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
* Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32
*/
if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
pcie_width = 6;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
pcie_width = 5;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
pcie_width = 4;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
pcie_width = 3;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
pcie_width = 2;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
pcie_width = 1;
smu_pcie_arg = (1 << 16) | (pcie_gen << 8) | pcie_width;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_OverridePcieParameters,
smu_pcie_arg);
if (ret)
pr_err("[%s] Attempt to override pcie params failed!\n", __func__);
return ret;
}
static int smu_smc_table_hw_init(struct smu_context *smu,
bool initialize)
{
struct amdgpu_device *adev = smu->adev;
int ret;
if (adev->flags & AMD_IS_APU)
return 0;
if (smu_is_dpm_running(smu) && adev->in_suspend) {
pr_info("dpm has been enabled\n");
return 0;
}
if (adev->asic_type != CHIP_ARCTURUS) {
ret = smu_init_display_count(smu, 0);
if (ret)
return ret;
}
if (initialize) {
/* get boot_values from vbios to set revision, gfxclk, and etc. */
ret = smu_get_vbios_bootup_values(smu);
if (ret)
return ret;
ret = smu_setup_pptable(smu);
if (ret)
return ret;
ret = smu_get_clk_info_from_vbios(smu);
if (ret)
return ret;
/*
* check if the format_revision in vbios is up to pptable header
* version, and the structure size is not 0.
*/
ret = smu_check_pptable(smu);
if (ret)
return ret;
/*
* allocate vram bos to store smc table contents.
*/
ret = smu_init_fb_allocations(smu);
if (ret)
return ret;
/*
* Parse pptable format and fill PPTable_t smc_pptable to
* smu_table_context structure. And read the smc_dpm_table from vbios,
* then fill it into smc_pptable.
*/
ret = smu_parse_pptable(smu);
if (ret)
return ret;
/*
* Send msg GetDriverIfVersion to check if the return value is equal
* with DRIVER_IF_VERSION of smc header.
*/
ret = smu_check_fw_version(smu);
if (ret)
return ret;
}
/* smu_dump_pptable(smu); */
/*
* Copy pptable bo in the vram to smc with SMU MSGs such as
* SetDriverDramAddr and TransferTableDram2Smu.
*/
ret = smu_write_pptable(smu);
if (ret)
return ret;
/* issue RunAfllBtc msg */
ret = smu_run_afll_btc(smu);
if (ret)
return ret;
ret = smu_feature_set_allowed_mask(smu);
if (ret)
return ret;
ret = smu_system_features_control(smu, true);
if (ret)
return ret;
if (adev->asic_type != CHIP_ARCTURUS) {
ret = smu_override_pcie_parameters(smu);
if (ret)
return ret;
ret = smu_notify_display_change(smu);
if (ret)
return ret;
/*
* Set min deep sleep dce fclk with bootup value from vbios via
* SetMinDeepSleepDcefclk MSG.
*/
ret = smu_set_min_dcef_deep_sleep(smu);
if (ret)
return ret;
}
/*
* Set initialized values (get from vbios) to dpm tables context such as
* gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
* type of clks.
*/
if (initialize) {
ret = smu_populate_smc_tables(smu);
if (ret)
return ret;
ret = smu_init_max_sustainable_clocks(smu);
if (ret)
return ret;
}
ret = smu_set_default_od_settings(smu, initialize);
if (ret)
return ret;
if (initialize) {
ret = smu_populate_umd_state_clk(smu);
if (ret)
return ret;
ret = smu_get_power_limit(smu, &smu->default_power_limit, true);
if (ret)
return ret;
}
/*
* Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
*/
ret = smu_set_tool_table_location(smu);
if (!smu_is_dpm_running(smu))
pr_info("dpm has been disabled\n");
return ret;
}
/**
* smu_alloc_memory_pool - allocate memory pool in the system memory
*
* @smu: amdgpu_device pointer
*
* This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
* and DramLogSetDramAddr can notify it changed.
*
* Returns 0 on success, error on failure.
*/
static int smu_alloc_memory_pool(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
uint64_t pool_size = smu->pool_size;
int ret = 0;
if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
return ret;
memory_pool->size = pool_size;
memory_pool->align = PAGE_SIZE;
memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;
switch (pool_size) {
case SMU_MEMORY_POOL_SIZE_256_MB:
case SMU_MEMORY_POOL_SIZE_512_MB:
case SMU_MEMORY_POOL_SIZE_1_GB:
case SMU_MEMORY_POOL_SIZE_2_GB:
ret = amdgpu_bo_create_kernel(adev,
memory_pool->size,
memory_pool->align,
memory_pool->domain,
&memory_pool->bo,
&memory_pool->mc_address,
&memory_pool->cpu_addr);
break;
default:
break;
}
return ret;
}
static int smu_free_memory_pool(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
int ret = 0;
if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
return ret;
amdgpu_bo_free_kernel(&memory_pool->bo,
&memory_pool->mc_address,
&memory_pool->cpu_addr);
memset(memory_pool, 0, sizeof(struct smu_table));
return ret;
}
static int smu_hw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
if (adev->asic_type < CHIP_NAVI10) {
ret = smu_load_microcode(smu);
if (ret)
return ret;
}
}
ret = smu_check_fw_status(smu);
if (ret) {
pr_err("SMC firmware status is not correct\n");
return ret;
}
if (adev->flags & AMD_IS_APU) {
smu_powergate_sdma(&adev->smu, false);
smu_powergate_vcn(&adev->smu, false);
}
if (!smu->pm_enabled)
return 0;
ret = smu_feature_init_dpm(smu);
if (ret)
goto failed;
ret = smu_smc_table_hw_init(smu, true);
if (ret)
goto failed;
ret = smu_alloc_memory_pool(smu);
if (ret)
goto failed;
/*
* Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
* pool location.
*/
ret = smu_notify_memory_pool_location(smu);
if (ret)
goto failed;
ret = smu_start_thermal_control(smu);
if (ret)
goto failed;
if (!smu->pm_enabled)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true; /* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
pr_info("SMU is initialized successfully!\n");
return 0;
failed:
return ret;
}
static int smu_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
struct smu_table_context *table_context = &smu->smu_table;
int ret = 0;
if (adev->flags & AMD_IS_APU) {
smu_powergate_sdma(&adev->smu, true);
smu_powergate_vcn(&adev->smu, true);
}
kfree(table_context->driver_pptable);
table_context->driver_pptable = NULL;
kfree(table_context->max_sustainable_clocks);
table_context->max_sustainable_clocks = NULL;
kfree(table_context->overdrive_table);
table_context->overdrive_table = NULL;
ret = smu_fini_fb_allocations(smu);
if (ret)
return ret;
ret = smu_free_memory_pool(smu);
if (ret)
return ret;
return 0;
}
int smu_reset(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
ret = smu_hw_fini(adev);
if (ret)
return ret;
ret = smu_hw_init(adev);
if (ret)
return ret;
return ret;
}
static int smu_suspend(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
bool baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
ret = smu_system_features_control(smu, false);
if (ret)
return ret;
if (adev->in_gpu_reset && baco_feature_is_enabled) {
ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
if (ret) {
pr_warn("set BACO feature enabled failed, return %d\n", ret);
return ret;
}
}
smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);
if (adev->asic_type >= CHIP_NAVI10 &&
adev->gfx.rlc.funcs->stop)
adev->gfx.rlc.funcs->stop(adev);
return 0;
}
static int smu_resume(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
pr_info("SMU is resuming...\n");
mutex_lock(&smu->mutex);
ret = smu_smc_table_hw_init(smu, false);
if (ret)
goto failed;
ret = smu_start_thermal_control(smu);
if (ret)
goto failed;
mutex_unlock(&smu->mutex);
pr_info("SMU is resumed successfully!\n");
return 0;
failed:
mutex_unlock(&smu->mutex);
return ret;
}
int smu_display_configuration_change(struct smu_context *smu,
const struct amd_pp_display_configuration *display_config)
{
int index = 0;
int num_of_active_display = 0;
if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
return -EINVAL;
if (!display_config)
return -EINVAL;
mutex_lock(&smu->mutex);
smu_set_deep_sleep_dcefclk(smu,
display_config->min_dcef_deep_sleep_set_clk / 100);
for (index = 0; index < display_config->num_path_including_non_display; index++) {
if (display_config->displays[index].controller_id != 0)
num_of_active_display++;
}
smu_set_active_display_count(smu, num_of_active_display);
smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
display_config->cpu_cc6_disable,
display_config->cpu_pstate_disable,
display_config->nb_pstate_switch_disable);
mutex_unlock(&smu->mutex);
return 0;
}
static int smu_get_clock_info(struct smu_context *smu,
struct smu_clock_info *clk_info,
enum smu_perf_level_designation designation)
{
int ret;
struct smu_performance_level level = {0};
if (!clk_info)
return -EINVAL;
ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
if (ret)
return -EINVAL;
clk_info->min_mem_clk = level.memory_clock;
clk_info->min_eng_clk = level.core_clock;
clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;
ret = smu_get_perf_level(smu, designation, &level);
if (ret)
return -EINVAL;
clk_info->min_mem_clk = level.memory_clock;
clk_info->min_eng_clk = level.core_clock;
clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;
return 0;
}
int smu_get_current_clocks(struct smu_context *smu,
struct amd_pp_clock_info *clocks)
{
struct amd_pp_simple_clock_info simple_clocks = {0};
struct smu_clock_info hw_clocks;
int ret = 0;
if (!is_support_sw_smu(smu->adev))
return -EINVAL;
mutex_lock(&smu->mutex);
smu_get_dal_power_level(smu, &simple_clocks);
if (smu->support_power_containment)
ret = smu_get_clock_info(smu, &hw_clocks,
PERF_LEVEL_POWER_CONTAINMENT);
else
ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);
if (ret) {
pr_err("Error in smu_get_clock_info\n");
goto failed;
}
clocks->min_engine_clock = hw_clocks.min_eng_clk;
clocks->max_engine_clock = hw_clocks.max_eng_clk;
clocks->min_memory_clock = hw_clocks.min_mem_clk;
clocks->max_memory_clock = hw_clocks.max_mem_clk;
clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
if (simple_clocks.level == 0)
clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
else
clocks->max_clocks_state = simple_clocks.level;
if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
}
failed:
mutex_unlock(&smu->mutex);
return ret;
}
static int smu_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int smu_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static int smu_enable_umd_pstate(void *handle,
enum amd_dpm_forced_level *level)
{
uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
struct smu_context *smu = (struct smu_context*)(handle);
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu->pm_enabled || !smu_dpm_ctx->dpm_context)
return -EINVAL;
if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
/* enter umd pstate, save current level, disable gfx cg*/
if (*level & profile_mode_mask) {
smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
smu_dpm_ctx->enable_umd_pstate = true;
amdgpu_device_ip_set_clockgating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_CG_STATE_UNGATE);
amdgpu_device_ip_set_powergating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_PG_STATE_UNGATE);
}
} else {
/* exit umd pstate, restore level, enable gfx cg*/
if (!(*level & profile_mode_mask)) {
if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
*level = smu_dpm_ctx->saved_dpm_level;
smu_dpm_ctx->enable_umd_pstate = false;
amdgpu_device_ip_set_clockgating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_CG_STATE_GATE);
amdgpu_device_ip_set_powergating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_PG_STATE_GATE);
}
}
return 0;
}
static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask, mclk_mask, soc_mask;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = smu_force_dpm_limit_value(smu, true);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = smu_force_dpm_limit_value(smu, false);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
ret = smu_unforce_dpm_levels(smu);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = smu_get_profiling_clk_mask(smu, level,
&sclk_mask,
&mclk_mask,
&soc_mask);
if (ret)
return ret;
smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask);
smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask);
smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
int smu_adjust_power_state_dynamic(struct smu_context *smu,
enum amd_dpm_forced_level level,
bool skip_display_settings)
{
int ret = 0;
int index = 0;
long workload;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu->pm_enabled)
return -EINVAL;
if (!skip_display_settings) {
ret = smu_display_config_changed(smu);
if (ret) {
pr_err("Failed to change display config!");
return ret;
}
}
ret = smu_apply_clocks_adjust_rules(smu);
if (ret) {
pr_err("Failed to apply clocks adjust rules!");
return ret;
}
if (!skip_display_settings) {
ret = smu_notify_smc_dispaly_config(smu);
if (ret) {
pr_err("Failed to notify smc display config!");
return ret;
}
}
if (smu_dpm_ctx->dpm_level != level) {
ret = smu_asic_set_performance_level(smu, level);
if (ret) {
ret = smu_default_set_performance_level(smu, level);
if (ret) {
pr_err("Failed to set performance level!");
return ret;
}
}
/* update the saved copy */
smu_dpm_ctx->dpm_level = level;
}
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
index = fls(smu->workload_mask);
index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload = smu->workload_setting[index];
if (smu->power_profile_mode != workload)
smu_set_power_profile_mode(smu, &workload, 0);
}
return ret;
}
int smu_handle_task(struct smu_context *smu,
enum amd_dpm_forced_level level,
enum amd_pp_task task_id)
{
int ret = 0;
switch (task_id) {
case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
ret = smu_pre_display_config_changed(smu);
if (ret)
return ret;
ret = smu_set_cpu_power_state(smu);
if (ret)
return ret;
ret = smu_adjust_power_state_dynamic(smu, level, false);
break;
case AMD_PP_TASK_COMPLETE_INIT:
case AMD_PP_TASK_READJUST_POWER_STATE:
ret = smu_adjust_power_state_dynamic(smu, level, true);
break;
default:
break;
}
return ret;
}
int smu_switch_power_profile(struct smu_context *smu,
enum PP_SMC_POWER_PROFILE type,
bool en)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
long workload;
uint32_t index;
if (!smu->pm_enabled)
return -EINVAL;
if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
return -EINVAL;
mutex_lock(&smu->mutex);
if (!en) {
smu->workload_mask &= ~(1 << smu->workload_prority[type]);
index = fls(smu->workload_mask);
index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload = smu->workload_setting[index];
} else {
smu->workload_mask |= (1 << smu->workload_prority[type]);
index = fls(smu->workload_mask);
index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload = smu->workload_setting[index];
}
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
smu_set_power_profile_mode(smu, &workload, 0);
mutex_unlock(&smu->mutex);
return 0;
}
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
enum amd_dpm_forced_level level;
if (!smu_dpm_ctx->dpm_context)
return -EINVAL;
mutex_lock(&(smu->mutex));
level = smu_dpm_ctx->dpm_level;
mutex_unlock(&(smu->mutex));
return level;
}
int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int ret = 0;
if (!smu_dpm_ctx->dpm_context)
return -EINVAL;
ret = smu_enable_umd_pstate(smu, &level);
if (ret)
return ret;
ret = smu_handle_task(smu, level,
AMD_PP_TASK_READJUST_POWER_STATE);
return ret;
}
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
int ret = 0;
mutex_lock(&smu->mutex);
ret = smu_init_display_count(smu, count);
mutex_unlock(&smu->mutex);
return ret;
}
const struct amd_ip_funcs smu_ip_funcs = {
.name = "smu",
.early_init = smu_early_init,
.late_init = smu_late_init,
.sw_init = smu_sw_init,
.sw_fini = smu_sw_fini,
.hw_init = smu_hw_init,
.hw_fini = smu_hw_fini,
.suspend = smu_suspend,
.resume = smu_resume,
.is_idle = NULL,
.check_soft_reset = NULL,
.wait_for_idle = NULL,
.soft_reset = NULL,
.set_clockgating_state = smu_set_clockgating_state,
.set_powergating_state = smu_set_powergating_state,
.enable_umd_pstate = smu_enable_umd_pstate,
};
const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 11,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 12,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};