linux_dsm_epyc7002/drivers/net/ethernet/marvell/mvneta.c
Russell King 04d53b20fe net: fix phy refcounting in a bunch of drivers
of_phy_find_device() increments the phy struct device refcount, which
we need to properly balance.  Add code to network drivers using this
function to ensure that the struct device refcount is correctly
balanced.

For xgene, looking back in the history, we should be able to use
of_phy_connect() with a zero flags argument for the DT case as this is
how the driver used to operate prior to de7b5b3d79 ("net: eth: xgene:
change APM X-Gene SoC platform ethernet to support ACPI").

This leaves the Cavium Thunder BGX unfixed; fixing this driver is a
complicated task, one which the maintainers need to be involved with.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-24 23:04:53 -07:00

3240 lines
88 KiB
C

/*
* Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
*
* Copyright (C) 2012 Marvell
*
* Rami Rosen <rosenr@marvell.com>
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/if_vlan.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <linux/io.h>
#include <net/tso.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/phy.h>
#include <linux/clk.h>
/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
#define MVNETA_PORT_RX_RESET 0x1cc0
#define MVNETA_PORT_RX_DMA_RESET BIT(0)
#define MVNETA_PHY_ADDR 0x2000
#define MVNETA_PHY_ADDR_MASK 0x1f
#define MVNETA_MBUS_RETRY 0x2010
#define MVNETA_UNIT_INTR_CAUSE 0x2080
#define MVNETA_UNIT_CONTROL 0x20B0
#define MVNETA_PHY_POLLING_ENABLE BIT(1)
#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE 0x2290
#define MVNETA_PORT_CONFIG 0x2400
#define MVNETA_UNI_PROMISC_MODE BIT(0)
#define MVNETA_DEF_RXQ(q) ((q) << 1)
#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
MVNETA_DEF_RXQ_ARP(q) | \
MVNETA_DEF_RXQ_TCP(q) | \
MVNETA_DEF_RXQ_UDP(q) | \
MVNETA_DEF_RXQ_BPDU(q) | \
MVNETA_TX_UNSET_ERR_SUM | \
MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND 0x2404
#define MVNETA_MAC_ADDR_LOW 0x2414
#define MVNETA_MAC_ADDR_HIGH 0x2418
#define MVNETA_SDMA_CONFIG 0x241c
#define MVNETA_SDMA_BRST_SIZE_16 4
#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
#define MVNETA_RX_NO_DATA_SWAP BIT(4)
#define MVNETA_TX_NO_DATA_SWAP BIT(5)
#define MVNETA_DESC_SWAP BIT(6)
#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
#define MVNETA_PORT_STATUS 0x2444
#define MVNETA_TX_IN_PRGRS BIT(1)
#define MVNETA_TX_FIFO_EMPTY BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
#define MVNETA_SERDES_CFG 0x24A0
#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
#define MVNETA_QSGMII_SERDES_PROTO 0x0667
#define MVNETA_TYPE_PRIO 0x24bc
#define MVNETA_FORCE_UNI BIT(21)
#define MVNETA_TXQ_CMD_1 0x24e4
#define MVNETA_TXQ_CMD 0x2448
#define MVNETA_TXQ_DISABLE_SHIFT 8
#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
#define MVNETA_ACC_MODE 0x2500
#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
/* Exception Interrupt Port/Queue Cause register */
#define MVNETA_INTR_NEW_CAUSE 0x25a0
#define MVNETA_INTR_NEW_MASK 0x25a4
/* bits 0..7 = TXQ SENT, one bit per queue.
* bits 8..15 = RXQ OCCUP, one bit per queue.
* bits 16..23 = RXQ FREE, one bit per queue.
* bit 29 = OLD_REG_SUM, see old reg ?
* bit 30 = TX_ERR_SUM, one bit for 4 ports
* bit 31 = MISC_SUM, one bit for 4 ports
*/
#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
#define MVNETA_MISCINTR_INTR_MASK BIT(31)
#define MVNETA_INTR_OLD_CAUSE 0x25a8
#define MVNETA_INTR_OLD_MASK 0x25ac
/* Data Path Port/Queue Cause Register */
#define MVNETA_INTR_MISC_CAUSE 0x25b0
#define MVNETA_INTR_MISC_MASK 0x25b4
#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
#define MVNETA_CAUSE_PTP BIT(4)
#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
#define MVNETA_CAUSE_PRBS_ERR BIT(12)
#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
#define MVNETA_INTR_ENABLE 0x25b8
#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
#define MVNETA_RXQ_CMD 0x2680
#define MVNETA_RXQ_DISABLE_SHIFT 8
#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0 0x2c00
#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
#define MVNETA_GMAC_CTRL_2 0x2c08
#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
#define MVNETA_GMAC2_PORT_RGMII BIT(4)
#define MVNETA_GMAC2_PORT_RESET BIT(6)
#define MVNETA_GMAC_STATUS 0x2c10
#define MVNETA_GMAC_LINK_UP BIT(0)
#define MVNETA_GMAC_SPEED_1000 BIT(1)
#define MVNETA_GMAC_SPEED_100 BIT(2)
#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
#define MVNETA_MIB_COUNTERS_BASE 0x3080
#define MVNETA_MIB_LATE_COLLISION 0x7c
#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
#define MVNETA_DA_FILT_OTH_MCAST 0x3500
#define MVNETA_DA_FILT_UCAST_BASE 0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
#define MVNETA_TXQ_DEC_SENT_SHIFT 16
#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
#define MVNETA_TXQ_SENT_DESC_SHIFT 16
#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
#define MVNETA_PORT_TX_RESET 0x3cf0
#define MVNETA_PORT_TX_DMA_RESET BIT(0)
#define MVNETA_TX_MTU 0x3e0c
#define MVNETA_TX_TOKEN_SIZE 0x3e14
#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index) \
(((index) < (q)->last_desc) ? ((index) + 1) : 0)
/* Various constants */
/* Coalescing */
#define MVNETA_TXDONE_COAL_PKTS 1
#define MVNETA_RX_COAL_PKTS 32
#define MVNETA_RX_COAL_USEC 100
/* The two bytes Marvell header. Either contains a special value used
* by Marvell switches when a specific hardware mode is enabled (not
* supported by this driver) or is filled automatically by zeroes on
* the RX side. Those two bytes being at the front of the Ethernet
* header, they allow to have the IP header aligned on a 4 bytes
* boundary automatically: the hardware skips those two bytes on its
* own.
*/
#define MVNETA_MH_SIZE 2
#define MVNETA_VLAN_TAG_LEN 4
#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
#define MVNETA_TX_CSUM_MAX_SIZE 9800
#define MVNETA_ACC_MODE_EXT 1
/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
#define MVNETA_TX_MTU_MAX 0x3ffff
/* TSO header size */
#define TSO_HEADER_SIZE 128
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 128
/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 532
/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100
#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE 32
#define MVNETA_RX_PKT_SIZE(mtu) \
ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
ETH_HLEN + ETH_FCS_LEN, \
MVNETA_CPU_D_CACHE_LINE_SIZE)
#define IS_TSO_HEADER(txq, addr) \
((addr >= txq->tso_hdrs_phys) && \
(addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
#define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
struct mvneta_pcpu_stats {
struct u64_stats_sync syncp;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
};
struct mvneta_port {
int pkt_size;
unsigned int frag_size;
void __iomem *base;
struct mvneta_rx_queue *rxqs;
struct mvneta_tx_queue *txqs;
struct net_device *dev;
u32 cause_rx_tx;
struct napi_struct napi;
/* Core clock */
struct clk *clk;
u8 mcast_count[256];
u16 tx_ring_size;
u16 rx_ring_size;
struct mvneta_pcpu_stats *stats;
struct mii_bus *mii_bus;
struct phy_device *phy_dev;
phy_interface_t phy_interface;
struct device_node *phy_node;
unsigned int link;
unsigned int duplex;
unsigned int speed;
unsigned int tx_csum_limit;
int use_inband_status:1;
};
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVNETA_TX_L3_OFF_SHIFT 0
#define MVNETA_TX_IP_HLEN_SHIFT 8
#define MVNETA_TX_L4_UDP BIT(16)
#define MVNETA_TX_L3_IP6 BIT(17)
#define MVNETA_TXD_IP_CSUM BIT(18)
#define MVNETA_TXD_Z_PAD BIT(19)
#define MVNETA_TXD_L_DESC BIT(20)
#define MVNETA_TXD_F_DESC BIT(21)
#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
MVNETA_TXD_L_DESC | \
MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL BIT(30)
#define MVNETA_TX_L4_CSUM_NOT BIT(31)
#define MVNETA_RXD_ERR_CRC 0x0
#define MVNETA_RXD_ERR_SUMMARY BIT(16)
#define MVNETA_RXD_ERR_OVERRUN BIT(17)
#define MVNETA_RXD_ERR_LEN BIT(18)
#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4 BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK BIT(30)
#if defined(__LITTLE_ENDIAN)
struct mvneta_tx_desc {
u32 command; /* Options used by HW for packet transmitting.*/
u16 reserverd1; /* csum_l4 (for future use) */
u16 data_size; /* Data size of transmitted packet in bytes */
u32 buf_phys_addr; /* Physical addr of transmitted buffer */
u32 reserved2; /* hw_cmd - (for future use, PMT) */
u32 reserved3[4]; /* Reserved - (for future use) */
};
struct mvneta_rx_desc {
u32 status; /* Info about received packet */
u16 reserved1; /* pnc_info - (for future use, PnC) */
u16 data_size; /* Size of received packet in bytes */
u32 buf_phys_addr; /* Physical address of the buffer */
u32 reserved2; /* pnc_flow_id (for future use, PnC) */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved3; /* prefetch_cmd, for future use */
u16 reserved4; /* csum_l4 - (for future use, PnC) */
u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
};
#else
struct mvneta_tx_desc {
u16 data_size; /* Data size of transmitted packet in bytes */
u16 reserverd1; /* csum_l4 (for future use) */
u32 command; /* Options used by HW for packet transmitting.*/
u32 reserved2; /* hw_cmd - (for future use, PMT) */
u32 buf_phys_addr; /* Physical addr of transmitted buffer */
u32 reserved3[4]; /* Reserved - (for future use) */
};
struct mvneta_rx_desc {
u16 data_size; /* Size of received packet in bytes */
u16 reserved1; /* pnc_info - (for future use, PnC) */
u32 status; /* Info about received packet */
u32 reserved2; /* pnc_flow_id (for future use, PnC) */
u32 buf_phys_addr; /* Physical address of the buffer */
u16 reserved4; /* csum_l4 - (for future use, PnC) */
u16 reserved3; /* prefetch_cmd, for future use */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
};
#endif
struct mvneta_tx_queue {
/* Number of this TX queue, in the range 0-7 */
u8 id;
/* Number of TX DMA descriptors in the descriptor ring */
int size;
/* Number of currently used TX DMA descriptor in the
* descriptor ring
*/
int count;
int tx_stop_threshold;
int tx_wake_threshold;
/* Array of transmitted skb */
struct sk_buff **tx_skb;
/* Index of last TX DMA descriptor that was inserted */
int txq_put_index;
/* Index of the TX DMA descriptor to be cleaned up */
int txq_get_index;
u32 done_pkts_coal;
/* Virtual address of the TX DMA descriptors array */
struct mvneta_tx_desc *descs;
/* DMA address of the TX DMA descriptors array */
dma_addr_t descs_phys;
/* Index of the last TX DMA descriptor */
int last_desc;
/* Index of the next TX DMA descriptor to process */
int next_desc_to_proc;
/* DMA buffers for TSO headers */
char *tso_hdrs;
/* DMA address of TSO headers */
dma_addr_t tso_hdrs_phys;
};
struct mvneta_rx_queue {
/* rx queue number, in the range 0-7 */
u8 id;
/* num of rx descriptors in the rx descriptor ring */
int size;
/* counter of times when mvneta_refill() failed */
int missed;
u32 pkts_coal;
u32 time_coal;
/* Virtual address of the RX DMA descriptors array */
struct mvneta_rx_desc *descs;
/* DMA address of the RX DMA descriptors array */
dma_addr_t descs_phys;
/* Index of the last RX DMA descriptor */
int last_desc;
/* Index of the next RX DMA descriptor to process */
int next_desc_to_proc;
};
/* The hardware supports eight (8) rx queues, but we are only allowing
* the first one to be used. Therefore, let's just allocate one queue.
*/
static int rxq_number = 1;
static int txq_number = 8;
static int rxq_def;
static int rx_copybreak __read_mostly = 256;
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"
/* Utility/helper methods */
/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
writel(data, pp->base + offset);
}
/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
return readl(pp->base + offset);
}
/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
txq->txq_get_index++;
if (txq->txq_get_index == txq->size)
txq->txq_get_index = 0;
}
/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
txq->txq_put_index++;
if (txq->txq_put_index == txq->size)
txq->txq_put_index = 0;
}
/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
int i;
u32 dummy;
/* Perform dummy reads from MIB counters */
for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
}
/* Get System Network Statistics */
struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct mvneta_port *pp = netdev_priv(dev);
unsigned int start;
int cpu;
for_each_possible_cpu(cpu) {
struct mvneta_pcpu_stats *cpu_stats;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
cpu_stats = per_cpu_ptr(pp->stats, cpu);
do {
start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
rx_packets = cpu_stats->rx_packets;
rx_bytes = cpu_stats->rx_bytes;
tx_packets = cpu_stats->tx_packets;
tx_bytes = cpu_stats->tx_bytes;
} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
}
stats->rx_errors = dev->stats.rx_errors;
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
return stats;
}
/* Rx descriptors helper methods */
/* Checks whether the RX descriptor having this status is both the first
* and the last descriptor for the RX packet. Each RX packet is currently
* received through a single RX descriptor, so not having each RX
* descriptor with its first and last bits set is an error
*/
static int mvneta_rxq_desc_is_first_last(u32 status)
{
return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
MVNETA_RXD_FIRST_LAST_DESC;
}
/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int ndescs)
{
/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
* be added at once
*/
while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
(MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
}
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
(ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}
/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}
/* Update num of rx desc called upon return from rx path or
* from mvneta_rxq_drop_pkts().
*/
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int rx_done, int rx_filled)
{
u32 val;
if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
val = rx_done |
(rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
return;
}
/* Only 255 descriptors can be added at once */
while ((rx_done > 0) || (rx_filled > 0)) {
if (rx_done <= 0xff) {
val = rx_done;
rx_done = 0;
} else {
val = 0xff;
rx_done -= 0xff;
}
if (rx_filled <= 0xff) {
val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
rx_filled = 0;
} else {
val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
rx_filled -= 0xff;
}
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
}
}
/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
prefetch(rxq->descs + rxq->next_desc_to_proc);
return rxq->descs + rx_desc;
}
/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
u32 val;
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}
/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int offset)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
/* Offset is in */
val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Tx descriptors helper methods */
/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
struct mvneta_tx_queue *txq,
int pend_desc)
{
u32 val;
/* Only 255 descriptors can be added at once ; Assume caller
* process TX desriptors in quanta less than 256
*/
val = pend_desc;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}
/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Release the last allocated TX descriptor. Useful to handle DMA
* mapping failures in the TX path.
*/
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
if (txq->next_desc_to_proc == 0)
txq->next_desc_to_proc = txq->last_desc - 1;
else
txq->next_desc_to_proc--;
}
/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int buf_size)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}
/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
int queue;
u32 q_map;
/* Enable all initialized TXs. */
mvneta_mib_counters_clear(pp);
q_map = 0;
for (queue = 0; queue < txq_number; queue++) {
struct mvneta_tx_queue *txq = &pp->txqs[queue];
if (txq->descs != NULL)
q_map |= (1 << queue);
}
mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
/* Enable all initialized RXQs. */
q_map = 0;
for (queue = 0; queue < rxq_number; queue++) {
struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
if (rxq->descs != NULL)
q_map |= (1 << queue);
}
mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
}
/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
u32 val;
int count;
/* Stop Rx port activity. Check port Rx activity. */
val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
/* Issue stop command for active channels only */
if (val != 0)
mvreg_write(pp, MVNETA_RXQ_CMD,
val << MVNETA_RXQ_DISABLE_SHIFT);
/* Wait for all Rx activity to terminate. */
count = 0;
do {
if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(pp->dev,
"TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
val);
break;
}
mdelay(1);
val = mvreg_read(pp, MVNETA_RXQ_CMD);
} while (val & 0xff);
/* Stop Tx port activity. Check port Tx activity. Issue stop
* command for active channels only
*/
val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
if (val != 0)
mvreg_write(pp, MVNETA_TXQ_CMD,
(val << MVNETA_TXQ_DISABLE_SHIFT));
/* Wait for all Tx activity to terminate. */
count = 0;
do {
if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(pp->dev,
"TIMEOUT for TX stopped status=0x%08x\n",
val);
break;
}
mdelay(1);
/* Check TX Command reg that all Txqs are stopped */
val = mvreg_read(pp, MVNETA_TXQ_CMD);
} while (val & 0xff);
/* Double check to verify that TX FIFO is empty */
count = 0;
do {
if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
netdev_warn(pp->dev,
"TX FIFO empty timeout status=0x08%x\n",
val);
break;
}
mdelay(1);
val = mvreg_read(pp, MVNETA_PORT_STATUS);
} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
(val & MVNETA_TX_IN_PRGRS));
udelay(200);
}
/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
u32 val;
/* Enable port */
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val |= MVNETA_GMAC0_PORT_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}
/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
u32 val;
/* Reset the Enable bit in the Serial Control Register */
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val &= ~MVNETA_GMAC0_PORT_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
udelay(200);
}
/* Multicast tables methods */
/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
val = 0;
} else {
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}
/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
val = 0;
} else {
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xfc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
}
/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
val = 0;
} else {
memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xfc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}
/* This method sets defaults to the NETA port:
* Clears interrupt Cause and Mask registers.
* Clears all MAC tables.
* Sets defaults to all registers.
* Resets RX and TX descriptor rings.
* Resets PHY.
* This method can be called after mvneta_port_down() to return the port
* settings to defaults.
*/
static void mvneta_defaults_set(struct mvneta_port *pp)
{
int cpu;
int queue;
u32 val;
/* Clear all Cause registers */
mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
/* Mask all interrupts */
mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
/* Enable MBUS Retry bit16 */
mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
/* Set CPU queue access map - all CPUs have access to all RX
* queues and to all TX queues
*/
for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
mvreg_write(pp, MVNETA_CPU_MAP(cpu),
(MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
/* Reset RX and TX DMAs */
mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
/* Disable Legacy WRR, Disable EJP, Release from reset */
mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
for (queue = 0; queue < txq_number; queue++) {
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
}
mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
/* Set Port Acceleration Mode */
val = MVNETA_ACC_MODE_EXT;
mvreg_write(pp, MVNETA_ACC_MODE, val);
/* Update val of portCfg register accordingly with all RxQueue types */
val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
mvreg_write(pp, MVNETA_PORT_CONFIG, val);
val = 0;
mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
/* Build PORT_SDMA_CONFIG_REG */
val = 0;
/* Default burst size */
val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
#if defined(__BIG_ENDIAN)
val |= MVNETA_DESC_SWAP;
#endif
/* Assign port SDMA configuration */
mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
/* Disable PHY polling in hardware, since we're using the
* kernel phylib to do this.
*/
val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
val &= ~MVNETA_PHY_POLLING_ENABLE;
mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
if (pp->use_inband_status) {
val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
MVNETA_GMAC_FORCE_LINK_DOWN |
MVNETA_GMAC_AN_FLOW_CTRL_EN);
val |= MVNETA_GMAC_INBAND_AN_ENABLE |
MVNETA_GMAC_AN_SPEED_EN |
MVNETA_GMAC_AN_DUPLEX_EN;
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
} else {
val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
MVNETA_GMAC_AN_SPEED_EN |
MVNETA_GMAC_AN_DUPLEX_EN);
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
}
mvneta_set_ucast_table(pp, -1);
mvneta_set_special_mcast_table(pp, -1);
mvneta_set_other_mcast_table(pp, -1);
/* Set port interrupt enable register - default enable all */
mvreg_write(pp, MVNETA_INTR_ENABLE,
(MVNETA_RXQ_INTR_ENABLE_ALL_MASK
| MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
}
/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
{
u32 val, size, mtu;
int queue;
mtu = max_tx_size * 8;
if (mtu > MVNETA_TX_MTU_MAX)
mtu = MVNETA_TX_MTU_MAX;
/* Set MTU */
val = mvreg_read(pp, MVNETA_TX_MTU);
val &= ~MVNETA_TX_MTU_MAX;
val |= mtu;
mvreg_write(pp, MVNETA_TX_MTU, val);
/* TX token size and all TXQs token size must be larger that MTU */
val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
size = val & MVNETA_TX_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
val |= size;
mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
}
for (queue = 0; queue < txq_number; queue++) {
val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
val |= size;
mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
}
}
}
/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
int queue)
{
unsigned int unicast_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
/* Locate the Unicast table entry */
last_nibble = (0xf & last_nibble);
/* offset from unicast tbl base */
tbl_offset = (last_nibble / 4) * 4;
/* offset within the above reg */
reg_offset = last_nibble % 4;
unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
if (queue == -1) {
/* Clear accepts frame bit at specified unicast DA tbl entry */
unicast_reg &= ~(0xff << (8 * reg_offset));
} else {
unicast_reg &= ~(0xff << (8 * reg_offset));
unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}
/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
int queue)
{
unsigned int mac_h;
unsigned int mac_l;
if (queue != -1) {
mac_l = (addr[4] << 8) | (addr[5]);
mac_h = (addr[0] << 24) | (addr[1] << 16) |
(addr[2] << 8) | (addr[3] << 0);
mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
}
/* Accept frames of this address */
mvneta_set_ucast_addr(pp, addr[5], queue);
}
/* Set the number of packets that will be received before RX interrupt
* will be generated by HW.
*/
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq, u32 value)
{
mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
value | MVNETA_RXQ_NON_OCCUPIED(0));
rxq->pkts_coal = value;
}
/* Set the time delay in usec before RX interrupt will be generated by
* HW.
*/
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq, u32 value)
{
u32 val;
unsigned long clk_rate;
clk_rate = clk_get_rate(pp->clk);
val = (clk_rate / 1000000) * value;
mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
rxq->time_coal = value;
}
/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
struct mvneta_tx_queue *txq, u32 value)
{
u32 val;
val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
txq->done_pkts_coal = value;
}
/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
u32 phys_addr, u32 cookie)
{
rx_desc->buf_cookie = cookie;
rx_desc->buf_phys_addr = phys_addr;
}
/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
struct mvneta_tx_queue *txq,
int sent_desc)
{
u32 val;
/* Only 255 TX descriptors can be updated at once */
while (sent_desc > 0xff) {
val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
sent_desc = sent_desc - 0xff;
}
val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}
/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
u32 val;
int sent_desc;
val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
MVNETA_TXQ_SENT_DESC_SHIFT;
return sent_desc;
}
/* Get number of sent descriptors and decrement counter.
* The number of sent descriptors is returned.
*/
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
int sent_desc;
/* Get number of sent descriptors */
sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
/* Decrement sent descriptors counter */
if (sent_desc)
mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
return sent_desc;
}
/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
int ip_hdr_len, int l4_proto)
{
u32 command;
/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
* G_L4_chk, L4_type; required only for checksum
* calculation
*/
command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
if (l3_proto == htons(ETH_P_IP))
command |= MVNETA_TXD_IP_CSUM;
else
command |= MVNETA_TX_L3_IP6;
if (l4_proto == IPPROTO_TCP)
command |= MVNETA_TX_L4_CSUM_FULL;
else if (l4_proto == IPPROTO_UDP)
command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
else
command |= MVNETA_TX_L4_CSUM_NOT;
return command;
}
/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
struct mvneta_rx_desc *rx_desc)
{
u32 status = rx_desc->status;
if (!mvneta_rxq_desc_is_first_last(status)) {
netdev_err(pp->dev,
"bad rx status %08x (buffer oversize), size=%d\n",
status, rx_desc->data_size);
return;
}
switch (status & MVNETA_RXD_ERR_CODE_MASK) {
case MVNETA_RXD_ERR_CRC:
netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_OVERRUN:
netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_LEN:
netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_RESOURCE:
netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
status, rx_desc->data_size);
break;
}
}
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
struct sk_buff *skb)
{
if ((status & MVNETA_RXD_L3_IP4) &&
(status & MVNETA_RXD_L4_CSUM_OK)) {
skb->csum = 0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
}
skb->ip_summed = CHECKSUM_NONE;
}
/* Return tx queue pointer (find last set bit) according to <cause> returned
* form tx_done reg. <cause> must not be null. The return value is always a
* valid queue for matching the first one found in <cause>.
*/
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
u32 cause)
{
int queue = fls(cause) - 1;
return &pp->txqs[queue];
}
/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
struct mvneta_tx_queue *txq, int num)
{
int i;
for (i = 0; i < num; i++) {
struct mvneta_tx_desc *tx_desc = txq->descs +
txq->txq_get_index;
struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
mvneta_txq_inc_get(txq);
if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
dma_unmap_single(pp->dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size, DMA_TO_DEVICE);
if (!skb)
continue;
dev_kfree_skb_any(skb);
}
}
/* Handle end of transmission */
static void mvneta_txq_done(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
int tx_done;
tx_done = mvneta_txq_sent_desc_proc(pp, txq);
if (!tx_done)
return;
mvneta_txq_bufs_free(pp, txq, tx_done);
txq->count -= tx_done;
if (netif_tx_queue_stopped(nq)) {
if (txq->count <= txq->tx_wake_threshold)
netif_tx_wake_queue(nq);
}
}
static void *mvneta_frag_alloc(const struct mvneta_port *pp)
{
if (likely(pp->frag_size <= PAGE_SIZE))
return netdev_alloc_frag(pp->frag_size);
else
return kmalloc(pp->frag_size, GFP_ATOMIC);
}
static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
{
if (likely(pp->frag_size <= PAGE_SIZE))
skb_free_frag(data);
else
kfree(data);
}
/* Refill processing */
static int mvneta_rx_refill(struct mvneta_port *pp,
struct mvneta_rx_desc *rx_desc)
{
dma_addr_t phys_addr;
void *data;
data = mvneta_frag_alloc(pp);
if (!data)
return -ENOMEM;
phys_addr = dma_map_single(pp->dev->dev.parent, data,
MVNETA_RX_BUF_SIZE(pp->pkt_size),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
mvneta_frag_free(pp, data);
return -ENOMEM;
}
mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
return 0;
}
/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
int ip_hdr_len = 0;
__be16 l3_proto = vlan_get_protocol(skb);
u8 l4_proto;
if (l3_proto == htons(ETH_P_IP)) {
struct iphdr *ip4h = ip_hdr(skb);
/* Calculate IPv4 checksum and L4 checksum */
ip_hdr_len = ip4h->ihl;
l4_proto = ip4h->protocol;
} else if (l3_proto == htons(ETH_P_IPV6)) {
struct ipv6hdr *ip6h = ipv6_hdr(skb);
/* Read l4_protocol from one of IPv6 extra headers */
if (skb_network_header_len(skb) > 0)
ip_hdr_len = (skb_network_header_len(skb) >> 2);
l4_proto = ip6h->nexthdr;
} else
return MVNETA_TX_L4_CSUM_NOT;
return mvneta_txq_desc_csum(skb_network_offset(skb),
l3_proto, ip_hdr_len, l4_proto);
}
return MVNETA_TX_L4_CSUM_NOT;
}
/* Returns rx queue pointer (find last set bit) according to causeRxTx
* value
*/
static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
u32 cause)
{
int queue = fls(cause >> 8) - 1;
return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
}
/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
int rx_done, i;
rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
for (i = 0; i < rxq->size; i++) {
struct mvneta_rx_desc *rx_desc = rxq->descs + i;
void *data = (void *)rx_desc->buf_cookie;
mvneta_frag_free(pp, data);
dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
}
if (rx_done)
mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
}
/* Main rx processing */
static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
struct mvneta_rx_queue *rxq)
{
struct net_device *dev = pp->dev;
int rx_done;
u32 rcvd_pkts = 0;
u32 rcvd_bytes = 0;
/* Get number of received packets */
rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
if (rx_todo > rx_done)
rx_todo = rx_done;
rx_done = 0;
/* Fairness NAPI loop */
while (rx_done < rx_todo) {
struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
struct sk_buff *skb;
unsigned char *data;
dma_addr_t phys_addr;
u32 rx_status;
int rx_bytes, err;
rx_done++;
rx_status = rx_desc->status;
rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
data = (unsigned char *)rx_desc->buf_cookie;
phys_addr = rx_desc->buf_phys_addr;
if (!mvneta_rxq_desc_is_first_last(rx_status) ||
(rx_status & MVNETA_RXD_ERR_SUMMARY)) {
err_drop_frame:
dev->stats.rx_errors++;
mvneta_rx_error(pp, rx_desc);
/* leave the descriptor untouched */
continue;
}
if (rx_bytes <= rx_copybreak) {
/* better copy a small frame and not unmap the DMA region */
skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
if (unlikely(!skb))
goto err_drop_frame;
dma_sync_single_range_for_cpu(dev->dev.parent,
rx_desc->buf_phys_addr,
MVNETA_MH_SIZE + NET_SKB_PAD,
rx_bytes,
DMA_FROM_DEVICE);
memcpy(skb_put(skb, rx_bytes),
data + MVNETA_MH_SIZE + NET_SKB_PAD,
rx_bytes);
skb->protocol = eth_type_trans(skb, dev);
mvneta_rx_csum(pp, rx_status, skb);
napi_gro_receive(&pp->napi, skb);
rcvd_pkts++;
rcvd_bytes += rx_bytes;
/* leave the descriptor and buffer untouched */
continue;
}
/* Refill processing */
err = mvneta_rx_refill(pp, rx_desc);
if (err) {
netdev_err(dev, "Linux processing - Can't refill\n");
rxq->missed++;
goto err_drop_frame;
}
skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
if (!skb)
goto err_drop_frame;
dma_unmap_single(dev->dev.parent, phys_addr,
MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
rcvd_pkts++;
rcvd_bytes += rx_bytes;
/* Linux processing */
skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
skb_put(skb, rx_bytes);
skb->protocol = eth_type_trans(skb, dev);
mvneta_rx_csum(pp, rx_status, skb);
napi_gro_receive(&pp->napi, skb);
}
if (rcvd_pkts) {
struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets += rcvd_pkts;
stats->rx_bytes += rcvd_bytes;
u64_stats_update_end(&stats->syncp);
}
/* Update rxq management counters */
mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
return rx_done;
}
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
struct mvneta_tx_desc *tx_desc;
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
txq->tx_skb[txq->txq_put_index] = NULL;
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->data_size = hdr_len;
tx_desc->command = mvneta_skb_tx_csum(pp, skb);
tx_desc->command |= MVNETA_TXD_F_DESC;
tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
txq->txq_put_index * TSO_HEADER_SIZE;
mvneta_txq_inc_put(txq);
}
static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
struct sk_buff *skb, char *data, int size,
bool last_tcp, bool is_last)
{
struct mvneta_tx_desc *tx_desc;
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->data_size = size;
tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent,
tx_desc->buf_phys_addr))) {
mvneta_txq_desc_put(txq);
return -ENOMEM;
}
tx_desc->command = 0;
txq->tx_skb[txq->txq_put_index] = NULL;
if (last_tcp) {
/* last descriptor in the TCP packet */
tx_desc->command = MVNETA_TXD_L_DESC;
/* last descriptor in SKB */
if (is_last)
txq->tx_skb[txq->txq_put_index] = skb;
}
mvneta_txq_inc_put(txq);
return 0;
}
static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
struct mvneta_tx_queue *txq)
{
int total_len, data_left;
int desc_count = 0;
struct mvneta_port *pp = netdev_priv(dev);
struct tso_t tso;
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int i;
/* Count needed descriptors */
if ((txq->count + tso_count_descs(skb)) >= txq->size)
return 0;
if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
pr_info("*** Is this even possible???!?!?\n");
return 0;
}
/* Initialize the TSO handler, and prepare the first payload */
tso_start(skb, &tso);
total_len = skb->len - hdr_len;
while (total_len > 0) {
char *hdr;
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
desc_count++;
/* prepare packet headers: MAC + IP + TCP */
hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
mvneta_tso_put_hdr(skb, pp, txq);
while (data_left > 0) {
int size;
desc_count++;
size = min_t(int, tso.size, data_left);
if (mvneta_tso_put_data(dev, txq, skb,
tso.data, size,
size == data_left,
total_len == 0))
goto err_release;
data_left -= size;
tso_build_data(skb, &tso, size);
}
}
return desc_count;
err_release:
/* Release all used data descriptors; header descriptors must not
* be DMA-unmapped.
*/
for (i = desc_count - 1; i >= 0; i--) {
struct mvneta_tx_desc *tx_desc = txq->descs + i;
if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
dma_unmap_single(pp->dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size,
DMA_TO_DEVICE);
mvneta_txq_desc_put(txq);
}
return 0;
}
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
struct mvneta_tx_queue *txq)
{
struct mvneta_tx_desc *tx_desc;
int i, nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
void *addr = page_address(frag->page.p) + frag->page_offset;
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->data_size = frag->size;
tx_desc->buf_phys_addr =
dma_map_single(pp->dev->dev.parent, addr,
tx_desc->data_size, DMA_TO_DEVICE);
if (dma_mapping_error(pp->dev->dev.parent,
tx_desc->buf_phys_addr)) {
mvneta_txq_desc_put(txq);
goto error;
}
if (i == nr_frags - 1) {
/* Last descriptor */
tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
txq->tx_skb[txq->txq_put_index] = skb;
} else {
/* Descriptor in the middle: Not First, Not Last */
tx_desc->command = 0;
txq->tx_skb[txq->txq_put_index] = NULL;
}
mvneta_txq_inc_put(txq);
}
return 0;
error:
/* Release all descriptors that were used to map fragments of
* this packet, as well as the corresponding DMA mappings
*/
for (i = i - 1; i >= 0; i--) {
tx_desc = txq->descs + i;
dma_unmap_single(pp->dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size,
DMA_TO_DEVICE);
mvneta_txq_desc_put(txq);
}
return -ENOMEM;
}
/* Main tx processing */
static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
struct mvneta_port *pp = netdev_priv(dev);
u16 txq_id = skb_get_queue_mapping(skb);
struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
struct mvneta_tx_desc *tx_desc;
int len = skb->len;
int frags = 0;
u32 tx_cmd;
if (!netif_running(dev))
goto out;
if (skb_is_gso(skb)) {
frags = mvneta_tx_tso(skb, dev, txq);
goto out;
}
frags = skb_shinfo(skb)->nr_frags + 1;
/* Get a descriptor for the first part of the packet */
tx_desc = mvneta_txq_next_desc_get(txq);
tx_cmd = mvneta_skb_tx_csum(pp, skb);
tx_desc->data_size = skb_headlen(skb);
tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
tx_desc->data_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent,
tx_desc->buf_phys_addr))) {
mvneta_txq_desc_put(txq);
frags = 0;
goto out;
}
if (frags == 1) {
/* First and Last descriptor */
tx_cmd |= MVNETA_TXD_FLZ_DESC;
tx_desc->command = tx_cmd;
txq->tx_skb[txq->txq_put_index] = skb;
mvneta_txq_inc_put(txq);
} else {
/* First but not Last */
tx_cmd |= MVNETA_TXD_F_DESC;
txq->tx_skb[txq->txq_put_index] = NULL;
mvneta_txq_inc_put(txq);
tx_desc->command = tx_cmd;
/* Continue with other skb fragments */
if (mvneta_tx_frag_process(pp, skb, txq)) {
dma_unmap_single(dev->dev.parent,
tx_desc->buf_phys_addr,
tx_desc->data_size,
DMA_TO_DEVICE);
mvneta_txq_desc_put(txq);
frags = 0;
goto out;
}
}
out:
if (frags > 0) {
struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
txq->count += frags;
mvneta_txq_pend_desc_add(pp, txq, frags);
if (txq->count >= txq->tx_stop_threshold)
netif_tx_stop_queue(nq);
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += len;
u64_stats_update_end(&stats->syncp);
} else {
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
}
return NETDEV_TX_OK;
}
/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
int tx_done = txq->count;
mvneta_txq_bufs_free(pp, txq, tx_done);
/* reset txq */
txq->count = 0;
txq->txq_put_index = 0;
txq->txq_get_index = 0;
}
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
* must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
*/
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
{
struct mvneta_tx_queue *txq;
struct netdev_queue *nq;
while (cause_tx_done) {
txq = mvneta_tx_done_policy(pp, cause_tx_done);
nq = netdev_get_tx_queue(pp->dev, txq->id);
__netif_tx_lock(nq, smp_processor_id());
if (txq->count)
mvneta_txq_done(pp, txq);
__netif_tx_unlock(nq);
cause_tx_done &= ~((1 << txq->id));
}
}
/* Compute crc8 of the specified address, using a unique algorithm ,
* according to hw spec, different than generic crc8 algorithm
*/
static int mvneta_addr_crc(unsigned char *addr)
{
int crc = 0;
int i;
for (i = 0; i < ETH_ALEN; i++) {
int j;
crc = (crc ^ addr[i]) << 8;
for (j = 7; j >= 0; j--) {
if (crc & (0x100 << j))
crc ^= 0x107 << j;
}
}
return crc;
}
/* This method controls the net device special MAC multicast support.
* The Special Multicast Table for MAC addresses supports MAC of the form
* 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
* The MAC DA[7:0] bits are used as a pointer to the Special Multicast
* Table entries in the DA-Filter table. This method set the Special
* Multicast Table appropriate entry.
*/
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
unsigned char last_byte,
int queue)
{
unsigned int smc_table_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
/* Register offset from SMC table base */
tbl_offset = (last_byte / 4);
/* Entry offset within the above reg */
reg_offset = last_byte % 4;
smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset * 4));
if (queue == -1)
smc_table_reg &= ~(0xff << (8 * reg_offset));
else {
smc_table_reg &= ~(0xff << (8 * reg_offset));
smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
smc_table_reg);
}
/* This method controls the network device Other MAC multicast support.
* The Other Multicast Table is used for multicast of another type.
* A CRC-8 is used as an index to the Other Multicast Table entries
* in the DA-Filter table.
* The method gets the CRC-8 value from the calling routine and
* sets the Other Multicast Table appropriate entry according to the
* specified CRC-8 .
*/
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
unsigned char crc8,
int queue)
{
unsigned int omc_table_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
reg_offset = crc8 % 4; /* Entry offset within the above reg */
omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
if (queue == -1) {
/* Clear accepts frame bit at specified Other DA table entry */
omc_table_reg &= ~(0xff << (8 * reg_offset));
} else {
omc_table_reg &= ~(0xff << (8 * reg_offset));
omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}
/* The network device supports multicast using two tables:
* 1) Special Multicast Table for MAC addresses of the form
* 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
* The MAC DA[7:0] bits are used as a pointer to the Special Multicast
* Table entries in the DA-Filter table.
* 2) Other Multicast Table for multicast of another type. A CRC-8 value
* is used as an index to the Other Multicast Table entries in the
* DA-Filter table.
*/
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
int queue)
{
unsigned char crc_result = 0;
if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
return 0;
}
crc_result = mvneta_addr_crc(p_addr);
if (queue == -1) {
if (pp->mcast_count[crc_result] == 0) {
netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
crc_result);
return -EINVAL;
}
pp->mcast_count[crc_result]--;
if (pp->mcast_count[crc_result] != 0) {
netdev_info(pp->dev,
"After delete there are %d valid Mcast for crc8=0x%02x\n",
pp->mcast_count[crc_result], crc_result);
return -EINVAL;
}
} else
pp->mcast_count[crc_result]++;
mvneta_set_other_mcast_addr(pp, crc_result, queue);
return 0;
}
/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
int is_promisc)
{
u32 port_cfg_reg, val;
port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
val = mvreg_read(pp, MVNETA_TYPE_PRIO);
/* Set / Clear UPM bit in port configuration register */
if (is_promisc) {
/* Accept all Unicast addresses */
port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
val |= MVNETA_FORCE_UNI;
mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
} else {
/* Reject all Unicast addresses */
port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
val &= ~MVNETA_FORCE_UNI;
}
mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}
/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
struct mvneta_port *pp = netdev_priv(dev);
struct netdev_hw_addr *ha;
if (dev->flags & IFF_PROMISC) {
/* Accept all: Multicast + Unicast */
mvneta_rx_unicast_promisc_set(pp, 1);
mvneta_set_ucast_table(pp, rxq_def);
mvneta_set_special_mcast_table(pp, rxq_def);
mvneta_set_other_mcast_table(pp, rxq_def);
} else {
/* Accept single Unicast */
mvneta_rx_unicast_promisc_set(pp, 0);
mvneta_set_ucast_table(pp, -1);
mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
if (dev->flags & IFF_ALLMULTI) {
/* Accept all multicast */
mvneta_set_special_mcast_table(pp, rxq_def);
mvneta_set_other_mcast_table(pp, rxq_def);
} else {
/* Accept only initialized multicast */
mvneta_set_special_mcast_table(pp, -1);
mvneta_set_other_mcast_table(pp, -1);
if (!netdev_mc_empty(dev)) {
netdev_for_each_mc_addr(ha, dev) {
mvneta_mcast_addr_set(pp, ha->addr,
rxq_def);
}
}
}
}
}
/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
{
struct mvneta_port *pp = (struct mvneta_port *)dev_id;
/* Mask all interrupts */
mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
napi_schedule(&pp->napi);
return IRQ_HANDLED;
}
static int mvneta_fixed_link_update(struct mvneta_port *pp,
struct phy_device *phy)
{
struct fixed_phy_status status;
struct fixed_phy_status changed = {};
u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
if (gmac_stat & MVNETA_GMAC_SPEED_1000)
status.speed = SPEED_1000;
else if (gmac_stat & MVNETA_GMAC_SPEED_100)
status.speed = SPEED_100;
else
status.speed = SPEED_10;
status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
changed.link = 1;
changed.speed = 1;
changed.duplex = 1;
fixed_phy_update_state(phy, &status, &changed);
return 0;
}
/* NAPI handler
* Bits 0 - 7 of the causeRxTx register indicate that are transmitted
* packets on the corresponding TXQ (Bit 0 is for TX queue 1).
* Bits 8 -15 of the cause Rx Tx register indicate that are received
* packets on the corresponding RXQ (Bit 8 is for RX queue 0).
* Each CPU has its own causeRxTx register
*/
static int mvneta_poll(struct napi_struct *napi, int budget)
{
int rx_done = 0;
u32 cause_rx_tx;
unsigned long flags;
struct mvneta_port *pp = netdev_priv(napi->dev);
if (!netif_running(pp->dev)) {
napi_complete(napi);
return rx_done;
}
/* Read cause register */
cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
if (pp->use_inband_status && (cause_misc &
(MVNETA_CAUSE_PHY_STATUS_CHANGE |
MVNETA_CAUSE_LINK_CHANGE |
MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
mvneta_fixed_link_update(pp, pp->phy_dev);
}
}
/* Release Tx descriptors */
if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
}
/* For the case where the last mvneta_poll did not process all
* RX packets
*/
cause_rx_tx |= pp->cause_rx_tx;
if (rxq_number > 1) {
while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
int count;
struct mvneta_rx_queue *rxq;
/* get rx queue number from cause_rx_tx */
rxq = mvneta_rx_policy(pp, cause_rx_tx);
if (!rxq)
break;
/* process the packet in that rx queue */
count = mvneta_rx(pp, budget, rxq);
rx_done += count;
budget -= count;
if (budget > 0) {
/* set off the rx bit of the
* corresponding bit in the cause rx
* tx register, so that next iteration
* will find the next rx queue where
* packets are received on
*/
cause_rx_tx &= ~((1 << rxq->id) << 8);
}
}
} else {
rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
budget -= rx_done;
}
if (budget > 0) {
cause_rx_tx = 0;
napi_complete(napi);
local_irq_save(flags);
mvreg_write(pp, MVNETA_INTR_NEW_MASK,
MVNETA_RX_INTR_MASK(rxq_number) |
MVNETA_TX_INTR_MASK(txq_number) |
MVNETA_MISCINTR_INTR_MASK);
local_irq_restore(flags);
}
pp->cause_rx_tx = cause_rx_tx;
return rx_done;
}
/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
int num)
{
int i;
for (i = 0; i < num; i++) {
memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
__func__, rxq->id, i, num);
break;
}
}
/* Add this number of RX descriptors as non occupied (ready to
* get packets)
*/
mvneta_rxq_non_occup_desc_add(pp, rxq, i);
return i;
}
/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
int queue;
/* free the skb's in the tx ring */
for (queue = 0; queue < txq_number; queue++)
mvneta_txq_done_force(pp, &pp->txqs[queue]);
mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}
static void mvneta_rx_reset(struct mvneta_port *pp)
{
mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}
/* Rx/Tx queue initialization/cleanup methods */
/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
rxq->size = pp->rx_ring_size;
/* Allocate memory for RX descriptors */
rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
rxq->size * MVNETA_DESC_ALIGNED_SIZE,
&rxq->descs_phys, GFP_KERNEL);
if (rxq->descs == NULL)
return -ENOMEM;
BUG_ON(rxq->descs !=
PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
rxq->last_desc = rxq->size - 1;
/* Set Rx descriptors queue starting address */
mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
/* Set Offset */
mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
/* Set coalescing pkts and time */
mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
/* Fill RXQ with buffers from RX pool */
mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
mvneta_rxq_bm_disable(pp, rxq);
mvneta_rxq_fill(pp, rxq, rxq->size);
return 0;
}
/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
mvneta_rxq_drop_pkts(pp, rxq);
if (rxq->descs)
dma_free_coherent(pp->dev->dev.parent,
rxq->size * MVNETA_DESC_ALIGNED_SIZE,
rxq->descs,
rxq->descs_phys);
rxq->descs = NULL;
rxq->last_desc = 0;
rxq->next_desc_to_proc = 0;
rxq->descs_phys = 0;
}
/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
txq->size = pp->tx_ring_size;
/* A queue must always have room for at least one skb.
* Therefore, stop the queue when the free entries reaches
* the maximum number of descriptors per skb.
*/
txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
/* Allocate memory for TX descriptors */
txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
txq->size * MVNETA_DESC_ALIGNED_SIZE,
&txq->descs_phys, GFP_KERNEL);
if (txq->descs == NULL)
return -ENOMEM;
/* Make sure descriptor address is cache line size aligned */
BUG_ON(txq->descs !=
PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
txq->last_desc = txq->size - 1;
/* Set maximum bandwidth for enabled TXQs */
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
/* Set Tx descriptors queue starting address */
mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
if (txq->tx_skb == NULL) {
dma_free_coherent(pp->dev->dev.parent,
txq->size * MVNETA_DESC_ALIGNED_SIZE,
txq->descs, txq->descs_phys);
return -ENOMEM;
}
/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
txq->size * TSO_HEADER_SIZE,
&txq->tso_hdrs_phys, GFP_KERNEL);
if (txq->tso_hdrs == NULL) {
kfree(txq->tx_skb);
dma_free_coherent(pp->dev->dev.parent,
txq->size * MVNETA_DESC_ALIGNED_SIZE,
txq->descs, txq->descs_phys);
return -ENOMEM;
}
mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
return 0;
}
/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_deinit(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
kfree(txq->tx_skb);
if (txq->tso_hdrs)
dma_free_coherent(pp->dev->dev.parent,
txq->size * TSO_HEADER_SIZE,
txq->tso_hdrs, txq->tso_hdrs_phys);
if (txq->descs)
dma_free_coherent(pp->dev->dev.parent,
txq->size * MVNETA_DESC_ALIGNED_SIZE,
txq->descs, txq->descs_phys);
txq->descs = NULL;
txq->last_desc = 0;
txq->next_desc_to_proc = 0;
txq->descs_phys = 0;
/* Set minimum bandwidth for disabled TXQs */
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
/* Set Tx descriptors queue starting address and size */
mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}
/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < txq_number; queue++)
mvneta_txq_deinit(pp, &pp->txqs[queue]);
}
/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < rxq_number; queue++)
mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
}
/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < rxq_number; queue++) {
int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
if (err) {
netdev_err(pp->dev, "%s: can't create rxq=%d\n",
__func__, queue);
mvneta_cleanup_rxqs(pp);
return err;
}
}
return 0;
}
/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < txq_number; queue++) {
int err = mvneta_txq_init(pp, &pp->txqs[queue]);
if (err) {
netdev_err(pp->dev, "%s: can't create txq=%d\n",
__func__, queue);
mvneta_cleanup_txqs(pp);
return err;
}
}
return 0;
}
static void mvneta_start_dev(struct mvneta_port *pp)
{
mvneta_max_rx_size_set(pp, pp->pkt_size);
mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
/* start the Rx/Tx activity */
mvneta_port_enable(pp);
/* Enable polling on the port */
napi_enable(&pp->napi);
/* Unmask interrupts */
mvreg_write(pp, MVNETA_INTR_NEW_MASK,
MVNETA_RX_INTR_MASK(rxq_number) |
MVNETA_TX_INTR_MASK(txq_number) |
MVNETA_MISCINTR_INTR_MASK);
mvreg_write(pp, MVNETA_INTR_MISC_MASK,
MVNETA_CAUSE_PHY_STATUS_CHANGE |
MVNETA_CAUSE_LINK_CHANGE |
MVNETA_CAUSE_PSC_SYNC_CHANGE);
phy_start(pp->phy_dev);
netif_tx_start_all_queues(pp->dev);
}
static void mvneta_stop_dev(struct mvneta_port *pp)
{
phy_stop(pp->phy_dev);
napi_disable(&pp->napi);
netif_carrier_off(pp->dev);
mvneta_port_down(pp);
netif_tx_stop_all_queues(pp->dev);
/* Stop the port activity */
mvneta_port_disable(pp);
/* Clear all ethernet port interrupts */
mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
/* Mask all ethernet port interrupts */
mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
mvneta_tx_reset(pp);
mvneta_rx_reset(pp);
}
/* Return positive if MTU is valid */
static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
{
if (mtu < 68) {
netdev_err(dev, "cannot change mtu to less than 68\n");
return -EINVAL;
}
/* 9676 == 9700 - 20 and rounding to 8 */
if (mtu > 9676) {
netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
mtu = 9676;
}
if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
}
return mtu;
}
/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
struct mvneta_port *pp = netdev_priv(dev);
int ret;
mtu = mvneta_check_mtu_valid(dev, mtu);
if (mtu < 0)
return -EINVAL;
dev->mtu = mtu;
if (!netif_running(dev)) {
netdev_update_features(dev);
return 0;
}
/* The interface is running, so we have to force a
* reallocation of the queues
*/
mvneta_stop_dev(pp);
mvneta_cleanup_txqs(pp);
mvneta_cleanup_rxqs(pp);
pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
ret = mvneta_setup_rxqs(pp);
if (ret) {
netdev_err(dev, "unable to setup rxqs after MTU change\n");
return ret;
}
ret = mvneta_setup_txqs(pp);
if (ret) {
netdev_err(dev, "unable to setup txqs after MTU change\n");
return ret;
}
mvneta_start_dev(pp);
mvneta_port_up(pp);
netdev_update_features(dev);
return 0;
}
static netdev_features_t mvneta_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct mvneta_port *pp = netdev_priv(dev);
if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
netdev_info(dev,
"Disable IP checksum for MTU greater than %dB\n",
pp->tx_csum_limit);
}
return features;
}
/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
u32 mac_addr_l, mac_addr_h;
mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
addr[0] = (mac_addr_h >> 24) & 0xFF;
addr[1] = (mac_addr_h >> 16) & 0xFF;
addr[2] = (mac_addr_h >> 8) & 0xFF;
addr[3] = mac_addr_h & 0xFF;
addr[4] = (mac_addr_l >> 8) & 0xFF;
addr[5] = mac_addr_l & 0xFF;
}
/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
struct mvneta_port *pp = netdev_priv(dev);
struct sockaddr *sockaddr = addr;
int ret;
ret = eth_prepare_mac_addr_change(dev, addr);
if (ret < 0)
return ret;
/* Remove previous address table entry */
mvneta_mac_addr_set(pp, dev->dev_addr, -1);
/* Set new addr in hw */
mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
eth_commit_mac_addr_change(dev, addr);
return 0;
}
static void mvneta_adjust_link(struct net_device *ndev)
{
struct mvneta_port *pp = netdev_priv(ndev);
struct phy_device *phydev = pp->phy_dev;
int status_change = 0;
if (phydev->link) {
if ((pp->speed != phydev->speed) ||
(pp->duplex != phydev->duplex)) {
u32 val;
val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
MVNETA_GMAC_CONFIG_GMII_SPEED |
MVNETA_GMAC_CONFIG_FULL_DUPLEX);
if (phydev->duplex)
val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
if (phydev->speed == SPEED_1000)
val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
else if (phydev->speed == SPEED_100)
val |= MVNETA_GMAC_CONFIG_MII_SPEED;
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
pp->duplex = phydev->duplex;
pp->speed = phydev->speed;
}
}
if (phydev->link != pp->link) {
if (!phydev->link) {
pp->duplex = -1;
pp->speed = 0;
}
pp->link = phydev->link;
status_change = 1;
}
if (status_change) {
if (phydev->link) {
if (!pp->use_inband_status) {
u32 val = mvreg_read(pp,
MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
val |= MVNETA_GMAC_FORCE_LINK_PASS;
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
val);
}
mvneta_port_up(pp);
} else {
if (!pp->use_inband_status) {
u32 val = mvreg_read(pp,
MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
val |= MVNETA_GMAC_FORCE_LINK_DOWN;
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
val);
}
mvneta_port_down(pp);
}
phy_print_status(phydev);
}
}
static int mvneta_mdio_probe(struct mvneta_port *pp)
{
struct phy_device *phy_dev;
phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
pp->phy_interface);
if (!phy_dev) {
netdev_err(pp->dev, "could not find the PHY\n");
return -ENODEV;
}
phy_dev->supported &= PHY_GBIT_FEATURES;
phy_dev->advertising = phy_dev->supported;
pp->phy_dev = phy_dev;
pp->link = 0;
pp->duplex = 0;
pp->speed = 0;
return 0;
}
static void mvneta_mdio_remove(struct mvneta_port *pp)
{
phy_disconnect(pp->phy_dev);
pp->phy_dev = NULL;
}
static int mvneta_open(struct net_device *dev)
{
struct mvneta_port *pp = netdev_priv(dev);
int ret;
pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
ret = mvneta_setup_rxqs(pp);
if (ret)
return ret;
ret = mvneta_setup_txqs(pp);
if (ret)
goto err_cleanup_rxqs;
/* Connect to port interrupt line */
ret = request_irq(pp->dev->irq, mvneta_isr, 0,
MVNETA_DRIVER_NAME, pp);
if (ret) {
netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
goto err_cleanup_txqs;
}
/* In default link is down */
netif_carrier_off(pp->dev);
ret = mvneta_mdio_probe(pp);
if (ret < 0) {
netdev_err(dev, "cannot probe MDIO bus\n");
goto err_free_irq;
}
mvneta_start_dev(pp);
return 0;
err_free_irq:
free_irq(pp->dev->irq, pp);
err_cleanup_txqs:
mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
mvneta_cleanup_rxqs(pp);
return ret;
}
/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
struct mvneta_port *pp = netdev_priv(dev);
mvneta_stop_dev(pp);
mvneta_mdio_remove(pp);
free_irq(dev->irq, pp);
mvneta_cleanup_rxqs(pp);
mvneta_cleanup_txqs(pp);
return 0;
}
static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mvneta_port *pp = netdev_priv(dev);
if (!pp->phy_dev)
return -ENOTSUPP;
return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
}
/* Ethtool methods */
/* Get settings (phy address, speed) for ethtools */
int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct mvneta_port *pp = netdev_priv(dev);
if (!pp->phy_dev)
return -ENODEV;
return phy_ethtool_gset(pp->phy_dev, cmd);
}
/* Set settings (phy address, speed) for ethtools */
int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct mvneta_port *pp = netdev_priv(dev);
if (!pp->phy_dev)
return -ENODEV;
return phy_ethtool_sset(pp->phy_dev, cmd);
}
/* Set interrupt coalescing for ethtools */
static int mvneta_ethtool_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *c)
{
struct mvneta_port *pp = netdev_priv(dev);
int queue;
for (queue = 0; queue < rxq_number; queue++) {
struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
rxq->time_coal = c->rx_coalesce_usecs;
rxq->pkts_coal = c->rx_max_coalesced_frames;
mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
}
for (queue = 0; queue < txq_number; queue++) {
struct mvneta_tx_queue *txq = &pp->txqs[queue];
txq->done_pkts_coal = c->tx_max_coalesced_frames;
mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
}
return 0;
}
/* get coalescing for ethtools */
static int mvneta_ethtool_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *c)
{
struct mvneta_port *pp = netdev_priv(dev);
c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
return 0;
}
static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
sizeof(drvinfo->driver));
strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
sizeof(drvinfo->version));
strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
sizeof(drvinfo->bus_info));
}
static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct mvneta_port *pp = netdev_priv(netdev);
ring->rx_max_pending = MVNETA_MAX_RXD;
ring->tx_max_pending = MVNETA_MAX_TXD;
ring->rx_pending = pp->rx_ring_size;
ring->tx_pending = pp->tx_ring_size;
}
static int mvneta_ethtool_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring)
{
struct mvneta_port *pp = netdev_priv(dev);
if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
return -EINVAL;
pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
ring->rx_pending : MVNETA_MAX_RXD;
pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
if (pp->tx_ring_size != ring->tx_pending)
netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
pp->tx_ring_size, ring->tx_pending);
if (netif_running(dev)) {
mvneta_stop(dev);
if (mvneta_open(dev)) {
netdev_err(dev,
"error on opening device after ring param change\n");
return -ENOMEM;
}
}
return 0;
}
static const struct net_device_ops mvneta_netdev_ops = {
.ndo_open = mvneta_open,
.ndo_stop = mvneta_stop,
.ndo_start_xmit = mvneta_tx,
.ndo_set_rx_mode = mvneta_set_rx_mode,
.ndo_set_mac_address = mvneta_set_mac_addr,
.ndo_change_mtu = mvneta_change_mtu,
.ndo_fix_features = mvneta_fix_features,
.ndo_get_stats64 = mvneta_get_stats64,
.ndo_do_ioctl = mvneta_ioctl,
};
const struct ethtool_ops mvneta_eth_tool_ops = {
.get_link = ethtool_op_get_link,
.get_settings = mvneta_ethtool_get_settings,
.set_settings = mvneta_ethtool_set_settings,
.set_coalesce = mvneta_ethtool_set_coalesce,
.get_coalesce = mvneta_ethtool_get_coalesce,
.get_drvinfo = mvneta_ethtool_get_drvinfo,
.get_ringparam = mvneta_ethtool_get_ringparam,
.set_ringparam = mvneta_ethtool_set_ringparam,
};
/* Initialize hw */
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
{
int queue;
/* Disable port */
mvneta_port_disable(pp);
/* Set port default values */
mvneta_defaults_set(pp);
pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
GFP_KERNEL);
if (!pp->txqs)
return -ENOMEM;
/* Initialize TX descriptor rings */
for (queue = 0; queue < txq_number; queue++) {
struct mvneta_tx_queue *txq = &pp->txqs[queue];
txq->id = queue;
txq->size = pp->tx_ring_size;
txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
}
pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
GFP_KERNEL);
if (!pp->rxqs)
return -ENOMEM;
/* Create Rx descriptor rings */
for (queue = 0; queue < rxq_number; queue++) {
struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
rxq->id = queue;
rxq->size = pp->rx_ring_size;
rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
rxq->time_coal = MVNETA_RX_COAL_USEC;
}
return 0;
}
/* platform glue : initialize decoding windows */
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
const struct mbus_dram_target_info *dram)
{
u32 win_enable;
u32 win_protect;
int i;
for (i = 0; i < 6; i++) {
mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
if (i < 4)
mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
}
win_enable = 0x3f;
win_protect = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
(cs->mbus_attr << 8) | dram->mbus_dram_target_id);
mvreg_write(pp, MVNETA_WIN_SIZE(i),
(cs->size - 1) & 0xffff0000);
win_enable &= ~(1 << i);
win_protect |= 3 << (2 * i);
}
mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
}
/* Power up the port */
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
{
u32 ctrl;
/* MAC Cause register should be cleared */
mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
/* Even though it might look weird, when we're configured in
* SGMII or QSGMII mode, the RGMII bit needs to be set.
*/
switch(phy_mode) {
case PHY_INTERFACE_MODE_QSGMII:
mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
break;
case PHY_INTERFACE_MODE_SGMII:
mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
ctrl |= MVNETA_GMAC2_PORT_RGMII;
break;
default:
return -EINVAL;
}
if (pp->use_inband_status)
ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
/* Cancel Port Reset */
ctrl &= ~MVNETA_GMAC2_PORT_RESET;
mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
MVNETA_GMAC2_PORT_RESET) != 0)
continue;
return 0;
}
/* Device initialization routine */
static int mvneta_probe(struct platform_device *pdev)
{
const struct mbus_dram_target_info *dram_target_info;
struct resource *res;
struct device_node *dn = pdev->dev.of_node;
struct device_node *phy_node;
struct mvneta_port *pp;
struct net_device *dev;
const char *dt_mac_addr;
char hw_mac_addr[ETH_ALEN];
const char *mac_from;
const char *managed;
int phy_mode;
int err;
/* Our multiqueue support is not complete, so for now, only
* allow the usage of the first RX queue
*/
if (rxq_def != 0) {
dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
return -EINVAL;
}
dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
if (!dev)
return -ENOMEM;
dev->irq = irq_of_parse_and_map(dn, 0);
if (dev->irq == 0) {
err = -EINVAL;
goto err_free_netdev;
}
phy_node = of_parse_phandle(dn, "phy", 0);
if (!phy_node) {
if (!of_phy_is_fixed_link(dn)) {
dev_err(&pdev->dev, "no PHY specified\n");
err = -ENODEV;
goto err_free_irq;
}
err = of_phy_register_fixed_link(dn);
if (err < 0) {
dev_err(&pdev->dev, "cannot register fixed PHY\n");
goto err_free_irq;
}
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
phy_node = of_node_get(dn);
}
phy_mode = of_get_phy_mode(dn);
if (phy_mode < 0) {
dev_err(&pdev->dev, "incorrect phy-mode\n");
err = -EINVAL;
goto err_put_phy_node;
}
dev->tx_queue_len = MVNETA_MAX_TXD;
dev->watchdog_timeo = 5 * HZ;
dev->netdev_ops = &mvneta_netdev_ops;
dev->ethtool_ops = &mvneta_eth_tool_ops;
pp = netdev_priv(dev);
pp->phy_node = phy_node;
pp->phy_interface = phy_mode;
err = of_property_read_string(dn, "managed", &managed);
pp->use_inband_status = (err == 0 &&
strcmp(managed, "in-band-status") == 0);
pp->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pp->clk)) {
err = PTR_ERR(pp->clk);
goto err_put_phy_node;
}
clk_prepare_enable(pp->clk);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pp->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pp->base)) {
err = PTR_ERR(pp->base);
goto err_clk;
}
/* Alloc per-cpu stats */
pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
if (!pp->stats) {
err = -ENOMEM;
goto err_clk;
}
dt_mac_addr = of_get_mac_address(dn);
if (dt_mac_addr) {
mac_from = "device tree";
memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
} else {
mvneta_get_mac_addr(pp, hw_mac_addr);
if (is_valid_ether_addr(hw_mac_addr)) {
mac_from = "hardware";
memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
} else {
mac_from = "random";
eth_hw_addr_random(dev);
}
}
if (of_device_is_compatible(dn, "marvell,armada-370-neta"))
pp->tx_csum_limit = 1600;
pp->tx_ring_size = MVNETA_MAX_TXD;
pp->rx_ring_size = MVNETA_MAX_RXD;
pp->dev = dev;
SET_NETDEV_DEV(dev, &pdev->dev);
err = mvneta_init(&pdev->dev, pp);
if (err < 0)
goto err_free_stats;
err = mvneta_port_power_up(pp, phy_mode);
if (err < 0) {
dev_err(&pdev->dev, "can't power up port\n");
goto err_free_stats;
}
dram_target_info = mv_mbus_dram_info();
if (dram_target_info)
mvneta_conf_mbus_windows(pp, dram_target_info);
netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
dev->hw_features |= dev->features;
dev->vlan_features |= dev->features;
dev->priv_flags |= IFF_UNICAST_FLT;
dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
err = register_netdev(dev);
if (err < 0) {
dev_err(&pdev->dev, "failed to register\n");
goto err_free_stats;
}
netdev_info(dev, "Using %s mac address %pM\n", mac_from,
dev->dev_addr);
platform_set_drvdata(pdev, pp->dev);
if (pp->use_inband_status) {
struct phy_device *phy = of_phy_find_device(dn);
mvneta_fixed_link_update(pp, phy);
put_device(&phy->dev);
}
return 0;
err_free_stats:
free_percpu(pp->stats);
err_clk:
clk_disable_unprepare(pp->clk);
err_put_phy_node:
of_node_put(phy_node);
err_free_irq:
irq_dispose_mapping(dev->irq);
err_free_netdev:
free_netdev(dev);
return err;
}
/* Device removal routine */
static int mvneta_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct mvneta_port *pp = netdev_priv(dev);
unregister_netdev(dev);
clk_disable_unprepare(pp->clk);
free_percpu(pp->stats);
irq_dispose_mapping(dev->irq);
of_node_put(pp->phy_node);
free_netdev(dev);
return 0;
}
static const struct of_device_id mvneta_match[] = {
{ .compatible = "marvell,armada-370-neta" },
{ .compatible = "marvell,armada-xp-neta" },
{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);
static struct platform_driver mvneta_driver = {
.probe = mvneta_probe,
.remove = mvneta_remove,
.driver = {
.name = MVNETA_DRIVER_NAME,
.of_match_table = mvneta_match,
},
};
module_platform_driver(mvneta_driver);
MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");
module_param(rxq_number, int, S_IRUGO);
module_param(txq_number, int, S_IRUGO);
module_param(rxq_def, int, S_IRUGO);
module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);