linux_dsm_epyc7002/arch/arm/plat-omap/mcbsp.c
Linus Torvalds 0cd61b68c3 Initial blind fixup for arm for irq changes
Untested, but this should fix up the bulk of the totally mechanical
issues, and should make the actual detail fixing easier.

Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-06 10:59:54 -07:00

1025 lines
26 KiB
C

/*
* linux/arch/arm/plat-omap/mcbsp.c
*
* Copyright (C) 2004 Nokia Corporation
* Author: Samuel Ortiz <samuel.ortiz@nokia.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Multichannel mode not supported.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <asm/delay.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/arch/dma.h>
#include <asm/arch/mux.h>
#include <asm/arch/irqs.h>
#include <asm/arch/dsp_common.h>
#include <asm/arch/mcbsp.h>
#ifdef CONFIG_MCBSP_DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...) do { } while (0)
#endif
struct omap_mcbsp {
u32 io_base;
u8 id;
u8 free;
omap_mcbsp_word_length rx_word_length;
omap_mcbsp_word_length tx_word_length;
omap_mcbsp_io_type_t io_type; /* IRQ or poll */
/* IRQ based TX/RX */
int rx_irq;
int tx_irq;
/* DMA stuff */
u8 dma_rx_sync;
short dma_rx_lch;
u8 dma_tx_sync;
short dma_tx_lch;
/* Completion queues */
struct completion tx_irq_completion;
struct completion rx_irq_completion;
struct completion tx_dma_completion;
struct completion rx_dma_completion;
spinlock_t lock;
};
static struct omap_mcbsp mcbsp[OMAP_MAX_MCBSP_COUNT];
#ifdef CONFIG_ARCH_OMAP1
static struct clk *mcbsp_dsp_ck = 0;
static struct clk *mcbsp_api_ck = 0;
static struct clk *mcbsp_dspxor_ck = 0;
#endif
#ifdef CONFIG_ARCH_OMAP2
static struct clk *mcbsp1_ick = 0;
static struct clk *mcbsp1_fck = 0;
static struct clk *mcbsp2_ick = 0;
static struct clk *mcbsp2_fck = 0;
#endif
static void omap_mcbsp_dump_reg(u8 id)
{
DBG("**** MCBSP%d regs ****\n", mcbsp[id].id);
DBG("DRR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DRR2));
DBG("DRR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DRR1));
DBG("DXR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DXR2));
DBG("DXR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DXR1));
DBG("SPCR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SPCR2));
DBG("SPCR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SPCR1));
DBG("RCR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, RCR2));
DBG("RCR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, RCR1));
DBG("XCR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, XCR2));
DBG("XCR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, XCR1));
DBG("SRGR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SRGR2));
DBG("SRGR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SRGR1));
DBG("PCR0: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, PCR0));
DBG("***********************\n");
}
static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp * mcbsp_tx = (struct omap_mcbsp *)(dev_id);
DBG("TX IRQ callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_tx->io_base, SPCR2));
complete(&mcbsp_tx->tx_irq_completion);
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp * mcbsp_rx = (struct omap_mcbsp *)(dev_id);
DBG("RX IRQ callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_rx->io_base, SPCR2));
complete(&mcbsp_rx->rx_irq_completion);
return IRQ_HANDLED;
}
static void omap_mcbsp_tx_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_mcbsp * mcbsp_dma_tx = (struct omap_mcbsp *)(data);
DBG("TX DMA callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_dma_tx->io_base, SPCR2));
/* We can free the channels */
omap_free_dma(mcbsp_dma_tx->dma_tx_lch);
mcbsp_dma_tx->dma_tx_lch = -1;
complete(&mcbsp_dma_tx->tx_dma_completion);
}
static void omap_mcbsp_rx_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_mcbsp * mcbsp_dma_rx = (struct omap_mcbsp *)(data);
DBG("RX DMA callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_dma_rx->io_base, SPCR2));
/* We can free the channels */
omap_free_dma(mcbsp_dma_rx->dma_rx_lch);
mcbsp_dma_rx->dma_rx_lch = -1;
complete(&mcbsp_dma_rx->rx_dma_completion);
}
/*
* omap_mcbsp_config simply write a config to the
* appropriate McBSP.
* You either call this function or set the McBSP registers
* by yourself before calling omap_mcbsp_start().
*/
void omap_mcbsp_config(unsigned int id, const struct omap_mcbsp_reg_cfg * config)
{
u32 io_base = mcbsp[id].io_base;
DBG("OMAP-McBSP: McBSP%d io_base: 0x%8x\n", id+1, io_base);
/* We write the given config */
OMAP_MCBSP_WRITE(io_base, SPCR2, config->spcr2);
OMAP_MCBSP_WRITE(io_base, SPCR1, config->spcr1);
OMAP_MCBSP_WRITE(io_base, RCR2, config->rcr2);
OMAP_MCBSP_WRITE(io_base, RCR1, config->rcr1);
OMAP_MCBSP_WRITE(io_base, XCR2, config->xcr2);
OMAP_MCBSP_WRITE(io_base, XCR1, config->xcr1);
OMAP_MCBSP_WRITE(io_base, SRGR2, config->srgr2);
OMAP_MCBSP_WRITE(io_base, SRGR1, config->srgr1);
OMAP_MCBSP_WRITE(io_base, MCR2, config->mcr2);
OMAP_MCBSP_WRITE(io_base, MCR1, config->mcr1);
OMAP_MCBSP_WRITE(io_base, PCR0, config->pcr0);
}
static int omap_mcbsp_check(unsigned int id)
{
if (cpu_is_omap730()) {
if (id > OMAP_MAX_MCBSP_COUNT - 1) {
printk(KERN_ERR "OMAP-McBSP: McBSP%d doesn't exist\n", id + 1);
return -1;
}
return 0;
}
if (cpu_is_omap15xx() || cpu_is_omap16xx() || cpu_is_omap24xx()) {
if (id > OMAP_MAX_MCBSP_COUNT) {
printk(KERN_ERR "OMAP-McBSP: McBSP%d doesn't exist\n", id + 1);
return -1;
}
return 0;
}
return -1;
}
#ifdef CONFIG_ARCH_OMAP1
static void omap_mcbsp_dsp_request(void)
{
if (cpu_is_omap15xx() || cpu_is_omap16xx()) {
clk_enable(mcbsp_dsp_ck);
clk_enable(mcbsp_api_ck);
/* enable 12MHz clock to mcbsp 1 & 3 */
clk_enable(mcbsp_dspxor_ck);
/*
* DSP external peripheral reset
* FIXME: This should be moved to dsp code
*/
__raw_writew(__raw_readw(DSP_RSTCT2) | 1 | 1 << 1,
DSP_RSTCT2);
}
}
static void omap_mcbsp_dsp_free(void)
{
if (cpu_is_omap15xx() || cpu_is_omap16xx()) {
clk_disable(mcbsp_dspxor_ck);
clk_disable(mcbsp_dsp_ck);
clk_disable(mcbsp_api_ck);
}
}
#endif
#ifdef CONFIG_ARCH_OMAP2
static void omap2_mcbsp2_mux_setup(void)
{
omap_cfg_reg(Y15_24XX_MCBSP2_CLKX);
omap_cfg_reg(R14_24XX_MCBSP2_FSX);
omap_cfg_reg(W15_24XX_MCBSP2_DR);
omap_cfg_reg(V15_24XX_MCBSP2_DX);
omap_cfg_reg(V14_24XX_GPIO117);
}
#endif
/*
* We can choose between IRQ based or polled IO.
* This needs to be called before omap_mcbsp_request().
*/
int omap_mcbsp_set_io_type(unsigned int id, omap_mcbsp_io_type_t io_type)
{
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
spin_lock(&mcbsp[id].lock);
if (!mcbsp[id].free) {
printk (KERN_ERR "OMAP-McBSP: McBSP%d is currently in use\n", id + 1);
spin_unlock(&mcbsp[id].lock);
return -EINVAL;
}
mcbsp[id].io_type = io_type;
spin_unlock(&mcbsp[id].lock);
return 0;
}
int omap_mcbsp_request(unsigned int id)
{
int err;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
#ifdef CONFIG_ARCH_OMAP1
/*
* On 1510, 1610 and 1710, McBSP1 and McBSP3
* are DSP public peripherals.
*/
if (id == OMAP_MCBSP1 || id == OMAP_MCBSP3)
omap_mcbsp_dsp_request();
#endif
#ifdef CONFIG_ARCH_OMAP2
if (cpu_is_omap24xx()) {
if (id == OMAP_MCBSP1) {
clk_enable(mcbsp1_ick);
clk_enable(mcbsp1_fck);
} else {
clk_enable(mcbsp2_ick);
clk_enable(mcbsp2_fck);
}
}
#endif
spin_lock(&mcbsp[id].lock);
if (!mcbsp[id].free) {
printk (KERN_ERR "OMAP-McBSP: McBSP%d is currently in use\n", id + 1);
spin_unlock(&mcbsp[id].lock);
return -1;
}
mcbsp[id].free = 0;
spin_unlock(&mcbsp[id].lock);
if (mcbsp[id].io_type == OMAP_MCBSP_IRQ_IO) {
/* We need to get IRQs here */
err = request_irq(mcbsp[id].tx_irq, omap_mcbsp_tx_irq_handler, 0,
"McBSP",
(void *) (&mcbsp[id]));
if (err != 0) {
printk(KERN_ERR "OMAP-McBSP: Unable to request TX IRQ %d for McBSP%d\n",
mcbsp[id].tx_irq, mcbsp[id].id);
return err;
}
init_completion(&(mcbsp[id].tx_irq_completion));
err = request_irq(mcbsp[id].rx_irq, omap_mcbsp_rx_irq_handler, 0,
"McBSP",
(void *) (&mcbsp[id]));
if (err != 0) {
printk(KERN_ERR "OMAP-McBSP: Unable to request RX IRQ %d for McBSP%d\n",
mcbsp[id].rx_irq, mcbsp[id].id);
free_irq(mcbsp[id].tx_irq, (void *) (&mcbsp[id]));
return err;
}
init_completion(&(mcbsp[id].rx_irq_completion));
}
return 0;
}
void omap_mcbsp_free(unsigned int id)
{
if (omap_mcbsp_check(id) < 0)
return;
#ifdef CONFIG_ARCH_OMAP1
if (cpu_class_is_omap1()) {
if (id == OMAP_MCBSP1 || id == OMAP_MCBSP3)
omap_mcbsp_dsp_free();
}
#endif
#ifdef CONFIG_ARCH_OMAP2
if (cpu_is_omap24xx()) {
if (id == OMAP_MCBSP1) {
clk_disable(mcbsp1_ick);
clk_disable(mcbsp1_fck);
} else {
clk_disable(mcbsp2_ick);
clk_disable(mcbsp2_fck);
}
}
#endif
spin_lock(&mcbsp[id].lock);
if (mcbsp[id].free) {
printk (KERN_ERR "OMAP-McBSP: McBSP%d was not reserved\n", id + 1);
spin_unlock(&mcbsp[id].lock);
return;
}
mcbsp[id].free = 1;
spin_unlock(&mcbsp[id].lock);
if (mcbsp[id].io_type == OMAP_MCBSP_IRQ_IO) {
/* Free IRQs */
free_irq(mcbsp[id].rx_irq, (void *) (&mcbsp[id]));
free_irq(mcbsp[id].tx_irq, (void *) (&mcbsp[id]));
}
}
/*
* Here we start the McBSP, by enabling the sample
* generator, both transmitter and receivers,
* and the frame sync.
*/
void omap_mcbsp_start(unsigned int id)
{
u32 io_base;
u16 w;
if (omap_mcbsp_check(id) < 0)
return;
io_base = mcbsp[id].io_base;
mcbsp[id].rx_word_length = ((OMAP_MCBSP_READ(io_base, RCR1) >> 5) & 0x7);
mcbsp[id].tx_word_length = ((OMAP_MCBSP_READ(io_base, XCR1) >> 5) & 0x7);
/* Start the sample generator */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w | (1 << 6));
/* Enable transmitter and receiver */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w | 1);
w = OMAP_MCBSP_READ(io_base, SPCR1);
OMAP_MCBSP_WRITE(io_base, SPCR1, w | 1);
udelay(100);
/* Start frame sync */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w | (1 << 7));
/* Dump McBSP Regs */
omap_mcbsp_dump_reg(id);
}
void omap_mcbsp_stop(unsigned int id)
{
u32 io_base;
u16 w;
if (omap_mcbsp_check(id) < 0)
return;
io_base = mcbsp[id].io_base;
/* Reset transmitter */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w & ~(1));
/* Reset receiver */
w = OMAP_MCBSP_READ(io_base, SPCR1);
OMAP_MCBSP_WRITE(io_base, SPCR1, w & ~(1));
/* Reset the sample rate generator */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w & ~(1 << 6));
}
/* polled mcbsp i/o operations */
int omap_mcbsp_pollwrite(unsigned int id, u16 buf)
{
u32 base = mcbsp[id].io_base;
writew(buf, base + OMAP_MCBSP_REG_DXR1);
/* if frame sync error - clear the error */
if (readw(base + OMAP_MCBSP_REG_SPCR2) & XSYNC_ERR) {
/* clear error */
writew(readw(base + OMAP_MCBSP_REG_SPCR2) & (~XSYNC_ERR),
base + OMAP_MCBSP_REG_SPCR2);
/* resend */
return -1;
} else {
/* wait for transmit confirmation */
int attemps = 0;
while (!(readw(base + OMAP_MCBSP_REG_SPCR2) & XRDY)) {
if (attemps++ > 1000) {
writew(readw(base + OMAP_MCBSP_REG_SPCR2) &
(~XRST),
base + OMAP_MCBSP_REG_SPCR2);
udelay(10);
writew(readw(base + OMAP_MCBSP_REG_SPCR2) |
(XRST),
base + OMAP_MCBSP_REG_SPCR2);
udelay(10);
printk(KERN_ERR
" Could not write to McBSP Register\n");
return -2;
}
}
}
return 0;
}
int omap_mcbsp_pollread(unsigned int id, u16 * buf)
{
u32 base = mcbsp[id].io_base;
/* if frame sync error - clear the error */
if (readw(base + OMAP_MCBSP_REG_SPCR1) & RSYNC_ERR) {
/* clear error */
writew(readw(base + OMAP_MCBSP_REG_SPCR1) & (~RSYNC_ERR),
base + OMAP_MCBSP_REG_SPCR1);
/* resend */
return -1;
} else {
/* wait for recieve confirmation */
int attemps = 0;
while (!(readw(base + OMAP_MCBSP_REG_SPCR1) & RRDY)) {
if (attemps++ > 1000) {
writew(readw(base + OMAP_MCBSP_REG_SPCR1) &
(~RRST),
base + OMAP_MCBSP_REG_SPCR1);
udelay(10);
writew(readw(base + OMAP_MCBSP_REG_SPCR1) |
(RRST),
base + OMAP_MCBSP_REG_SPCR1);
udelay(10);
printk(KERN_ERR
" Could not read from McBSP Register\n");
return -2;
}
}
}
*buf = readw(base + OMAP_MCBSP_REG_DRR1);
return 0;
}
/*
* IRQ based word transmission.
*/
void omap_mcbsp_xmit_word(unsigned int id, u32 word)
{
u32 io_base;
omap_mcbsp_word_length word_length = mcbsp[id].tx_word_length;
if (omap_mcbsp_check(id) < 0)
return;
io_base = mcbsp[id].io_base;
wait_for_completion(&(mcbsp[id].tx_irq_completion));
if (word_length > OMAP_MCBSP_WORD_16)
OMAP_MCBSP_WRITE(io_base, DXR2, word >> 16);
OMAP_MCBSP_WRITE(io_base, DXR1, word & 0xffff);
}
u32 omap_mcbsp_recv_word(unsigned int id)
{
u32 io_base;
u16 word_lsb, word_msb = 0;
omap_mcbsp_word_length word_length = mcbsp[id].rx_word_length;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
io_base = mcbsp[id].io_base;
wait_for_completion(&(mcbsp[id].rx_irq_completion));
if (word_length > OMAP_MCBSP_WORD_16)
word_msb = OMAP_MCBSP_READ(io_base, DRR2);
word_lsb = OMAP_MCBSP_READ(io_base, DRR1);
return (word_lsb | (word_msb << 16));
}
int omap_mcbsp_spi_master_xmit_word_poll(unsigned int id, u32 word)
{
u32 io_base = mcbsp[id].io_base;
omap_mcbsp_word_length tx_word_length = mcbsp[id].tx_word_length;
omap_mcbsp_word_length rx_word_length = mcbsp[id].rx_word_length;
u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0;
if (tx_word_length != rx_word_length)
return -EINVAL;
/* First we wait for the transmitter to be ready */
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
while (!(spcr2 & XRDY)) {
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
if (attempts++ > 1000) {
/* We must reset the transmitter */
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 & (~XRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 | XRST);
udelay(10);
printk("McBSP transmitter not ready\n");
return -EAGAIN;
}
}
/* Now we can push the data */
if (tx_word_length > OMAP_MCBSP_WORD_16)
OMAP_MCBSP_WRITE(io_base, DXR2, word >> 16);
OMAP_MCBSP_WRITE(io_base, DXR1, word & 0xffff);
/* We wait for the receiver to be ready */
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
while (!(spcr1 & RRDY)) {
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
if (attempts++ > 1000) {
/* We must reset the receiver */
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 & (~RRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 | RRST);
udelay(10);
printk("McBSP receiver not ready\n");
return -EAGAIN;
}
}
/* Receiver is ready, let's read the dummy data */
if (rx_word_length > OMAP_MCBSP_WORD_16)
word_msb = OMAP_MCBSP_READ(io_base, DRR2);
word_lsb = OMAP_MCBSP_READ(io_base, DRR1);
return 0;
}
int omap_mcbsp_spi_master_recv_word_poll(unsigned int id, u32 * word)
{
u32 io_base = mcbsp[id].io_base, clock_word = 0;
omap_mcbsp_word_length tx_word_length = mcbsp[id].tx_word_length;
omap_mcbsp_word_length rx_word_length = mcbsp[id].rx_word_length;
u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0;
if (tx_word_length != rx_word_length)
return -EINVAL;
/* First we wait for the transmitter to be ready */
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
while (!(spcr2 & XRDY)) {
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
if (attempts++ > 1000) {
/* We must reset the transmitter */
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 & (~XRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 | XRST);
udelay(10);
printk("McBSP transmitter not ready\n");
return -EAGAIN;
}
}
/* We first need to enable the bus clock */
if (tx_word_length > OMAP_MCBSP_WORD_16)
OMAP_MCBSP_WRITE(io_base, DXR2, clock_word >> 16);
OMAP_MCBSP_WRITE(io_base, DXR1, clock_word & 0xffff);
/* We wait for the receiver to be ready */
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
while (!(spcr1 & RRDY)) {
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
if (attempts++ > 1000) {
/* We must reset the receiver */
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 & (~RRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 | RRST);
udelay(10);
printk("McBSP receiver not ready\n");
return -EAGAIN;
}
}
/* Receiver is ready, there is something for us */
if (rx_word_length > OMAP_MCBSP_WORD_16)
word_msb = OMAP_MCBSP_READ(io_base, DRR2);
word_lsb = OMAP_MCBSP_READ(io_base, DRR1);
word[0] = (word_lsb | (word_msb << 16));
return 0;
}
/*
* Simple DMA based buffer rx/tx routines.
* Nothing fancy, just a single buffer tx/rx through DMA.
* The DMA resources are released once the transfer is done.
* For anything fancier, you should use your own customized DMA
* routines and callbacks.
*/
int omap_mcbsp_xmit_buffer(unsigned int id, dma_addr_t buffer, unsigned int length)
{
int dma_tx_ch;
int src_port = 0;
int dest_port = 0;
int sync_dev = 0;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
if (omap_request_dma(mcbsp[id].dma_tx_sync, "McBSP TX", omap_mcbsp_tx_dma_callback,
&mcbsp[id],
&dma_tx_ch)) {
printk("OMAP-McBSP: Unable to request DMA channel for McBSP%d TX. Trying IRQ based TX\n", id+1);
return -EAGAIN;
}
mcbsp[id].dma_tx_lch = dma_tx_ch;
DBG("TX DMA on channel %d\n", dma_tx_ch);
init_completion(&(mcbsp[id].tx_dma_completion));
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dest_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_is_omap24xx())
sync_dev = mcbsp[id].dma_tx_sync;
omap_set_dma_transfer_params(mcbsp[id].dma_tx_lch,
OMAP_DMA_DATA_TYPE_S16,
length >> 1, 1,
OMAP_DMA_SYNC_ELEMENT,
sync_dev, 0);
omap_set_dma_dest_params(mcbsp[id].dma_tx_lch,
src_port,
OMAP_DMA_AMODE_CONSTANT,
mcbsp[id].io_base + OMAP_MCBSP_REG_DXR1,
0, 0);
omap_set_dma_src_params(mcbsp[id].dma_tx_lch,
dest_port,
OMAP_DMA_AMODE_POST_INC,
buffer,
0, 0);
omap_start_dma(mcbsp[id].dma_tx_lch);
wait_for_completion(&(mcbsp[id].tx_dma_completion));
return 0;
}
int omap_mcbsp_recv_buffer(unsigned int id, dma_addr_t buffer, unsigned int length)
{
int dma_rx_ch;
int src_port = 0;
int dest_port = 0;
int sync_dev = 0;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
if (omap_request_dma(mcbsp[id].dma_rx_sync, "McBSP RX", omap_mcbsp_rx_dma_callback,
&mcbsp[id],
&dma_rx_ch)) {
printk("Unable to request DMA channel for McBSP%d RX. Trying IRQ based RX\n", id+1);
return -EAGAIN;
}
mcbsp[id].dma_rx_lch = dma_rx_ch;
DBG("RX DMA on channel %d\n", dma_rx_ch);
init_completion(&(mcbsp[id].rx_dma_completion));
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dest_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_is_omap24xx())
sync_dev = mcbsp[id].dma_rx_sync;
omap_set_dma_transfer_params(mcbsp[id].dma_rx_lch,
OMAP_DMA_DATA_TYPE_S16,
length >> 1, 1,
OMAP_DMA_SYNC_ELEMENT,
sync_dev, 0);
omap_set_dma_src_params(mcbsp[id].dma_rx_lch,
src_port,
OMAP_DMA_AMODE_CONSTANT,
mcbsp[id].io_base + OMAP_MCBSP_REG_DRR1,
0, 0);
omap_set_dma_dest_params(mcbsp[id].dma_rx_lch,
dest_port,
OMAP_DMA_AMODE_POST_INC,
buffer,
0, 0);
omap_start_dma(mcbsp[id].dma_rx_lch);
wait_for_completion(&(mcbsp[id].rx_dma_completion));
return 0;
}
/*
* SPI wrapper.
* Since SPI setup is much simpler than the generic McBSP one,
* this wrapper just need an omap_mcbsp_spi_cfg structure as an input.
* Once this is done, you can call omap_mcbsp_start().
*/
void omap_mcbsp_set_spi_mode(unsigned int id, const struct omap_mcbsp_spi_cfg * spi_cfg)
{
struct omap_mcbsp_reg_cfg mcbsp_cfg;
if (omap_mcbsp_check(id) < 0)
return;
memset(&mcbsp_cfg, 0, sizeof(struct omap_mcbsp_reg_cfg));
/* SPI has only one frame */
mcbsp_cfg.rcr1 |= (RWDLEN1(spi_cfg->word_length) | RFRLEN1(0));
mcbsp_cfg.xcr1 |= (XWDLEN1(spi_cfg->word_length) | XFRLEN1(0));
/* Clock stop mode */
if (spi_cfg->clk_stp_mode == OMAP_MCBSP_CLK_STP_MODE_NO_DELAY)
mcbsp_cfg.spcr1 |= (1 << 12);
else
mcbsp_cfg.spcr1 |= (3 << 11);
/* Set clock parities */
if (spi_cfg->rx_clock_polarity == OMAP_MCBSP_CLK_RISING)
mcbsp_cfg.pcr0 |= CLKRP;
else
mcbsp_cfg.pcr0 &= ~CLKRP;
if (spi_cfg->tx_clock_polarity == OMAP_MCBSP_CLK_RISING)
mcbsp_cfg.pcr0 &= ~CLKXP;
else
mcbsp_cfg.pcr0 |= CLKXP;
/* Set SCLKME to 0 and CLKSM to 1 */
mcbsp_cfg.pcr0 &= ~SCLKME;
mcbsp_cfg.srgr2 |= CLKSM;
/* Set FSXP */
if (spi_cfg->fsx_polarity == OMAP_MCBSP_FS_ACTIVE_HIGH)
mcbsp_cfg.pcr0 &= ~FSXP;
else
mcbsp_cfg.pcr0 |= FSXP;
if (spi_cfg->spi_mode == OMAP_MCBSP_SPI_MASTER) {
mcbsp_cfg.pcr0 |= CLKXM;
mcbsp_cfg.srgr1 |= CLKGDV(spi_cfg->clk_div -1);
mcbsp_cfg.pcr0 |= FSXM;
mcbsp_cfg.srgr2 &= ~FSGM;
mcbsp_cfg.xcr2 |= XDATDLY(1);
mcbsp_cfg.rcr2 |= RDATDLY(1);
}
else {
mcbsp_cfg.pcr0 &= ~CLKXM;
mcbsp_cfg.srgr1 |= CLKGDV(1);
mcbsp_cfg.pcr0 &= ~FSXM;
mcbsp_cfg.xcr2 &= ~XDATDLY(3);
mcbsp_cfg.rcr2 &= ~RDATDLY(3);
}
mcbsp_cfg.xcr2 &= ~XPHASE;
mcbsp_cfg.rcr2 &= ~RPHASE;
omap_mcbsp_config(id, &mcbsp_cfg);
}
/*
* McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
* 730 has only 2 McBSP, and both of them are MPU peripherals.
*/
struct omap_mcbsp_info {
u32 virt_base;
u8 dma_rx_sync, dma_tx_sync;
u16 rx_irq, tx_irq;
};
#ifdef CONFIG_ARCH_OMAP730
static const struct omap_mcbsp_info mcbsp_730[] = {
[0] = { .virt_base = io_p2v(OMAP730_MCBSP1_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP_DMA_MCBSP1_TX,
.rx_irq = INT_730_McBSP1RX,
.tx_irq = INT_730_McBSP1TX },
[1] = { .virt_base = io_p2v(OMAP730_MCBSP2_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP3_RX,
.dma_tx_sync = OMAP_DMA_MCBSP3_TX,
.rx_irq = INT_730_McBSP2RX,
.tx_irq = INT_730_McBSP2TX },
};
#endif
#ifdef CONFIG_ARCH_OMAP15XX
static const struct omap_mcbsp_info mcbsp_1510[] = {
[0] = { .virt_base = OMAP1510_MCBSP1_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP_DMA_MCBSP1_TX,
.rx_irq = INT_McBSP1RX,
.tx_irq = INT_McBSP1TX },
[1] = { .virt_base = io_p2v(OMAP1510_MCBSP2_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP2_RX,
.dma_tx_sync = OMAP_DMA_MCBSP2_TX,
.rx_irq = INT_1510_SPI_RX,
.tx_irq = INT_1510_SPI_TX },
[2] = { .virt_base = OMAP1510_MCBSP3_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP3_RX,
.dma_tx_sync = OMAP_DMA_MCBSP3_TX,
.rx_irq = INT_McBSP3RX,
.tx_irq = INT_McBSP3TX },
};
#endif
#if defined(CONFIG_ARCH_OMAP16XX)
static const struct omap_mcbsp_info mcbsp_1610[] = {
[0] = { .virt_base = OMAP1610_MCBSP1_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP_DMA_MCBSP1_TX,
.rx_irq = INT_McBSP1RX,
.tx_irq = INT_McBSP1TX },
[1] = { .virt_base = io_p2v(OMAP1610_MCBSP2_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP2_RX,
.dma_tx_sync = OMAP_DMA_MCBSP2_TX,
.rx_irq = INT_1610_McBSP2_RX,
.tx_irq = INT_1610_McBSP2_TX },
[2] = { .virt_base = OMAP1610_MCBSP3_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP3_RX,
.dma_tx_sync = OMAP_DMA_MCBSP3_TX,
.rx_irq = INT_McBSP3RX,
.tx_irq = INT_McBSP3TX },
};
#endif
#if defined(CONFIG_ARCH_OMAP24XX)
static const struct omap_mcbsp_info mcbsp_24xx[] = {
[0] = { .virt_base = IO_ADDRESS(OMAP24XX_MCBSP1_BASE),
.dma_rx_sync = OMAP24XX_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP24XX_DMA_MCBSP1_TX,
.rx_irq = INT_24XX_MCBSP1_IRQ_RX,
.tx_irq = INT_24XX_MCBSP1_IRQ_TX,
},
[1] = { .virt_base = IO_ADDRESS(OMAP24XX_MCBSP2_BASE),
.dma_rx_sync = OMAP24XX_DMA_MCBSP2_RX,
.dma_tx_sync = OMAP24XX_DMA_MCBSP2_TX,
.rx_irq = INT_24XX_MCBSP2_IRQ_RX,
.tx_irq = INT_24XX_MCBSP2_IRQ_TX,
},
};
#endif
static int __init omap_mcbsp_init(void)
{
int mcbsp_count = 0, i;
static const struct omap_mcbsp_info *mcbsp_info;
printk("Initializing OMAP McBSP system\n");
#ifdef CONFIG_ARCH_OMAP1
mcbsp_dsp_ck = clk_get(0, "dsp_ck");
if (IS_ERR(mcbsp_dsp_ck)) {
printk(KERN_ERR "mcbsp: could not acquire dsp_ck handle.\n");
return PTR_ERR(mcbsp_dsp_ck);
}
mcbsp_api_ck = clk_get(0, "api_ck");
if (IS_ERR(mcbsp_api_ck)) {
printk(KERN_ERR "mcbsp: could not acquire api_ck handle.\n");
return PTR_ERR(mcbsp_api_ck);
}
mcbsp_dspxor_ck = clk_get(0, "dspxor_ck");
if (IS_ERR(mcbsp_dspxor_ck)) {
printk(KERN_ERR "mcbsp: could not acquire dspxor_ck handle.\n");
return PTR_ERR(mcbsp_dspxor_ck);
}
#endif
#ifdef CONFIG_ARCH_OMAP2
mcbsp1_ick = clk_get(0, "mcbsp1_ick");
if (IS_ERR(mcbsp1_ick)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp1_ick handle.\n");
return PTR_ERR(mcbsp1_ick);
}
mcbsp1_fck = clk_get(0, "mcbsp1_fck");
if (IS_ERR(mcbsp1_fck)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp1_fck handle.\n");
return PTR_ERR(mcbsp1_fck);
}
mcbsp2_ick = clk_get(0, "mcbsp2_ick");
if (IS_ERR(mcbsp2_ick)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp2_ick handle.\n");
return PTR_ERR(mcbsp2_ick);
}
mcbsp2_fck = clk_get(0, "mcbsp2_fck");
if (IS_ERR(mcbsp2_fck)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp2_fck handle.\n");
return PTR_ERR(mcbsp2_fck);
}
#endif
#ifdef CONFIG_ARCH_OMAP730
if (cpu_is_omap730()) {
mcbsp_info = mcbsp_730;
mcbsp_count = ARRAY_SIZE(mcbsp_730);
}
#endif
#ifdef CONFIG_ARCH_OMAP15XX
if (cpu_is_omap15xx()) {
mcbsp_info = mcbsp_1510;
mcbsp_count = ARRAY_SIZE(mcbsp_1510);
}
#endif
#if defined(CONFIG_ARCH_OMAP16XX)
if (cpu_is_omap16xx()) {
mcbsp_info = mcbsp_1610;
mcbsp_count = ARRAY_SIZE(mcbsp_1610);
}
#endif
#if defined(CONFIG_ARCH_OMAP24XX)
if (cpu_is_omap24xx()) {
mcbsp_info = mcbsp_24xx;
mcbsp_count = ARRAY_SIZE(mcbsp_24xx);
omap2_mcbsp2_mux_setup();
}
#endif
for (i = 0; i < OMAP_MAX_MCBSP_COUNT ; i++) {
if (i >= mcbsp_count) {
mcbsp[i].io_base = 0;
mcbsp[i].free = 0;
continue;
}
mcbsp[i].id = i + 1;
mcbsp[i].free = 1;
mcbsp[i].dma_tx_lch = -1;
mcbsp[i].dma_rx_lch = -1;
mcbsp[i].io_base = mcbsp_info[i].virt_base;
mcbsp[i].io_type = OMAP_MCBSP_IRQ_IO; /* Default I/O is IRQ based */
mcbsp[i].tx_irq = mcbsp_info[i].tx_irq;
mcbsp[i].rx_irq = mcbsp_info[i].rx_irq;
mcbsp[i].dma_rx_sync = mcbsp_info[i].dma_rx_sync;
mcbsp[i].dma_tx_sync = mcbsp_info[i].dma_tx_sync;
spin_lock_init(&mcbsp[i].lock);
}
return 0;
}
arch_initcall(omap_mcbsp_init);
EXPORT_SYMBOL(omap_mcbsp_config);
EXPORT_SYMBOL(omap_mcbsp_request);
EXPORT_SYMBOL(omap_mcbsp_set_io_type);
EXPORT_SYMBOL(omap_mcbsp_free);
EXPORT_SYMBOL(omap_mcbsp_start);
EXPORT_SYMBOL(omap_mcbsp_stop);
EXPORT_SYMBOL(omap_mcbsp_xmit_word);
EXPORT_SYMBOL(omap_mcbsp_recv_word);
EXPORT_SYMBOL(omap_mcbsp_xmit_buffer);
EXPORT_SYMBOL(omap_mcbsp_recv_buffer);
EXPORT_SYMBOL(omap_mcbsp_spi_master_xmit_word_poll);
EXPORT_SYMBOL(omap_mcbsp_spi_master_recv_word_poll);
EXPORT_SYMBOL(omap_mcbsp_set_spi_mode);