linux_dsm_epyc7002/fs/f2fs/dir.c
Namjae Jeon 508198be3c f2fs: remove redundant call to f2fs_put_page in delete entry
Since, we anyway need to put the page after deleting entry. So, there is no
need to make same call under different conditions.
Move out the f2fs_put_page from the two conditions and call at once.

Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com>
2012-12-11 13:43:44 +09:00

670 lines
16 KiB
C

/*
* fs/f2fs/dir.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "acl.h"
static unsigned long dir_blocks(struct inode *inode)
{
return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
>> PAGE_CACHE_SHIFT;
}
static unsigned int dir_buckets(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 1 << level;
else
return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1);
}
static unsigned int bucket_blocks(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
[F2FS_FT_UNKNOWN] = DT_UNKNOWN,
[F2FS_FT_REG_FILE] = DT_REG,
[F2FS_FT_DIR] = DT_DIR,
[F2FS_FT_CHRDEV] = DT_CHR,
[F2FS_FT_BLKDEV] = DT_BLK,
[F2FS_FT_FIFO] = DT_FIFO,
[F2FS_FT_SOCK] = DT_SOCK,
[F2FS_FT_SYMLINK] = DT_LNK,
};
#define S_SHIFT 12
static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
[S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
[S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
};
static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode)
{
mode_t mode = inode->i_mode;
de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
}
static unsigned long dir_block_index(unsigned int level, unsigned int idx)
{
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
bidx += dir_buckets(i) * bucket_blocks(i);
bidx += idx * bucket_blocks(level);
return bidx;
}
static bool early_match_name(const char *name, int namelen,
f2fs_hash_t namehash, struct f2fs_dir_entry *de)
{
if (le16_to_cpu(de->name_len) != namelen)
return false;
if (de->hash_code != namehash)
return false;
return true;
}
static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
const char *name, int namelen, int *max_slots,
f2fs_hash_t namehash, struct page **res_page)
{
struct f2fs_dir_entry *de;
unsigned long bit_pos, end_pos, next_pos;
struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
int slots;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK, 0);
while (bit_pos < NR_DENTRY_IN_BLOCK) {
de = &dentry_blk->dentry[bit_pos];
slots = (le16_to_cpu(de->name_len) + F2FS_NAME_LEN - 1) /
F2FS_NAME_LEN;
if (early_match_name(name, namelen, namehash, de)) {
if (!memcmp(dentry_blk->filename[bit_pos],
name, namelen)) {
*res_page = dentry_page;
goto found;
}
}
next_pos = bit_pos + slots;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK, next_pos);
if (bit_pos >= NR_DENTRY_IN_BLOCK)
end_pos = NR_DENTRY_IN_BLOCK;
else
end_pos = bit_pos;
if (*max_slots < end_pos - next_pos)
*max_slots = end_pos - next_pos;
}
de = NULL;
kunmap(dentry_page);
found:
return de;
}
static struct f2fs_dir_entry *find_in_level(struct inode *dir,
unsigned int level, const char *name, int namelen,
f2fs_hash_t namehash, struct page **res_page)
{
int s = (namelen + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
struct page *dentry_page;
struct f2fs_dir_entry *de = NULL;
bool room = false;
int max_slots = 0;
BUG_ON(level > MAX_DIR_HASH_DEPTH);
nbucket = dir_buckets(level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket);
end_block = bidx + nblock;
for (; bidx < end_block; bidx++) {
/* no need to allocate new dentry pages to all the indices */
dentry_page = find_data_page(dir, bidx);
if (IS_ERR(dentry_page)) {
room = true;
continue;
}
de = find_in_block(dentry_page, name, namelen,
&max_slots, namehash, res_page);
if (de)
break;
if (max_slots >= s)
room = true;
f2fs_put_page(dentry_page, 0);
}
if (!de && room && F2FS_I(dir)->chash != namehash) {
F2FS_I(dir)->chash = namehash;
F2FS_I(dir)->clevel = level;
}
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
struct qstr *child, struct page **res_page)
{
const char *name = child->name;
int namelen = child->len;
unsigned long npages = dir_blocks(dir);
struct f2fs_dir_entry *de = NULL;
f2fs_hash_t name_hash;
unsigned int max_depth;
unsigned int level;
if (npages == 0)
return NULL;
*res_page = NULL;
name_hash = f2fs_dentry_hash(name, namelen);
max_depth = F2FS_I(dir)->i_current_depth;
for (level = 0; level < max_depth; level++) {
de = find_in_level(dir, level, name,
namelen, name_hash, res_page);
if (de)
break;
}
if (!de && F2FS_I(dir)->chash != name_hash) {
F2FS_I(dir)->chash = name_hash;
F2FS_I(dir)->clevel = level - 1;
}
return de;
}
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
{
struct page *page = NULL;
struct f2fs_dir_entry *de = NULL;
struct f2fs_dentry_block *dentry_blk = NULL;
page = get_lock_data_page(dir, 0);
if (IS_ERR(page))
return NULL;
dentry_blk = kmap(page);
de = &dentry_blk->dentry[1];
*p = page;
unlock_page(page);
return de;
}
ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
{
ino_t res = 0;
struct f2fs_dir_entry *de;
struct page *page;
de = f2fs_find_entry(dir, qstr, &page);
if (de) {
res = le32_to_cpu(de->ino);
kunmap(page);
f2fs_put_page(page, 0);
}
return res;
}
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
struct page *page, struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
mutex_lock_op(sbi, DENTRY_OPS);
lock_page(page);
wait_on_page_writeback(page);
de->ino = cpu_to_le32(inode->i_ino);
set_de_type(de, inode);
kunmap(page);
set_page_dirty(page);
dir->i_mtime = dir->i_ctime = CURRENT_TIME;
mark_inode_dirty(dir);
f2fs_put_page(page, 1);
mutex_unlock_op(sbi, DENTRY_OPS);
}
void init_dent_inode(struct dentry *dentry, struct page *ipage)
{
struct inode *dir = dentry->d_parent->d_inode;
struct f2fs_node *rn;
if (IS_ERR(ipage))
return;
wait_on_page_writeback(ipage);
/* copy dentry info. to this inode page */
rn = (struct f2fs_node *)page_address(ipage);
rn->i.i_pino = cpu_to_le32(dir->i_ino);
rn->i.i_namelen = cpu_to_le32(dentry->d_name.len);
memcpy(rn->i.i_name, dentry->d_name.name, dentry->d_name.len);
set_page_dirty(ipage);
}
static int init_inode_metadata(struct inode *inode, struct dentry *dentry)
{
struct inode *dir = dentry->d_parent->d_inode;
if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
int err;
err = new_inode_page(inode, dentry);
if (err)
return err;
if (S_ISDIR(inode->i_mode)) {
err = f2fs_make_empty(inode, dir);
if (err) {
remove_inode_page(inode);
return err;
}
}
err = f2fs_init_acl(inode, dir);
if (err) {
remove_inode_page(inode);
return err;
}
} else {
struct page *ipage;
ipage = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
init_dent_inode(dentry, ipage);
f2fs_put_page(ipage, 1);
}
if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
inc_nlink(inode);
f2fs_write_inode(inode, NULL);
}
return 0;
}
static void update_parent_metadata(struct inode *dir, struct inode *inode,
unsigned int current_depth)
{
bool need_dir_update = false;
if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
if (S_ISDIR(inode->i_mode)) {
inc_nlink(dir);
need_dir_update = true;
}
clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
}
dir->i_mtime = dir->i_ctime = CURRENT_TIME;
if (F2FS_I(dir)->i_current_depth != current_depth) {
F2FS_I(dir)->i_current_depth = current_depth;
need_dir_update = true;
}
if (need_dir_update)
f2fs_write_inode(dir, NULL);
else
mark_inode_dirty(dir);
if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
}
static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots)
{
int bit_start = 0;
int zero_start, zero_end;
next:
zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
bit_start);
if (zero_start >= NR_DENTRY_IN_BLOCK)
return NR_DENTRY_IN_BLOCK;
zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
return NR_DENTRY_IN_BLOCK;
goto next;
}
int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
unsigned long bidx, block;
f2fs_hash_t dentry_hash;
struct f2fs_dir_entry *de;
unsigned int nbucket, nblock;
struct inode *dir = dentry->d_parent->d_inode;
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
const char *name = dentry->d_name.name;
int namelen = dentry->d_name.len;
struct page *dentry_page = NULL;
struct f2fs_dentry_block *dentry_blk = NULL;
int slots = (namelen + F2FS_NAME_LEN - 1) / F2FS_NAME_LEN;
int err = 0;
int i;
dentry_hash = f2fs_dentry_hash(name, dentry->d_name.len);
level = 0;
current_depth = F2FS_I(dir)->i_current_depth;
if (F2FS_I(dir)->chash == dentry_hash) {
level = F2FS_I(dir)->clevel;
F2FS_I(dir)->chash = 0;
}
start:
if (current_depth == MAX_DIR_HASH_DEPTH)
return -ENOSPC;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
nbucket = dir_buckets(level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket));
for (block = bidx; block <= (bidx + nblock - 1); block++) {
mutex_lock_op(sbi, DENTRY_OPS);
dentry_page = get_new_data_page(dir, block, true);
if (IS_ERR(dentry_page)) {
mutex_unlock_op(sbi, DENTRY_OPS);
return PTR_ERR(dentry_page);
}
dentry_blk = kmap(dentry_page);
bit_pos = room_for_filename(dentry_blk, slots);
if (bit_pos < NR_DENTRY_IN_BLOCK)
goto add_dentry;
kunmap(dentry_page);
f2fs_put_page(dentry_page, 1);
mutex_unlock_op(sbi, DENTRY_OPS);
}
/* Move to next level to find the empty slot for new dentry */
++level;
goto start;
add_dentry:
err = init_inode_metadata(inode, dentry);
if (err)
goto fail;
wait_on_page_writeback(dentry_page);
de = &dentry_blk->dentry[bit_pos];
de->hash_code = dentry_hash;
de->name_len = cpu_to_le16(namelen);
memcpy(dentry_blk->filename[bit_pos], name, namelen);
de->ino = cpu_to_le32(inode->i_ino);
set_de_type(de, inode);
for (i = 0; i < slots; i++)
test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
set_page_dirty(dentry_page);
update_parent_metadata(dir, inode, current_depth);
fail:
kunmap(dentry_page);
f2fs_put_page(dentry_page, 1);
mutex_unlock_op(sbi, DENTRY_OPS);
return err;
}
/*
* It only removes the dentry from the dentry page,corresponding name
* entry in name page does not need to be touched during deletion.
*/
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *inode)
{
struct f2fs_dentry_block *dentry_blk;
unsigned int bit_pos;
struct address_space *mapping = page->mapping;
struct inode *dir = mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
int slots = (le16_to_cpu(dentry->name_len) + F2FS_NAME_LEN - 1) /
F2FS_NAME_LEN;
void *kaddr = page_address(page);
int i;
mutex_lock_op(sbi, DENTRY_OPS);
lock_page(page);
wait_on_page_writeback(page);
dentry_blk = (struct f2fs_dentry_block *)kaddr;
bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry;
for (i = 0; i < slots; i++)
test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
/* Let's check and deallocate this dentry page */
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
0);
kunmap(page); /* kunmap - pair of f2fs_find_entry */
set_page_dirty(page);
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
if (inode && S_ISDIR(inode->i_mode)) {
drop_nlink(dir);
f2fs_write_inode(dir, NULL);
} else {
mark_inode_dirty(dir);
}
if (inode) {
inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
drop_nlink(inode);
if (S_ISDIR(inode->i_mode)) {
drop_nlink(inode);
i_size_write(inode, 0);
}
f2fs_write_inode(inode, NULL);
if (inode->i_nlink == 0)
add_orphan_inode(sbi, inode->i_ino);
}
if (bit_pos == NR_DENTRY_IN_BLOCK) {
truncate_hole(dir, page->index, page->index + 1);
clear_page_dirty_for_io(page);
ClearPageUptodate(page);
dec_page_count(sbi, F2FS_DIRTY_DENTS);
inode_dec_dirty_dents(dir);
}
f2fs_put_page(page, 1);
mutex_unlock_op(sbi, DENTRY_OPS);
}
int f2fs_make_empty(struct inode *inode, struct inode *parent)
{
struct page *dentry_page;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dir_entry *de;
void *kaddr;
dentry_page = get_new_data_page(inode, 0, true);
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
kaddr = kmap_atomic(dentry_page);
dentry_blk = (struct f2fs_dentry_block *)kaddr;
de = &dentry_blk->dentry[0];
de->name_len = cpu_to_le16(1);
de->hash_code = 0;
de->ino = cpu_to_le32(inode->i_ino);
memcpy(dentry_blk->filename[0], ".", 1);
set_de_type(de, inode);
de = &dentry_blk->dentry[1];
de->hash_code = 0;
de->name_len = cpu_to_le16(2);
de->ino = cpu_to_le32(parent->i_ino);
memcpy(dentry_blk->filename[1], "..", 2);
set_de_type(de, inode);
test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
kunmap_atomic(kaddr);
set_page_dirty(dentry_page);
f2fs_put_page(dentry_page, 1);
return 0;
}
bool f2fs_empty_dir(struct inode *dir)
{
unsigned long bidx;
struct page *dentry_page;
unsigned int bit_pos;
struct f2fs_dentry_block *dentry_blk;
unsigned long nblock = dir_blocks(dir);
for (bidx = 0; bidx < nblock; bidx++) {
void *kaddr;
dentry_page = get_lock_data_page(dir, bidx);
if (IS_ERR(dentry_page)) {
if (PTR_ERR(dentry_page) == -ENOENT)
continue;
else
return false;
}
kaddr = kmap_atomic(dentry_page);
dentry_blk = (struct f2fs_dentry_block *)kaddr;
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
bit_pos);
kunmap_atomic(kaddr);
f2fs_put_page(dentry_page, 1);
if (bit_pos < NR_DENTRY_IN_BLOCK)
return false;
}
return true;
}
static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir)
{
unsigned long pos = file->f_pos;
struct inode *inode = file->f_dentry->d_inode;
unsigned long npages = dir_blocks(inode);
unsigned char *types = NULL;
unsigned int bit_pos = 0, start_bit_pos = 0;
int over = 0;
struct f2fs_dentry_block *dentry_blk = NULL;
struct f2fs_dir_entry *de = NULL;
struct page *dentry_page = NULL;
unsigned int n = 0;
unsigned char d_type = DT_UNKNOWN;
int slots;
types = f2fs_filetype_table;
bit_pos = (pos % NR_DENTRY_IN_BLOCK);
n = (pos / NR_DENTRY_IN_BLOCK);
for ( ; n < npages; n++) {
dentry_page = get_lock_data_page(inode, n);
if (IS_ERR(dentry_page))
continue;
start_bit_pos = bit_pos;
dentry_blk = kmap(dentry_page);
while (bit_pos < NR_DENTRY_IN_BLOCK) {
d_type = DT_UNKNOWN;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
bit_pos);
if (bit_pos >= NR_DENTRY_IN_BLOCK)
break;
de = &dentry_blk->dentry[bit_pos];
if (types && de->file_type < F2FS_FT_MAX)
d_type = types[de->file_type];
over = filldir(dirent,
dentry_blk->filename[bit_pos],
le16_to_cpu(de->name_len),
(n * NR_DENTRY_IN_BLOCK) + bit_pos,
le32_to_cpu(de->ino), d_type);
if (over) {
file->f_pos += bit_pos - start_bit_pos;
goto success;
}
slots = (le16_to_cpu(de->name_len) + F2FS_NAME_LEN - 1)
/ F2FS_NAME_LEN;
bit_pos += slots;
}
bit_pos = 0;
file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK;
kunmap(dentry_page);
f2fs_put_page(dentry_page, 1);
dentry_page = NULL;
}
success:
if (dentry_page && !IS_ERR(dentry_page)) {
kunmap(dentry_page);
f2fs_put_page(dentry_page, 1);
}
return 0;
}
const struct file_operations f2fs_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.readdir = f2fs_readdir,
.fsync = f2fs_sync_file,
.unlocked_ioctl = f2fs_ioctl,
};