mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
3b71f6b595
Each time we need to read a sample (from the sysfs interface, since the driver supports only it) the driver writes the configuration register with the proper settings needed to perform the said read, then it runs another xfer to actually read the resulting value. Most notably the configuration register is updated to set the ADC internal MUX depending by which channel the read targets. Unfortunately this seems not enough to ensure correct operation because the ADC works in a pipelined-like fashion and the new configuration isn't applied in time. The ADC alternates two phases: acquisition and conversion. During the acquisition phase the ADC samples the analog signal in an internal capacitor; in the conversion phase the ADC performs the actual analog to digital conversion of the stored voltage. Note that of course the MUX needs to be set to the proper channel when the acquisition phase is performed. Once the conversion phase has been completed, the device automatically switches back to a new acquisition; on the other hand the device switches from acquisition to conversion on the rising edge of SPI cs signal (that is when the xfer finishes). Only after both two phases have been completed (with the proper settings already written in the configuration register since the beginning) it is possible to read the outcome from SPI bus. With the current driver implementation, we end up in the following situation: _______ 1st xfer ____________ 2nd xfer ___________________ SPI cs.. \_________/ \_________/ SPI rd.. idle |(val N-2)+ idle | val N-1 + idle ... SPI wr.. idle | cfg N + idle | (X) + idle ... ------------------------ + -------------------- + ------------------ AD .. acq N-1 + cnv N-1 | acq N + cnv N | acq N+1 As shown in the diagram above, the value we read in the Nth read belongs to configuration setting N-1. In case the configuration is not changed (config[N] == config[N-1]), then we still get correct data, but in case the configuration changes (i.e. switching the MUX on another channel), we get wrong data (data from the previously selected channel). This patch fixes this by performing one more "dummy" transfer in order to ending up in reading the data when it's really ready, as per the following timing diagram. _______ 1st xfer ____________ 2nd xfer ___________ 3rd xfer ___ SPI cs.. \_________/ \_________/ \_________/ SPI rd.. idle |(val N-2)+ idle |(val N-1)+ idle | val N + .. SPI wr.. idle | cfg N + idle | (X) + idle | (X) + .. ------------------------ + -------------------- + ------------------- + -- AD .. acq N-1 + cnv N-1 | acq N + cnv N | acq N+1 | .. NOTE: in the latter case (cfg changes), the acquisition phase for the value to be read begins after the 1st xfer, that is after the read request has been issued on sysfs. On the other hand, if the cfg doesn't change, then we can refer to the fist diagram assuming N == (N - 1); the acquisition phase _begins_ before the 1st xfer (potentially a lot of time before the read has been issued via sysfs, but it _ends_ after the 1st xfer, that is _after_ the read has started. This should guarantee a reasonably fresh data, which value represents the voltage that the sampled signal has after the read start or maybe just around it. Signed-off-by: Andrea Merello <andrea.merello@gmail.com> Reviewed-by: Charles-Antoine Couret <charles-antoine.couret@essensium.com> Cc: <Stable@vger.kernel.org> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
339 lines
8.1 KiB
C
339 lines
8.1 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* ad7949.c - Analog Devices ADC driver 14/16 bits 4/8 channels
|
|
*
|
|
* Copyright (C) 2018 CMC NV
|
|
*
|
|
* http://www.analog.com/media/en/technical-documentation/data-sheets/AD7949.pdf
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/spi/spi.h>
|
|
|
|
#define AD7949_MASK_CHANNEL_SEL GENMASK(9, 7)
|
|
#define AD7949_MASK_TOTAL GENMASK(13, 0)
|
|
#define AD7949_OFFSET_CHANNEL_SEL 7
|
|
#define AD7949_CFG_READ_BACK 0x1
|
|
#define AD7949_CFG_REG_SIZE_BITS 14
|
|
|
|
enum {
|
|
ID_AD7949 = 0,
|
|
ID_AD7682,
|
|
ID_AD7689,
|
|
};
|
|
|
|
struct ad7949_adc_spec {
|
|
u8 num_channels;
|
|
u8 resolution;
|
|
};
|
|
|
|
static const struct ad7949_adc_spec ad7949_adc_spec[] = {
|
|
[ID_AD7949] = { .num_channels = 8, .resolution = 14 },
|
|
[ID_AD7682] = { .num_channels = 4, .resolution = 16 },
|
|
[ID_AD7689] = { .num_channels = 8, .resolution = 16 },
|
|
};
|
|
|
|
/**
|
|
* struct ad7949_adc_chip - AD ADC chip
|
|
* @lock: protects write sequences
|
|
* @vref: regulator generating Vref
|
|
* @iio_dev: reference to iio structure
|
|
* @spi: reference to spi structure
|
|
* @resolution: resolution of the chip
|
|
* @cfg: copy of the configuration register
|
|
* @current_channel: current channel in use
|
|
* @buffer: buffer to send / receive data to / from device
|
|
*/
|
|
struct ad7949_adc_chip {
|
|
struct mutex lock;
|
|
struct regulator *vref;
|
|
struct iio_dev *indio_dev;
|
|
struct spi_device *spi;
|
|
u8 resolution;
|
|
u16 cfg;
|
|
unsigned int current_channel;
|
|
u16 buffer ____cacheline_aligned;
|
|
};
|
|
|
|
static int ad7949_spi_write_cfg(struct ad7949_adc_chip *ad7949_adc, u16 val,
|
|
u16 mask)
|
|
{
|
|
int ret;
|
|
int bits_per_word = ad7949_adc->resolution;
|
|
int shift = bits_per_word - AD7949_CFG_REG_SIZE_BITS;
|
|
struct spi_message msg;
|
|
struct spi_transfer tx[] = {
|
|
{
|
|
.tx_buf = &ad7949_adc->buffer,
|
|
.len = 2,
|
|
.bits_per_word = bits_per_word,
|
|
},
|
|
};
|
|
|
|
ad7949_adc->cfg = (val & mask) | (ad7949_adc->cfg & ~mask);
|
|
ad7949_adc->buffer = ad7949_adc->cfg << shift;
|
|
spi_message_init_with_transfers(&msg, tx, 1);
|
|
ret = spi_sync(ad7949_adc->spi, &msg);
|
|
|
|
/*
|
|
* This delay is to avoid a new request before the required time to
|
|
* send a new command to the device
|
|
*/
|
|
udelay(2);
|
|
return ret;
|
|
}
|
|
|
|
static int ad7949_spi_read_channel(struct ad7949_adc_chip *ad7949_adc, int *val,
|
|
unsigned int channel)
|
|
{
|
|
int ret;
|
|
int i;
|
|
int bits_per_word = ad7949_adc->resolution;
|
|
int mask = GENMASK(ad7949_adc->resolution, 0);
|
|
struct spi_message msg;
|
|
struct spi_transfer tx[] = {
|
|
{
|
|
.rx_buf = &ad7949_adc->buffer,
|
|
.len = 2,
|
|
.bits_per_word = bits_per_word,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* 1: write CFG for sample N and read old data (sample N-2)
|
|
* 2: if CFG was not changed since sample N-1 then we'll get good data
|
|
* at the next xfer, so we bail out now, otherwise we write something
|
|
* and we read garbage (sample N-1 configuration).
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
ret = ad7949_spi_write_cfg(ad7949_adc,
|
|
channel << AD7949_OFFSET_CHANNEL_SEL,
|
|
AD7949_MASK_CHANNEL_SEL);
|
|
if (ret)
|
|
return ret;
|
|
if (channel == ad7949_adc->current_channel)
|
|
break;
|
|
}
|
|
|
|
/* 3: write something and read actual data */
|
|
ad7949_adc->buffer = 0;
|
|
spi_message_init_with_transfers(&msg, tx, 1);
|
|
ret = spi_sync(ad7949_adc->spi, &msg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* This delay is to avoid a new request before the required time to
|
|
* send a new command to the device
|
|
*/
|
|
udelay(2);
|
|
|
|
ad7949_adc->current_channel = channel;
|
|
|
|
*val = ad7949_adc->buffer & mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define AD7949_ADC_CHANNEL(chan) { \
|
|
.type = IIO_VOLTAGE, \
|
|
.indexed = 1, \
|
|
.channel = (chan), \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
|
|
}
|
|
|
|
static const struct iio_chan_spec ad7949_adc_channels[] = {
|
|
AD7949_ADC_CHANNEL(0),
|
|
AD7949_ADC_CHANNEL(1),
|
|
AD7949_ADC_CHANNEL(2),
|
|
AD7949_ADC_CHANNEL(3),
|
|
AD7949_ADC_CHANNEL(4),
|
|
AD7949_ADC_CHANNEL(5),
|
|
AD7949_ADC_CHANNEL(6),
|
|
AD7949_ADC_CHANNEL(7),
|
|
};
|
|
|
|
static int ad7949_spi_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int *val, int *val2, long mask)
|
|
{
|
|
struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
if (!val)
|
|
return -EINVAL;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
mutex_lock(&ad7949_adc->lock);
|
|
ret = ad7949_spi_read_channel(ad7949_adc, val, chan->channel);
|
|
mutex_unlock(&ad7949_adc->lock);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return IIO_VAL_INT;
|
|
|
|
case IIO_CHAN_INFO_SCALE:
|
|
ret = regulator_get_voltage(ad7949_adc->vref);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*val = ret / 5000;
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ad7949_spi_reg_access(struct iio_dev *indio_dev,
|
|
unsigned int reg, unsigned int writeval,
|
|
unsigned int *readval)
|
|
{
|
|
struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev);
|
|
int ret = 0;
|
|
|
|
if (readval)
|
|
*readval = ad7949_adc->cfg;
|
|
else
|
|
ret = ad7949_spi_write_cfg(ad7949_adc,
|
|
writeval & AD7949_MASK_TOTAL, AD7949_MASK_TOTAL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct iio_info ad7949_spi_info = {
|
|
.read_raw = ad7949_spi_read_raw,
|
|
.debugfs_reg_access = ad7949_spi_reg_access,
|
|
};
|
|
|
|
static int ad7949_spi_init(struct ad7949_adc_chip *ad7949_adc)
|
|
{
|
|
int ret;
|
|
int val;
|
|
|
|
/* Sequencer disabled, CFG readback disabled, IN0 as default channel */
|
|
ad7949_adc->current_channel = 0;
|
|
ret = ad7949_spi_write_cfg(ad7949_adc, 0x3C79, AD7949_MASK_TOTAL);
|
|
|
|
/*
|
|
* Do two dummy conversions to apply the first configuration setting.
|
|
* Required only after the start up of the device.
|
|
*/
|
|
ad7949_spi_read_channel(ad7949_adc, &val, ad7949_adc->current_channel);
|
|
ad7949_spi_read_channel(ad7949_adc, &val, ad7949_adc->current_channel);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ad7949_spi_probe(struct spi_device *spi)
|
|
{
|
|
struct device *dev = &spi->dev;
|
|
const struct ad7949_adc_spec *spec;
|
|
struct ad7949_adc_chip *ad7949_adc;
|
|
struct iio_dev *indio_dev;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*ad7949_adc));
|
|
if (!indio_dev) {
|
|
dev_err(dev, "can not allocate iio device\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
indio_dev->dev.parent = dev;
|
|
indio_dev->dev.of_node = dev->of_node;
|
|
indio_dev->info = &ad7949_spi_info;
|
|
indio_dev->name = spi_get_device_id(spi)->name;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->channels = ad7949_adc_channels;
|
|
spi_set_drvdata(spi, indio_dev);
|
|
|
|
ad7949_adc = iio_priv(indio_dev);
|
|
ad7949_adc->indio_dev = indio_dev;
|
|
ad7949_adc->spi = spi;
|
|
|
|
spec = &ad7949_adc_spec[spi_get_device_id(spi)->driver_data];
|
|
indio_dev->num_channels = spec->num_channels;
|
|
ad7949_adc->resolution = spec->resolution;
|
|
|
|
ad7949_adc->vref = devm_regulator_get(dev, "vref");
|
|
if (IS_ERR(ad7949_adc->vref)) {
|
|
dev_err(dev, "fail to request regulator\n");
|
|
return PTR_ERR(ad7949_adc->vref);
|
|
}
|
|
|
|
ret = regulator_enable(ad7949_adc->vref);
|
|
if (ret < 0) {
|
|
dev_err(dev, "fail to enable regulator\n");
|
|
return ret;
|
|
}
|
|
|
|
mutex_init(&ad7949_adc->lock);
|
|
|
|
ret = ad7949_spi_init(ad7949_adc);
|
|
if (ret) {
|
|
dev_err(dev, "enable to init this device: %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
ret = iio_device_register(indio_dev);
|
|
if (ret) {
|
|
dev_err(dev, "fail to register iio device: %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
mutex_destroy(&ad7949_adc->lock);
|
|
regulator_disable(ad7949_adc->vref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ad7949_spi_remove(struct spi_device *spi)
|
|
{
|
|
struct iio_dev *indio_dev = spi_get_drvdata(spi);
|
|
struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev);
|
|
|
|
iio_device_unregister(indio_dev);
|
|
mutex_destroy(&ad7949_adc->lock);
|
|
regulator_disable(ad7949_adc->vref);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id ad7949_spi_of_id[] = {
|
|
{ .compatible = "adi,ad7949" },
|
|
{ .compatible = "adi,ad7682" },
|
|
{ .compatible = "adi,ad7689" },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ad7949_spi_of_id);
|
|
|
|
static const struct spi_device_id ad7949_spi_id[] = {
|
|
{ "ad7949", ID_AD7949 },
|
|
{ "ad7682", ID_AD7682 },
|
|
{ "ad7689", ID_AD7689 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, ad7949_spi_id);
|
|
|
|
static struct spi_driver ad7949_spi_driver = {
|
|
.driver = {
|
|
.name = "ad7949",
|
|
.of_match_table = ad7949_spi_of_id,
|
|
},
|
|
.probe = ad7949_spi_probe,
|
|
.remove = ad7949_spi_remove,
|
|
.id_table = ad7949_spi_id,
|
|
};
|
|
module_spi_driver(ad7949_spi_driver);
|
|
|
|
MODULE_AUTHOR("Charles-Antoine Couret <charles-antoine.couret@essensium.com>");
|
|
MODULE_DESCRIPTION("Analog Devices 14/16-bit 8-channel ADC driver");
|
|
MODULE_LICENSE("GPL v2");
|