mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
99466e708d
Adds two Intel controllers that have the "stripe" quirk. Signed-off-by: Keith Busch <keith.busch@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2164 lines
54 KiB
C
2164 lines
54 KiB
C
/*
|
|
* NVM Express device driver
|
|
* Copyright (c) 2011-2014, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/aer.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/types.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "nvme.h"
|
|
|
|
#define NVME_Q_DEPTH 1024
|
|
#define NVME_AQ_DEPTH 256
|
|
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
|
|
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
|
|
|
|
/*
|
|
* We handle AEN commands ourselves and don't even let the
|
|
* block layer know about them.
|
|
*/
|
|
#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
|
|
|
|
static int use_threaded_interrupts;
|
|
module_param(use_threaded_interrupts, int, 0);
|
|
|
|
static bool use_cmb_sqes = true;
|
|
module_param(use_cmb_sqes, bool, 0644);
|
|
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
|
|
|
|
static struct workqueue_struct *nvme_workq;
|
|
|
|
struct nvme_dev;
|
|
struct nvme_queue;
|
|
|
|
static int nvme_reset(struct nvme_dev *dev);
|
|
static void nvme_process_cq(struct nvme_queue *nvmeq);
|
|
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
|
|
|
|
/*
|
|
* Represents an NVM Express device. Each nvme_dev is a PCI function.
|
|
*/
|
|
struct nvme_dev {
|
|
struct nvme_queue **queues;
|
|
struct blk_mq_tag_set tagset;
|
|
struct blk_mq_tag_set admin_tagset;
|
|
u32 __iomem *dbs;
|
|
struct device *dev;
|
|
struct dma_pool *prp_page_pool;
|
|
struct dma_pool *prp_small_pool;
|
|
unsigned queue_count;
|
|
unsigned online_queues;
|
|
unsigned max_qid;
|
|
int q_depth;
|
|
u32 db_stride;
|
|
struct msix_entry *entry;
|
|
void __iomem *bar;
|
|
struct work_struct reset_work;
|
|
struct work_struct remove_work;
|
|
struct timer_list watchdog_timer;
|
|
struct mutex shutdown_lock;
|
|
bool subsystem;
|
|
void __iomem *cmb;
|
|
dma_addr_t cmb_dma_addr;
|
|
u64 cmb_size;
|
|
u32 cmbsz;
|
|
struct nvme_ctrl ctrl;
|
|
struct completion ioq_wait;
|
|
};
|
|
|
|
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
|
|
{
|
|
return container_of(ctrl, struct nvme_dev, ctrl);
|
|
}
|
|
|
|
/*
|
|
* An NVM Express queue. Each device has at least two (one for admin
|
|
* commands and one for I/O commands).
|
|
*/
|
|
struct nvme_queue {
|
|
struct device *q_dmadev;
|
|
struct nvme_dev *dev;
|
|
char irqname[24]; /* nvme4294967295-65535\0 */
|
|
spinlock_t q_lock;
|
|
struct nvme_command *sq_cmds;
|
|
struct nvme_command __iomem *sq_cmds_io;
|
|
volatile struct nvme_completion *cqes;
|
|
struct blk_mq_tags **tags;
|
|
dma_addr_t sq_dma_addr;
|
|
dma_addr_t cq_dma_addr;
|
|
u32 __iomem *q_db;
|
|
u16 q_depth;
|
|
s16 cq_vector;
|
|
u16 sq_tail;
|
|
u16 cq_head;
|
|
u16 qid;
|
|
u8 cq_phase;
|
|
u8 cqe_seen;
|
|
};
|
|
|
|
/*
|
|
* The nvme_iod describes the data in an I/O, including the list of PRP
|
|
* entries. You can't see it in this data structure because C doesn't let
|
|
* me express that. Use nvme_init_iod to ensure there's enough space
|
|
* allocated to store the PRP list.
|
|
*/
|
|
struct nvme_iod {
|
|
struct nvme_queue *nvmeq;
|
|
int aborted;
|
|
int npages; /* In the PRP list. 0 means small pool in use */
|
|
int nents; /* Used in scatterlist */
|
|
int length; /* Of data, in bytes */
|
|
dma_addr_t first_dma;
|
|
struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
|
|
struct scatterlist *sg;
|
|
struct scatterlist inline_sg[0];
|
|
};
|
|
|
|
/*
|
|
* Check we didin't inadvertently grow the command struct
|
|
*/
|
|
static inline void _nvme_check_size(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
|
|
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
|
|
}
|
|
|
|
/*
|
|
* Max size of iod being embedded in the request payload
|
|
*/
|
|
#define NVME_INT_PAGES 2
|
|
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
|
|
|
|
/*
|
|
* Will slightly overestimate the number of pages needed. This is OK
|
|
* as it only leads to a small amount of wasted memory for the lifetime of
|
|
* the I/O.
|
|
*/
|
|
static int nvme_npages(unsigned size, struct nvme_dev *dev)
|
|
{
|
|
unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
|
|
dev->ctrl.page_size);
|
|
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
|
|
}
|
|
|
|
static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
|
|
unsigned int size, unsigned int nseg)
|
|
{
|
|
return sizeof(__le64 *) * nvme_npages(size, dev) +
|
|
sizeof(struct scatterlist) * nseg;
|
|
}
|
|
|
|
static unsigned int nvme_cmd_size(struct nvme_dev *dev)
|
|
{
|
|
return sizeof(struct nvme_iod) +
|
|
nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
|
|
}
|
|
|
|
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
struct nvme_queue *nvmeq = dev->queues[0];
|
|
|
|
WARN_ON(hctx_idx != 0);
|
|
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
|
|
WARN_ON(nvmeq->tags);
|
|
|
|
hctx->driver_data = nvmeq;
|
|
nvmeq->tags = &dev->admin_tagset.tags[0];
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
|
|
{
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
|
|
nvmeq->tags = NULL;
|
|
}
|
|
|
|
static int nvme_admin_init_request(void *data, struct request *req,
|
|
unsigned int hctx_idx, unsigned int rq_idx,
|
|
unsigned int numa_node)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_queue *nvmeq = dev->queues[0];
|
|
|
|
BUG_ON(!nvmeq);
|
|
iod->nvmeq = nvmeq;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
|
|
|
|
if (!nvmeq->tags)
|
|
nvmeq->tags = &dev->tagset.tags[hctx_idx];
|
|
|
|
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
|
|
hctx->driver_data = nvmeq;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_init_request(void *data, struct request *req,
|
|
unsigned int hctx_idx, unsigned int rq_idx,
|
|
unsigned int numa_node)
|
|
{
|
|
struct nvme_dev *dev = data;
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
|
|
|
|
BUG_ON(!nvmeq);
|
|
iod->nvmeq = nvmeq;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
|
|
* @nvmeq: The queue to use
|
|
* @cmd: The command to send
|
|
*
|
|
* Safe to use from interrupt context
|
|
*/
|
|
static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
|
|
struct nvme_command *cmd)
|
|
{
|
|
u16 tail = nvmeq->sq_tail;
|
|
|
|
if (nvmeq->sq_cmds_io)
|
|
memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
|
|
else
|
|
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
|
|
|
|
if (++tail == nvmeq->q_depth)
|
|
tail = 0;
|
|
writel(tail, nvmeq->q_db);
|
|
nvmeq->sq_tail = tail;
|
|
}
|
|
|
|
static __le64 **iod_list(struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
return (__le64 **)(iod->sg + req->nr_phys_segments);
|
|
}
|
|
|
|
static int nvme_init_iod(struct request *rq, unsigned size,
|
|
struct nvme_dev *dev)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
|
|
int nseg = rq->nr_phys_segments;
|
|
|
|
if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
|
|
iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
|
|
if (!iod->sg)
|
|
return BLK_MQ_RQ_QUEUE_BUSY;
|
|
} else {
|
|
iod->sg = iod->inline_sg;
|
|
}
|
|
|
|
iod->aborted = 0;
|
|
iod->npages = -1;
|
|
iod->nents = 0;
|
|
iod->length = size;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
const int last_prp = dev->ctrl.page_size / 8 - 1;
|
|
int i;
|
|
__le64 **list = iod_list(req);
|
|
dma_addr_t prp_dma = iod->first_dma;
|
|
|
|
nvme_cleanup_cmd(req);
|
|
|
|
if (iod->npages == 0)
|
|
dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
|
|
for (i = 0; i < iod->npages; i++) {
|
|
__le64 *prp_list = list[i];
|
|
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
|
|
dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
|
|
prp_dma = next_prp_dma;
|
|
}
|
|
|
|
if (iod->sg != iod->inline_sg)
|
|
kfree(iod->sg);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
|
|
{
|
|
if (be32_to_cpu(pi->ref_tag) == v)
|
|
pi->ref_tag = cpu_to_be32(p);
|
|
}
|
|
|
|
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
|
|
{
|
|
if (be32_to_cpu(pi->ref_tag) == p)
|
|
pi->ref_tag = cpu_to_be32(v);
|
|
}
|
|
|
|
/**
|
|
* nvme_dif_remap - remaps ref tags to bip seed and physical lba
|
|
*
|
|
* The virtual start sector is the one that was originally submitted by the
|
|
* block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
|
|
* start sector may be different. Remap protection information to match the
|
|
* physical LBA on writes, and back to the original seed on reads.
|
|
*
|
|
* Type 0 and 3 do not have a ref tag, so no remapping required.
|
|
*/
|
|
static void nvme_dif_remap(struct request *req,
|
|
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
|
|
{
|
|
struct nvme_ns *ns = req->rq_disk->private_data;
|
|
struct bio_integrity_payload *bip;
|
|
struct t10_pi_tuple *pi;
|
|
void *p, *pmap;
|
|
u32 i, nlb, ts, phys, virt;
|
|
|
|
if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
|
|
return;
|
|
|
|
bip = bio_integrity(req->bio);
|
|
if (!bip)
|
|
return;
|
|
|
|
pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
|
|
|
|
p = pmap;
|
|
virt = bip_get_seed(bip);
|
|
phys = nvme_block_nr(ns, blk_rq_pos(req));
|
|
nlb = (blk_rq_bytes(req) >> ns->lba_shift);
|
|
ts = ns->disk->queue->integrity.tuple_size;
|
|
|
|
for (i = 0; i < nlb; i++, virt++, phys++) {
|
|
pi = (struct t10_pi_tuple *)p;
|
|
dif_swap(phys, virt, pi);
|
|
p += ts;
|
|
}
|
|
kunmap_atomic(pmap);
|
|
}
|
|
#else /* CONFIG_BLK_DEV_INTEGRITY */
|
|
static void nvme_dif_remap(struct request *req,
|
|
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
|
|
{
|
|
}
|
|
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
|
|
{
|
|
}
|
|
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
|
|
int total_len)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct dma_pool *pool;
|
|
int length = total_len;
|
|
struct scatterlist *sg = iod->sg;
|
|
int dma_len = sg_dma_len(sg);
|
|
u64 dma_addr = sg_dma_address(sg);
|
|
u32 page_size = dev->ctrl.page_size;
|
|
int offset = dma_addr & (page_size - 1);
|
|
__le64 *prp_list;
|
|
__le64 **list = iod_list(req);
|
|
dma_addr_t prp_dma;
|
|
int nprps, i;
|
|
|
|
length -= (page_size - offset);
|
|
if (length <= 0)
|
|
return true;
|
|
|
|
dma_len -= (page_size - offset);
|
|
if (dma_len) {
|
|
dma_addr += (page_size - offset);
|
|
} else {
|
|
sg = sg_next(sg);
|
|
dma_addr = sg_dma_address(sg);
|
|
dma_len = sg_dma_len(sg);
|
|
}
|
|
|
|
if (length <= page_size) {
|
|
iod->first_dma = dma_addr;
|
|
return true;
|
|
}
|
|
|
|
nprps = DIV_ROUND_UP(length, page_size);
|
|
if (nprps <= (256 / 8)) {
|
|
pool = dev->prp_small_pool;
|
|
iod->npages = 0;
|
|
} else {
|
|
pool = dev->prp_page_pool;
|
|
iod->npages = 1;
|
|
}
|
|
|
|
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
|
if (!prp_list) {
|
|
iod->first_dma = dma_addr;
|
|
iod->npages = -1;
|
|
return false;
|
|
}
|
|
list[0] = prp_list;
|
|
iod->first_dma = prp_dma;
|
|
i = 0;
|
|
for (;;) {
|
|
if (i == page_size >> 3) {
|
|
__le64 *old_prp_list = prp_list;
|
|
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
|
|
if (!prp_list)
|
|
return false;
|
|
list[iod->npages++] = prp_list;
|
|
prp_list[0] = old_prp_list[i - 1];
|
|
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
|
|
i = 1;
|
|
}
|
|
prp_list[i++] = cpu_to_le64(dma_addr);
|
|
dma_len -= page_size;
|
|
dma_addr += page_size;
|
|
length -= page_size;
|
|
if (length <= 0)
|
|
break;
|
|
if (dma_len > 0)
|
|
continue;
|
|
BUG_ON(dma_len < 0);
|
|
sg = sg_next(sg);
|
|
dma_addr = sg_dma_address(sg);
|
|
dma_len = sg_dma_len(sg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int nvme_map_data(struct nvme_dev *dev, struct request *req,
|
|
unsigned size, struct nvme_command *cmnd)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct request_queue *q = req->q;
|
|
enum dma_data_direction dma_dir = rq_data_dir(req) ?
|
|
DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
int ret = BLK_MQ_RQ_QUEUE_ERROR;
|
|
|
|
sg_init_table(iod->sg, req->nr_phys_segments);
|
|
iod->nents = blk_rq_map_sg(q, req, iod->sg);
|
|
if (!iod->nents)
|
|
goto out;
|
|
|
|
ret = BLK_MQ_RQ_QUEUE_BUSY;
|
|
if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
|
|
goto out;
|
|
|
|
if (!nvme_setup_prps(dev, req, size))
|
|
goto out_unmap;
|
|
|
|
ret = BLK_MQ_RQ_QUEUE_ERROR;
|
|
if (blk_integrity_rq(req)) {
|
|
if (blk_rq_count_integrity_sg(q, req->bio) != 1)
|
|
goto out_unmap;
|
|
|
|
sg_init_table(&iod->meta_sg, 1);
|
|
if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
|
|
goto out_unmap;
|
|
|
|
if (rq_data_dir(req))
|
|
nvme_dif_remap(req, nvme_dif_prep);
|
|
|
|
if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
|
|
goto out_unmap;
|
|
}
|
|
|
|
cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
|
|
cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
|
|
if (blk_integrity_rq(req))
|
|
cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
|
|
return BLK_MQ_RQ_QUEUE_OK;
|
|
|
|
out_unmap:
|
|
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
enum dma_data_direction dma_dir = rq_data_dir(req) ?
|
|
DMA_TO_DEVICE : DMA_FROM_DEVICE;
|
|
|
|
if (iod->nents) {
|
|
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
|
|
if (blk_integrity_rq(req)) {
|
|
if (!rq_data_dir(req))
|
|
nvme_dif_remap(req, nvme_dif_complete);
|
|
dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
|
|
}
|
|
}
|
|
|
|
nvme_free_iod(dev, req);
|
|
}
|
|
|
|
/*
|
|
* NOTE: ns is NULL when called on the admin queue.
|
|
*/
|
|
static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct nvme_ns *ns = hctx->queue->queuedata;
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
struct request *req = bd->rq;
|
|
struct nvme_command cmnd;
|
|
unsigned map_len;
|
|
int ret = BLK_MQ_RQ_QUEUE_OK;
|
|
|
|
/*
|
|
* If formated with metadata, require the block layer provide a buffer
|
|
* unless this namespace is formated such that the metadata can be
|
|
* stripped/generated by the controller with PRACT=1.
|
|
*/
|
|
if (ns && ns->ms && !blk_integrity_rq(req)) {
|
|
if (!(ns->pi_type && ns->ms == 8) &&
|
|
req->cmd_type != REQ_TYPE_DRV_PRIV) {
|
|
blk_mq_end_request(req, -EFAULT);
|
|
return BLK_MQ_RQ_QUEUE_OK;
|
|
}
|
|
}
|
|
|
|
map_len = nvme_map_len(req);
|
|
ret = nvme_init_iod(req, map_len, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvme_setup_cmd(ns, req, &cmnd);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (req->nr_phys_segments)
|
|
ret = nvme_map_data(dev, req, map_len, &cmnd);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
cmnd.common.command_id = req->tag;
|
|
blk_mq_start_request(req);
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
if (unlikely(nvmeq->cq_vector < 0)) {
|
|
if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
|
|
ret = BLK_MQ_RQ_QUEUE_BUSY;
|
|
else
|
|
ret = BLK_MQ_RQ_QUEUE_ERROR;
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
goto out;
|
|
}
|
|
__nvme_submit_cmd(nvmeq, &cmnd);
|
|
nvme_process_cq(nvmeq);
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
return BLK_MQ_RQ_QUEUE_OK;
|
|
out:
|
|
nvme_free_iod(dev, req);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_complete_rq(struct request *req)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_dev *dev = iod->nvmeq->dev;
|
|
int error = 0;
|
|
|
|
nvme_unmap_data(dev, req);
|
|
|
|
if (unlikely(req->errors)) {
|
|
if (nvme_req_needs_retry(req, req->errors)) {
|
|
nvme_requeue_req(req);
|
|
return;
|
|
}
|
|
|
|
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
|
|
error = req->errors;
|
|
else
|
|
error = nvme_error_status(req->errors);
|
|
}
|
|
|
|
if (unlikely(iod->aborted)) {
|
|
dev_warn(dev->ctrl.device,
|
|
"completing aborted command with status: %04x\n",
|
|
req->errors);
|
|
}
|
|
|
|
blk_mq_end_request(req, error);
|
|
}
|
|
|
|
/* We read the CQE phase first to check if the rest of the entry is valid */
|
|
static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
|
|
u16 phase)
|
|
{
|
|
return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
|
|
}
|
|
|
|
static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
|
|
{
|
|
u16 head, phase;
|
|
|
|
head = nvmeq->cq_head;
|
|
phase = nvmeq->cq_phase;
|
|
|
|
while (nvme_cqe_valid(nvmeq, head, phase)) {
|
|
struct nvme_completion cqe = nvmeq->cqes[head];
|
|
struct request *req;
|
|
|
|
if (++head == nvmeq->q_depth) {
|
|
head = 0;
|
|
phase = !phase;
|
|
}
|
|
|
|
if (tag && *tag == cqe.command_id)
|
|
*tag = -1;
|
|
|
|
if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
|
|
dev_warn(nvmeq->dev->ctrl.device,
|
|
"invalid id %d completed on queue %d\n",
|
|
cqe.command_id, le16_to_cpu(cqe.sq_id));
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* AEN requests are special as they don't time out and can
|
|
* survive any kind of queue freeze and often don't respond to
|
|
* aborts. We don't even bother to allocate a struct request
|
|
* for them but rather special case them here.
|
|
*/
|
|
if (unlikely(nvmeq->qid == 0 &&
|
|
cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
|
|
nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
|
|
continue;
|
|
}
|
|
|
|
req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
|
|
if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
|
|
memcpy(req->special, &cqe, sizeof(cqe));
|
|
blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
|
|
|
|
}
|
|
|
|
/* If the controller ignores the cq head doorbell and continuously
|
|
* writes to the queue, it is theoretically possible to wrap around
|
|
* the queue twice and mistakenly return IRQ_NONE. Linux only
|
|
* requires that 0.1% of your interrupts are handled, so this isn't
|
|
* a big problem.
|
|
*/
|
|
if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
|
|
return;
|
|
|
|
if (likely(nvmeq->cq_vector >= 0))
|
|
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
|
|
nvmeq->cq_head = head;
|
|
nvmeq->cq_phase = phase;
|
|
|
|
nvmeq->cqe_seen = 1;
|
|
}
|
|
|
|
static void nvme_process_cq(struct nvme_queue *nvmeq)
|
|
{
|
|
__nvme_process_cq(nvmeq, NULL);
|
|
}
|
|
|
|
static irqreturn_t nvme_irq(int irq, void *data)
|
|
{
|
|
irqreturn_t result;
|
|
struct nvme_queue *nvmeq = data;
|
|
spin_lock(&nvmeq->q_lock);
|
|
nvme_process_cq(nvmeq);
|
|
result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
|
|
nvmeq->cqe_seen = 0;
|
|
spin_unlock(&nvmeq->q_lock);
|
|
return result;
|
|
}
|
|
|
|
static irqreturn_t nvme_irq_check(int irq, void *data)
|
|
{
|
|
struct nvme_queue *nvmeq = data;
|
|
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
|
|
return IRQ_WAKE_THREAD;
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
|
|
{
|
|
struct nvme_queue *nvmeq = hctx->driver_data;
|
|
|
|
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
__nvme_process_cq(nvmeq, &tag);
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
|
|
if (tag == -1)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
|
|
{
|
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
|
struct nvme_queue *nvmeq = dev->queues[0];
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = nvme_admin_async_event;
|
|
c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
__nvme_submit_cmd(nvmeq, &c);
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
}
|
|
|
|
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.delete_queue.opcode = opcode;
|
|
c.delete_queue.qid = cpu_to_le16(id);
|
|
|
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
}
|
|
|
|
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
|
|
|
|
/*
|
|
* Note: we (ab)use the fact the the prp fields survive if no data
|
|
* is attached to the request.
|
|
*/
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_cq.opcode = nvme_admin_create_cq;
|
|
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
|
|
c.create_cq.cqid = cpu_to_le16(qid);
|
|
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_cq.cq_flags = cpu_to_le16(flags);
|
|
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
|
|
|
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
}
|
|
|
|
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
|
|
|
|
/*
|
|
* Note: we (ab)use the fact the the prp fields survive if no data
|
|
* is attached to the request.
|
|
*/
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_sq.opcode = nvme_admin_create_sq;
|
|
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
|
|
c.create_sq.sqid = cpu_to_le16(qid);
|
|
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_sq.sq_flags = cpu_to_le16(flags);
|
|
c.create_sq.cqid = cpu_to_le16(qid);
|
|
|
|
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
|
|
}
|
|
|
|
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
|
|
{
|
|
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
|
|
}
|
|
|
|
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
|
|
{
|
|
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
|
|
}
|
|
|
|
static void abort_endio(struct request *req, int error)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_queue *nvmeq = iod->nvmeq;
|
|
u16 status = req->errors;
|
|
|
|
dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
|
|
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
|
|
blk_mq_free_request(req);
|
|
}
|
|
|
|
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
|
|
{
|
|
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
|
|
struct nvme_queue *nvmeq = iod->nvmeq;
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
struct request *abort_req;
|
|
struct nvme_command cmd;
|
|
|
|
/*
|
|
* Shutdown immediately if controller times out while starting. The
|
|
* reset work will see the pci device disabled when it gets the forced
|
|
* cancellation error. All outstanding requests are completed on
|
|
* shutdown, so we return BLK_EH_HANDLED.
|
|
*/
|
|
if (dev->ctrl.state == NVME_CTRL_RESETTING) {
|
|
dev_warn(dev->ctrl.device,
|
|
"I/O %d QID %d timeout, disable controller\n",
|
|
req->tag, nvmeq->qid);
|
|
nvme_dev_disable(dev, false);
|
|
req->errors = NVME_SC_CANCELLED;
|
|
return BLK_EH_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Shutdown the controller immediately and schedule a reset if the
|
|
* command was already aborted once before and still hasn't been
|
|
* returned to the driver, or if this is the admin queue.
|
|
*/
|
|
if (!nvmeq->qid || iod->aborted) {
|
|
dev_warn(dev->ctrl.device,
|
|
"I/O %d QID %d timeout, reset controller\n",
|
|
req->tag, nvmeq->qid);
|
|
nvme_dev_disable(dev, false);
|
|
queue_work(nvme_workq, &dev->reset_work);
|
|
|
|
/*
|
|
* Mark the request as handled, since the inline shutdown
|
|
* forces all outstanding requests to complete.
|
|
*/
|
|
req->errors = NVME_SC_CANCELLED;
|
|
return BLK_EH_HANDLED;
|
|
}
|
|
|
|
iod->aborted = 1;
|
|
|
|
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
|
|
atomic_inc(&dev->ctrl.abort_limit);
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.abort.opcode = nvme_admin_abort_cmd;
|
|
cmd.abort.cid = req->tag;
|
|
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
|
|
|
|
dev_warn(nvmeq->dev->ctrl.device,
|
|
"I/O %d QID %d timeout, aborting\n",
|
|
req->tag, nvmeq->qid);
|
|
|
|
abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
|
|
BLK_MQ_REQ_NOWAIT);
|
|
if (IS_ERR(abort_req)) {
|
|
atomic_inc(&dev->ctrl.abort_limit);
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
abort_req->timeout = ADMIN_TIMEOUT;
|
|
abort_req->end_io_data = NULL;
|
|
blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
|
|
|
|
/*
|
|
* The aborted req will be completed on receiving the abort req.
|
|
* We enable the timer again. If hit twice, it'll cause a device reset,
|
|
* as the device then is in a faulty state.
|
|
*/
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
static void nvme_cancel_io(struct request *req, void *data, bool reserved)
|
|
{
|
|
int status;
|
|
|
|
if (!blk_mq_request_started(req))
|
|
return;
|
|
|
|
dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
|
|
"Cancelling I/O %d", req->tag);
|
|
|
|
status = NVME_SC_ABORT_REQ;
|
|
if (blk_queue_dying(req->q))
|
|
status |= NVME_SC_DNR;
|
|
blk_mq_complete_request(req, status);
|
|
}
|
|
|
|
static void nvme_free_queue(struct nvme_queue *nvmeq)
|
|
{
|
|
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
|
|
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
|
|
if (nvmeq->sq_cmds)
|
|
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
|
|
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
|
|
kfree(nvmeq);
|
|
}
|
|
|
|
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
|
|
{
|
|
int i;
|
|
|
|
for (i = dev->queue_count - 1; i >= lowest; i--) {
|
|
struct nvme_queue *nvmeq = dev->queues[i];
|
|
dev->queue_count--;
|
|
dev->queues[i] = NULL;
|
|
nvme_free_queue(nvmeq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nvme_suspend_queue - put queue into suspended state
|
|
* @nvmeq - queue to suspend
|
|
*/
|
|
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
|
|
{
|
|
int vector;
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
if (nvmeq->cq_vector == -1) {
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
return 1;
|
|
}
|
|
vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
|
|
nvmeq->dev->online_queues--;
|
|
nvmeq->cq_vector = -1;
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
|
|
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
|
|
blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
|
|
|
|
irq_set_affinity_hint(vector, NULL);
|
|
free_irq(vector, nvmeq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
|
|
{
|
|
struct nvme_queue *nvmeq = dev->queues[0];
|
|
|
|
if (!nvmeq)
|
|
return;
|
|
if (nvme_suspend_queue(nvmeq))
|
|
return;
|
|
|
|
if (shutdown)
|
|
nvme_shutdown_ctrl(&dev->ctrl);
|
|
else
|
|
nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
|
|
dev->bar + NVME_REG_CAP));
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
nvme_process_cq(nvmeq);
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
}
|
|
|
|
static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
|
|
int entry_size)
|
|
{
|
|
int q_depth = dev->q_depth;
|
|
unsigned q_size_aligned = roundup(q_depth * entry_size,
|
|
dev->ctrl.page_size);
|
|
|
|
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
|
|
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
|
|
mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
|
|
q_depth = div_u64(mem_per_q, entry_size);
|
|
|
|
/*
|
|
* Ensure the reduced q_depth is above some threshold where it
|
|
* would be better to map queues in system memory with the
|
|
* original depth
|
|
*/
|
|
if (q_depth < 64)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return q_depth;
|
|
}
|
|
|
|
static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
|
|
int qid, int depth)
|
|
{
|
|
if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
|
|
unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
|
|
dev->ctrl.page_size);
|
|
nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
|
|
nvmeq->sq_cmds_io = dev->cmb + offset;
|
|
} else {
|
|
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
|
|
&nvmeq->sq_dma_addr, GFP_KERNEL);
|
|
if (!nvmeq->sq_cmds)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
|
|
int depth)
|
|
{
|
|
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
|
|
if (!nvmeq)
|
|
return NULL;
|
|
|
|
nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
|
|
&nvmeq->cq_dma_addr, GFP_KERNEL);
|
|
if (!nvmeq->cqes)
|
|
goto free_nvmeq;
|
|
|
|
if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
|
|
goto free_cqdma;
|
|
|
|
nvmeq->q_dmadev = dev->dev;
|
|
nvmeq->dev = dev;
|
|
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
|
|
dev->ctrl.instance, qid);
|
|
spin_lock_init(&nvmeq->q_lock);
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
|
nvmeq->q_depth = depth;
|
|
nvmeq->qid = qid;
|
|
nvmeq->cq_vector = -1;
|
|
dev->queues[qid] = nvmeq;
|
|
dev->queue_count++;
|
|
|
|
return nvmeq;
|
|
|
|
free_cqdma:
|
|
dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
|
|
nvmeq->cq_dma_addr);
|
|
free_nvmeq:
|
|
kfree(nvmeq);
|
|
return NULL;
|
|
}
|
|
|
|
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
|
|
const char *name)
|
|
{
|
|
if (use_threaded_interrupts)
|
|
return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
|
|
nvme_irq_check, nvme_irq, IRQF_SHARED,
|
|
name, nvmeq);
|
|
return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
|
|
IRQF_SHARED, name, nvmeq);
|
|
}
|
|
|
|
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
|
|
{
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
|
|
spin_lock_irq(&nvmeq->q_lock);
|
|
nvmeq->sq_tail = 0;
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
|
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
|
|
dev->online_queues++;
|
|
spin_unlock_irq(&nvmeq->q_lock);
|
|
}
|
|
|
|
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
|
|
{
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
int result;
|
|
|
|
nvmeq->cq_vector = qid - 1;
|
|
result = adapter_alloc_cq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
result = adapter_alloc_sq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
goto release_cq;
|
|
|
|
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
|
|
if (result < 0)
|
|
goto release_sq;
|
|
|
|
nvme_init_queue(nvmeq, qid);
|
|
return result;
|
|
|
|
release_sq:
|
|
adapter_delete_sq(dev, qid);
|
|
release_cq:
|
|
adapter_delete_cq(dev, qid);
|
|
return result;
|
|
}
|
|
|
|
static struct blk_mq_ops nvme_mq_admin_ops = {
|
|
.queue_rq = nvme_queue_rq,
|
|
.complete = nvme_complete_rq,
|
|
.map_queue = blk_mq_map_queue,
|
|
.init_hctx = nvme_admin_init_hctx,
|
|
.exit_hctx = nvme_admin_exit_hctx,
|
|
.init_request = nvme_admin_init_request,
|
|
.timeout = nvme_timeout,
|
|
};
|
|
|
|
static struct blk_mq_ops nvme_mq_ops = {
|
|
.queue_rq = nvme_queue_rq,
|
|
.complete = nvme_complete_rq,
|
|
.map_queue = blk_mq_map_queue,
|
|
.init_hctx = nvme_init_hctx,
|
|
.init_request = nvme_init_request,
|
|
.timeout = nvme_timeout,
|
|
.poll = nvme_poll,
|
|
};
|
|
|
|
static void nvme_dev_remove_admin(struct nvme_dev *dev)
|
|
{
|
|
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
|
|
/*
|
|
* If the controller was reset during removal, it's possible
|
|
* user requests may be waiting on a stopped queue. Start the
|
|
* queue to flush these to completion.
|
|
*/
|
|
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
|
|
blk_cleanup_queue(dev->ctrl.admin_q);
|
|
blk_mq_free_tag_set(&dev->admin_tagset);
|
|
}
|
|
}
|
|
|
|
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
|
|
{
|
|
if (!dev->ctrl.admin_q) {
|
|
dev->admin_tagset.ops = &nvme_mq_admin_ops;
|
|
dev->admin_tagset.nr_hw_queues = 1;
|
|
|
|
/*
|
|
* Subtract one to leave an empty queue entry for 'Full Queue'
|
|
* condition. See NVM-Express 1.2 specification, section 4.1.2.
|
|
*/
|
|
dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
|
|
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
|
|
dev->admin_tagset.numa_node = dev_to_node(dev->dev);
|
|
dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
|
|
dev->admin_tagset.driver_data = dev;
|
|
|
|
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
|
|
return -ENOMEM;
|
|
|
|
dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
|
|
if (IS_ERR(dev->ctrl.admin_q)) {
|
|
blk_mq_free_tag_set(&dev->admin_tagset);
|
|
return -ENOMEM;
|
|
}
|
|
if (!blk_get_queue(dev->ctrl.admin_q)) {
|
|
nvme_dev_remove_admin(dev);
|
|
dev->ctrl.admin_q = NULL;
|
|
return -ENODEV;
|
|
}
|
|
} else
|
|
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_configure_admin_queue(struct nvme_dev *dev)
|
|
{
|
|
int result;
|
|
u32 aqa;
|
|
u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
|
|
struct nvme_queue *nvmeq;
|
|
|
|
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
|
|
NVME_CAP_NSSRC(cap) : 0;
|
|
|
|
if (dev->subsystem &&
|
|
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
|
|
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
|
|
|
|
result = nvme_disable_ctrl(&dev->ctrl, cap);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
nvmeq = dev->queues[0];
|
|
if (!nvmeq) {
|
|
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
|
|
if (!nvmeq)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
aqa = nvmeq->q_depth - 1;
|
|
aqa |= aqa << 16;
|
|
|
|
writel(aqa, dev->bar + NVME_REG_AQA);
|
|
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
|
|
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
|
|
|
|
result = nvme_enable_ctrl(&dev->ctrl, cap);
|
|
if (result)
|
|
goto free_nvmeq;
|
|
|
|
nvmeq->cq_vector = 0;
|
|
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
|
|
if (result) {
|
|
nvmeq->cq_vector = -1;
|
|
goto free_nvmeq;
|
|
}
|
|
|
|
return result;
|
|
|
|
free_nvmeq:
|
|
nvme_free_queues(dev, 0);
|
|
return result;
|
|
}
|
|
|
|
static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
|
|
{
|
|
|
|
/* If true, indicates loss of adapter communication, possibly by a
|
|
* NVMe Subsystem reset.
|
|
*/
|
|
bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
|
|
|
|
/* If there is a reset ongoing, we shouldn't reset again. */
|
|
if (work_busy(&dev->reset_work))
|
|
return false;
|
|
|
|
/* We shouldn't reset unless the controller is on fatal error state
|
|
* _or_ if we lost the communication with it.
|
|
*/
|
|
if (!(csts & NVME_CSTS_CFS) && !nssro)
|
|
return false;
|
|
|
|
/* If PCI error recovery process is happening, we cannot reset or
|
|
* the recovery mechanism will surely fail.
|
|
*/
|
|
if (pci_channel_offline(to_pci_dev(dev->dev)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nvme_watchdog_timer(unsigned long data)
|
|
{
|
|
struct nvme_dev *dev = (struct nvme_dev *)data;
|
|
u32 csts = readl(dev->bar + NVME_REG_CSTS);
|
|
|
|
/* Skip controllers under certain specific conditions. */
|
|
if (nvme_should_reset(dev, csts)) {
|
|
if (queue_work(nvme_workq, &dev->reset_work))
|
|
dev_warn(dev->dev,
|
|
"Failed status: 0x%x, reset controller.\n",
|
|
csts);
|
|
return;
|
|
}
|
|
|
|
mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
|
|
}
|
|
|
|
static int nvme_create_io_queues(struct nvme_dev *dev)
|
|
{
|
|
unsigned i, max;
|
|
int ret = 0;
|
|
|
|
for (i = dev->queue_count; i <= dev->max_qid; i++) {
|
|
if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
max = min(dev->max_qid, dev->queue_count - 1);
|
|
for (i = dev->online_queues; i <= max; i++) {
|
|
ret = nvme_create_queue(dev->queues[i], i);
|
|
if (ret) {
|
|
nvme_free_queues(dev, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ignore failing Create SQ/CQ commands, we can continue with less
|
|
* than the desired aount of queues, and even a controller without
|
|
* I/O queues an still be used to issue admin commands. This might
|
|
* be useful to upgrade a buggy firmware for example.
|
|
*/
|
|
return ret >= 0 ? 0 : ret;
|
|
}
|
|
|
|
static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
|
|
{
|
|
u64 szu, size, offset;
|
|
u32 cmbloc;
|
|
resource_size_t bar_size;
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
void __iomem *cmb;
|
|
dma_addr_t dma_addr;
|
|
|
|
if (!use_cmb_sqes)
|
|
return NULL;
|
|
|
|
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
|
|
if (!(NVME_CMB_SZ(dev->cmbsz)))
|
|
return NULL;
|
|
|
|
cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
|
|
|
|
szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
|
|
size = szu * NVME_CMB_SZ(dev->cmbsz);
|
|
offset = szu * NVME_CMB_OFST(cmbloc);
|
|
bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
|
|
|
|
if (offset > bar_size)
|
|
return NULL;
|
|
|
|
/*
|
|
* Controllers may support a CMB size larger than their BAR,
|
|
* for example, due to being behind a bridge. Reduce the CMB to
|
|
* the reported size of the BAR
|
|
*/
|
|
if (size > bar_size - offset)
|
|
size = bar_size - offset;
|
|
|
|
dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
|
|
cmb = ioremap_wc(dma_addr, size);
|
|
if (!cmb)
|
|
return NULL;
|
|
|
|
dev->cmb_dma_addr = dma_addr;
|
|
dev->cmb_size = size;
|
|
return cmb;
|
|
}
|
|
|
|
static inline void nvme_release_cmb(struct nvme_dev *dev)
|
|
{
|
|
if (dev->cmb) {
|
|
iounmap(dev->cmb);
|
|
dev->cmb = NULL;
|
|
}
|
|
}
|
|
|
|
static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
|
|
{
|
|
return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
|
|
}
|
|
|
|
static int nvme_setup_io_queues(struct nvme_dev *dev)
|
|
{
|
|
struct nvme_queue *adminq = dev->queues[0];
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
int result, i, vecs, nr_io_queues, size;
|
|
|
|
nr_io_queues = num_online_cpus();
|
|
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
/*
|
|
* Degraded controllers might return an error when setting the queue
|
|
* count. We still want to be able to bring them online and offer
|
|
* access to the admin queue, as that might be only way to fix them up.
|
|
*/
|
|
if (result > 0) {
|
|
dev_err(dev->ctrl.device,
|
|
"Could not set queue count (%d)\n", result);
|
|
return 0;
|
|
}
|
|
|
|
if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
|
|
result = nvme_cmb_qdepth(dev, nr_io_queues,
|
|
sizeof(struct nvme_command));
|
|
if (result > 0)
|
|
dev->q_depth = result;
|
|
else
|
|
nvme_release_cmb(dev);
|
|
}
|
|
|
|
size = db_bar_size(dev, nr_io_queues);
|
|
if (size > 8192) {
|
|
iounmap(dev->bar);
|
|
do {
|
|
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
|
|
if (dev->bar)
|
|
break;
|
|
if (!--nr_io_queues)
|
|
return -ENOMEM;
|
|
size = db_bar_size(dev, nr_io_queues);
|
|
} while (1);
|
|
dev->dbs = dev->bar + 4096;
|
|
adminq->q_db = dev->dbs;
|
|
}
|
|
|
|
/* Deregister the admin queue's interrupt */
|
|
free_irq(dev->entry[0].vector, adminq);
|
|
|
|
/*
|
|
* If we enable msix early due to not intx, disable it again before
|
|
* setting up the full range we need.
|
|
*/
|
|
if (pdev->msi_enabled)
|
|
pci_disable_msi(pdev);
|
|
else if (pdev->msix_enabled)
|
|
pci_disable_msix(pdev);
|
|
|
|
for (i = 0; i < nr_io_queues; i++)
|
|
dev->entry[i].entry = i;
|
|
vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
|
|
if (vecs < 0) {
|
|
vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
|
|
if (vecs < 0) {
|
|
vecs = 1;
|
|
} else {
|
|
for (i = 0; i < vecs; i++)
|
|
dev->entry[i].vector = i + pdev->irq;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Should investigate if there's a performance win from allocating
|
|
* more queues than interrupt vectors; it might allow the submission
|
|
* path to scale better, even if the receive path is limited by the
|
|
* number of interrupts.
|
|
*/
|
|
nr_io_queues = vecs;
|
|
dev->max_qid = nr_io_queues;
|
|
|
|
result = queue_request_irq(dev, adminq, adminq->irqname);
|
|
if (result) {
|
|
adminq->cq_vector = -1;
|
|
goto free_queues;
|
|
}
|
|
return nvme_create_io_queues(dev);
|
|
|
|
free_queues:
|
|
nvme_free_queues(dev, 1);
|
|
return result;
|
|
}
|
|
|
|
static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
|
struct nvme_queue *nvmeq;
|
|
int i;
|
|
|
|
for (i = 0; i < dev->online_queues; i++) {
|
|
nvmeq = dev->queues[i];
|
|
|
|
if (!nvmeq->tags || !(*nvmeq->tags))
|
|
continue;
|
|
|
|
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
|
|
blk_mq_tags_cpumask(*nvmeq->tags));
|
|
}
|
|
}
|
|
|
|
static void nvme_del_queue_end(struct request *req, int error)
|
|
{
|
|
struct nvme_queue *nvmeq = req->end_io_data;
|
|
|
|
blk_mq_free_request(req);
|
|
complete(&nvmeq->dev->ioq_wait);
|
|
}
|
|
|
|
static void nvme_del_cq_end(struct request *req, int error)
|
|
{
|
|
struct nvme_queue *nvmeq = req->end_io_data;
|
|
|
|
if (!error) {
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* We might be called with the AQ q_lock held
|
|
* and the I/O queue q_lock should always
|
|
* nest inside the AQ one.
|
|
*/
|
|
spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
|
|
SINGLE_DEPTH_NESTING);
|
|
nvme_process_cq(nvmeq);
|
|
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
|
|
}
|
|
|
|
nvme_del_queue_end(req, error);
|
|
}
|
|
|
|
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
|
|
{
|
|
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
|
|
struct request *req;
|
|
struct nvme_command cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.delete_queue.opcode = opcode;
|
|
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
|
|
|
|
req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
req->timeout = ADMIN_TIMEOUT;
|
|
req->end_io_data = nvmeq;
|
|
|
|
blk_execute_rq_nowait(q, NULL, req, false,
|
|
opcode == nvme_admin_delete_cq ?
|
|
nvme_del_cq_end : nvme_del_queue_end);
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_disable_io_queues(struct nvme_dev *dev)
|
|
{
|
|
int pass, queues = dev->online_queues - 1;
|
|
unsigned long timeout;
|
|
u8 opcode = nvme_admin_delete_sq;
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
int sent = 0, i = queues;
|
|
|
|
reinit_completion(&dev->ioq_wait);
|
|
retry:
|
|
timeout = ADMIN_TIMEOUT;
|
|
for (; i > 0; i--) {
|
|
struct nvme_queue *nvmeq = dev->queues[i];
|
|
|
|
if (!pass)
|
|
nvme_suspend_queue(nvmeq);
|
|
if (nvme_delete_queue(nvmeq, opcode))
|
|
break;
|
|
++sent;
|
|
}
|
|
while (sent--) {
|
|
timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
|
|
if (timeout == 0)
|
|
return;
|
|
if (i)
|
|
goto retry;
|
|
}
|
|
opcode = nvme_admin_delete_cq;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return: error value if an error occurred setting up the queues or calling
|
|
* Identify Device. 0 if these succeeded, even if adding some of the
|
|
* namespaces failed. At the moment, these failures are silent. TBD which
|
|
* failures should be reported.
|
|
*/
|
|
static int nvme_dev_add(struct nvme_dev *dev)
|
|
{
|
|
if (!dev->ctrl.tagset) {
|
|
dev->tagset.ops = &nvme_mq_ops;
|
|
dev->tagset.nr_hw_queues = dev->online_queues - 1;
|
|
dev->tagset.timeout = NVME_IO_TIMEOUT;
|
|
dev->tagset.numa_node = dev_to_node(dev->dev);
|
|
dev->tagset.queue_depth =
|
|
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
|
|
dev->tagset.cmd_size = nvme_cmd_size(dev);
|
|
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
|
|
dev->tagset.driver_data = dev;
|
|
|
|
if (blk_mq_alloc_tag_set(&dev->tagset))
|
|
return 0;
|
|
dev->ctrl.tagset = &dev->tagset;
|
|
} else {
|
|
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
|
|
|
|
/* Free previously allocated queues that are no longer usable */
|
|
nvme_free_queues(dev, dev->online_queues);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_enable(struct nvme_dev *dev)
|
|
{
|
|
u64 cap;
|
|
int result = -ENOMEM;
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (pci_enable_device_mem(pdev))
|
|
return result;
|
|
|
|
pci_set_master(pdev);
|
|
|
|
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
|
|
dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
|
|
goto disable;
|
|
|
|
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
|
|
result = -ENODEV;
|
|
goto disable;
|
|
}
|
|
|
|
/*
|
|
* Some devices and/or platforms don't advertise or work with INTx
|
|
* interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
|
|
* adjust this later.
|
|
*/
|
|
if (pci_enable_msix(pdev, dev->entry, 1)) {
|
|
pci_enable_msi(pdev);
|
|
dev->entry[0].vector = pdev->irq;
|
|
}
|
|
|
|
if (!dev->entry[0].vector) {
|
|
result = -ENODEV;
|
|
goto disable;
|
|
}
|
|
|
|
cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
|
|
|
|
dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
|
|
dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
|
|
dev->dbs = dev->bar + 4096;
|
|
|
|
/*
|
|
* Temporary fix for the Apple controller found in the MacBook8,1 and
|
|
* some MacBook7,1 to avoid controller resets and data loss.
|
|
*/
|
|
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
|
|
dev->q_depth = 2;
|
|
dev_warn(dev->dev, "detected Apple NVMe controller, set "
|
|
"queue depth=%u to work around controller resets\n",
|
|
dev->q_depth);
|
|
}
|
|
|
|
if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
|
|
dev->cmb = nvme_map_cmb(dev);
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
pci_save_state(pdev);
|
|
return 0;
|
|
|
|
disable:
|
|
pci_disable_device(pdev);
|
|
return result;
|
|
}
|
|
|
|
static void nvme_dev_unmap(struct nvme_dev *dev)
|
|
{
|
|
if (dev->bar)
|
|
iounmap(dev->bar);
|
|
pci_release_regions(to_pci_dev(dev->dev));
|
|
}
|
|
|
|
static void nvme_pci_disable(struct nvme_dev *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
if (pdev->msi_enabled)
|
|
pci_disable_msi(pdev);
|
|
else if (pdev->msix_enabled)
|
|
pci_disable_msix(pdev);
|
|
|
|
if (pci_is_enabled(pdev)) {
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
pci_disable_device(pdev);
|
|
}
|
|
}
|
|
|
|
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
|
|
{
|
|
int i;
|
|
u32 csts = -1;
|
|
|
|
del_timer_sync(&dev->watchdog_timer);
|
|
|
|
mutex_lock(&dev->shutdown_lock);
|
|
if (pci_is_enabled(to_pci_dev(dev->dev))) {
|
|
nvme_stop_queues(&dev->ctrl);
|
|
csts = readl(dev->bar + NVME_REG_CSTS);
|
|
}
|
|
if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
|
|
for (i = dev->queue_count - 1; i >= 0; i--) {
|
|
struct nvme_queue *nvmeq = dev->queues[i];
|
|
nvme_suspend_queue(nvmeq);
|
|
}
|
|
} else {
|
|
nvme_disable_io_queues(dev);
|
|
nvme_disable_admin_queue(dev, shutdown);
|
|
}
|
|
nvme_pci_disable(dev);
|
|
|
|
blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
|
|
blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
|
|
mutex_unlock(&dev->shutdown_lock);
|
|
}
|
|
|
|
static int nvme_setup_prp_pools(struct nvme_dev *dev)
|
|
{
|
|
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
|
|
PAGE_SIZE, PAGE_SIZE, 0);
|
|
if (!dev->prp_page_pool)
|
|
return -ENOMEM;
|
|
|
|
/* Optimisation for I/Os between 4k and 128k */
|
|
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
|
|
256, 256, 0);
|
|
if (!dev->prp_small_pool) {
|
|
dma_pool_destroy(dev->prp_page_pool);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_release_prp_pools(struct nvme_dev *dev)
|
|
{
|
|
dma_pool_destroy(dev->prp_page_pool);
|
|
dma_pool_destroy(dev->prp_small_pool);
|
|
}
|
|
|
|
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_dev *dev = to_nvme_dev(ctrl);
|
|
|
|
put_device(dev->dev);
|
|
if (dev->tagset.tags)
|
|
blk_mq_free_tag_set(&dev->tagset);
|
|
if (dev->ctrl.admin_q)
|
|
blk_put_queue(dev->ctrl.admin_q);
|
|
kfree(dev->queues);
|
|
kfree(dev->entry);
|
|
kfree(dev);
|
|
}
|
|
|
|
static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
|
|
{
|
|
dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
|
|
|
|
kref_get(&dev->ctrl.kref);
|
|
nvme_dev_disable(dev, false);
|
|
if (!schedule_work(&dev->remove_work))
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
static void nvme_reset_work(struct work_struct *work)
|
|
{
|
|
struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
|
|
int result = -ENODEV;
|
|
|
|
if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
|
|
goto out;
|
|
|
|
/*
|
|
* If we're called to reset a live controller first shut it down before
|
|
* moving on.
|
|
*/
|
|
if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
|
|
nvme_dev_disable(dev, false);
|
|
|
|
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
|
|
goto out;
|
|
|
|
result = nvme_pci_enable(dev);
|
|
if (result)
|
|
goto out;
|
|
|
|
result = nvme_configure_admin_queue(dev);
|
|
if (result)
|
|
goto out;
|
|
|
|
nvme_init_queue(dev->queues[0], 0);
|
|
result = nvme_alloc_admin_tags(dev);
|
|
if (result)
|
|
goto out;
|
|
|
|
result = nvme_init_identify(&dev->ctrl);
|
|
if (result)
|
|
goto out;
|
|
|
|
result = nvme_setup_io_queues(dev);
|
|
if (result)
|
|
goto out;
|
|
|
|
/*
|
|
* A controller that can not execute IO typically requires user
|
|
* intervention to correct. For such degraded controllers, the driver
|
|
* should not submit commands the user did not request, so skip
|
|
* registering for asynchronous event notification on this condition.
|
|
*/
|
|
if (dev->online_queues > 1)
|
|
nvme_queue_async_events(&dev->ctrl);
|
|
|
|
mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
|
|
|
|
/*
|
|
* Keep the controller around but remove all namespaces if we don't have
|
|
* any working I/O queue.
|
|
*/
|
|
if (dev->online_queues < 2) {
|
|
dev_warn(dev->ctrl.device, "IO queues not created\n");
|
|
nvme_kill_queues(&dev->ctrl);
|
|
nvme_remove_namespaces(&dev->ctrl);
|
|
} else {
|
|
nvme_start_queues(&dev->ctrl);
|
|
nvme_dev_add(dev);
|
|
}
|
|
|
|
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
|
|
dev_warn(dev->ctrl.device, "failed to mark controller live\n");
|
|
goto out;
|
|
}
|
|
|
|
if (dev->online_queues > 1)
|
|
nvme_queue_scan(&dev->ctrl);
|
|
return;
|
|
|
|
out:
|
|
nvme_remove_dead_ctrl(dev, result);
|
|
}
|
|
|
|
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
nvme_kill_queues(&dev->ctrl);
|
|
if (pci_get_drvdata(pdev))
|
|
device_release_driver(&pdev->dev);
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
static int nvme_reset(struct nvme_dev *dev)
|
|
{
|
|
if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
|
|
return -ENODEV;
|
|
|
|
if (!queue_work(nvme_workq, &dev->reset_work))
|
|
return -EBUSY;
|
|
|
|
flush_work(&dev->reset_work);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
|
|
{
|
|
*val = readl(to_nvme_dev(ctrl)->bar + off);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
|
|
{
|
|
writel(val, to_nvme_dev(ctrl)->bar + off);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
|
|
{
|
|
*val = readq(to_nvme_dev(ctrl)->bar + off);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
return nvme_reset(to_nvme_dev(ctrl));
|
|
}
|
|
|
|
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
|
|
.module = THIS_MODULE,
|
|
.reg_read32 = nvme_pci_reg_read32,
|
|
.reg_write32 = nvme_pci_reg_write32,
|
|
.reg_read64 = nvme_pci_reg_read64,
|
|
.reset_ctrl = nvme_pci_reset_ctrl,
|
|
.free_ctrl = nvme_pci_free_ctrl,
|
|
.post_scan = nvme_pci_post_scan,
|
|
.submit_async_event = nvme_pci_submit_async_event,
|
|
};
|
|
|
|
static int nvme_dev_map(struct nvme_dev *dev)
|
|
{
|
|
int bars;
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
|
|
bars = pci_select_bars(pdev, IORESOURCE_MEM);
|
|
if (!bars)
|
|
return -ENODEV;
|
|
if (pci_request_selected_regions(pdev, bars, "nvme"))
|
|
return -ENODEV;
|
|
|
|
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
|
|
if (!dev->bar)
|
|
goto release;
|
|
|
|
return 0;
|
|
release:
|
|
pci_release_regions(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
int node, result = -ENOMEM;
|
|
struct nvme_dev *dev;
|
|
|
|
node = dev_to_node(&pdev->dev);
|
|
if (node == NUMA_NO_NODE)
|
|
set_dev_node(&pdev->dev, 0);
|
|
|
|
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
|
|
GFP_KERNEL, node);
|
|
if (!dev->entry)
|
|
goto free;
|
|
dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
|
|
GFP_KERNEL, node);
|
|
if (!dev->queues)
|
|
goto free;
|
|
|
|
dev->dev = get_device(&pdev->dev);
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
result = nvme_dev_map(dev);
|
|
if (result)
|
|
goto free;
|
|
|
|
INIT_WORK(&dev->reset_work, nvme_reset_work);
|
|
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
|
|
setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
|
|
(unsigned long)dev);
|
|
mutex_init(&dev->shutdown_lock);
|
|
init_completion(&dev->ioq_wait);
|
|
|
|
result = nvme_setup_prp_pools(dev);
|
|
if (result)
|
|
goto put_pci;
|
|
|
|
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
|
|
id->driver_data);
|
|
if (result)
|
|
goto release_pools;
|
|
|
|
dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
|
|
|
|
queue_work(nvme_workq, &dev->reset_work);
|
|
return 0;
|
|
|
|
release_pools:
|
|
nvme_release_prp_pools(dev);
|
|
put_pci:
|
|
put_device(dev->dev);
|
|
nvme_dev_unmap(dev);
|
|
free:
|
|
kfree(dev->queues);
|
|
kfree(dev->entry);
|
|
kfree(dev);
|
|
return result;
|
|
}
|
|
|
|
static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
if (prepare)
|
|
nvme_dev_disable(dev, false);
|
|
else
|
|
queue_work(nvme_workq, &dev->reset_work);
|
|
}
|
|
|
|
static void nvme_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
nvme_dev_disable(dev, true);
|
|
}
|
|
|
|
/*
|
|
* The driver's remove may be called on a device in a partially initialized
|
|
* state. This function must not have any dependencies on the device state in
|
|
* order to proceed.
|
|
*/
|
|
static void nvme_remove(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
if (!pci_device_is_present(pdev))
|
|
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
|
|
|
|
flush_work(&dev->reset_work);
|
|
nvme_uninit_ctrl(&dev->ctrl);
|
|
nvme_dev_disable(dev, true);
|
|
nvme_dev_remove_admin(dev);
|
|
nvme_free_queues(dev, 0);
|
|
nvme_release_cmb(dev);
|
|
nvme_release_prp_pools(dev);
|
|
nvme_dev_unmap(dev);
|
|
nvme_put_ctrl(&dev->ctrl);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int nvme_suspend(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
|
|
|
nvme_dev_disable(ndev, true);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct nvme_dev *ndev = pci_get_drvdata(pdev);
|
|
|
|
queue_work(nvme_workq, &ndev->reset_work);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
|
|
|
|
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
/*
|
|
* A frozen channel requires a reset. When detected, this method will
|
|
* shutdown the controller to quiesce. The controller will be restarted
|
|
* after the slot reset through driver's slot_reset callback.
|
|
*/
|
|
switch (state) {
|
|
case pci_channel_io_normal:
|
|
return PCI_ERS_RESULT_CAN_RECOVER;
|
|
case pci_channel_io_frozen:
|
|
dev_warn(dev->ctrl.device,
|
|
"frozen state error detected, reset controller\n");
|
|
nvme_dev_disable(dev, false);
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
case pci_channel_io_perm_failure:
|
|
dev_warn(dev->ctrl.device,
|
|
"failure state error detected, request disconnect\n");
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct nvme_dev *dev = pci_get_drvdata(pdev);
|
|
|
|
dev_info(dev->ctrl.device, "restart after slot reset\n");
|
|
pci_restore_state(pdev);
|
|
queue_work(nvme_workq, &dev->reset_work);
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
static void nvme_error_resume(struct pci_dev *pdev)
|
|
{
|
|
pci_cleanup_aer_uncorrect_error_status(pdev);
|
|
}
|
|
|
|
static const struct pci_error_handlers nvme_err_handler = {
|
|
.error_detected = nvme_error_detected,
|
|
.slot_reset = nvme_slot_reset,
|
|
.resume = nvme_error_resume,
|
|
.reset_notify = nvme_reset_notify,
|
|
};
|
|
|
|
/* Move to pci_ids.h later */
|
|
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
|
|
|
|
static const struct pci_device_id nvme_id_table[] = {
|
|
{ PCI_VDEVICE(INTEL, 0x0953),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DISCARD_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0x0a53),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DISCARD_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0x0a54),
|
|
.driver_data = NVME_QUIRK_STRIPE_SIZE |
|
|
NVME_QUIRK_DISCARD_ZEROES, },
|
|
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
|
|
.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
|
|
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
|
|
{ 0, }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, nvme_id_table);
|
|
|
|
static struct pci_driver nvme_driver = {
|
|
.name = "nvme",
|
|
.id_table = nvme_id_table,
|
|
.probe = nvme_probe,
|
|
.remove = nvme_remove,
|
|
.shutdown = nvme_shutdown,
|
|
.driver = {
|
|
.pm = &nvme_dev_pm_ops,
|
|
},
|
|
.err_handler = &nvme_err_handler,
|
|
};
|
|
|
|
static int __init nvme_init(void)
|
|
{
|
|
int result;
|
|
|
|
nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
|
|
if (!nvme_workq)
|
|
return -ENOMEM;
|
|
|
|
result = pci_register_driver(&nvme_driver);
|
|
if (result)
|
|
destroy_workqueue(nvme_workq);
|
|
return result;
|
|
}
|
|
|
|
static void __exit nvme_exit(void)
|
|
{
|
|
pci_unregister_driver(&nvme_driver);
|
|
destroy_workqueue(nvme_workq);
|
|
_nvme_check_size();
|
|
}
|
|
|
|
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION("1.0");
|
|
module_init(nvme_init);
|
|
module_exit(nvme_exit);
|