linux_dsm_epyc7002/arch/x86/crypto/poly1305-sse2-x86_64.S
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

591 lines
11 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Poly1305 authenticator algorithm, RFC7539, x64 SSE2 functions
*
* Copyright (C) 2015 Martin Willi
*/
#include <linux/linkage.h>
.section .rodata.cst16.ANMASK, "aM", @progbits, 16
.align 16
ANMASK: .octa 0x0000000003ffffff0000000003ffffff
.section .rodata.cst16.ORMASK, "aM", @progbits, 16
.align 16
ORMASK: .octa 0x00000000010000000000000001000000
.text
#define h0 0x00(%rdi)
#define h1 0x04(%rdi)
#define h2 0x08(%rdi)
#define h3 0x0c(%rdi)
#define h4 0x10(%rdi)
#define r0 0x00(%rdx)
#define r1 0x04(%rdx)
#define r2 0x08(%rdx)
#define r3 0x0c(%rdx)
#define r4 0x10(%rdx)
#define s1 0x00(%rsp)
#define s2 0x04(%rsp)
#define s3 0x08(%rsp)
#define s4 0x0c(%rsp)
#define m %rsi
#define h01 %xmm0
#define h23 %xmm1
#define h44 %xmm2
#define t1 %xmm3
#define t2 %xmm4
#define t3 %xmm5
#define t4 %xmm6
#define mask %xmm7
#define d0 %r8
#define d1 %r9
#define d2 %r10
#define d3 %r11
#define d4 %r12
ENTRY(poly1305_block_sse2)
# %rdi: Accumulator h[5]
# %rsi: 16 byte input block m
# %rdx: Poly1305 key r[5]
# %rcx: Block count
# This single block variant tries to improve performance by doing two
# multiplications in parallel using SSE instructions. There is quite
# some quardword packing involved, hence the speedup is marginal.
push %rbx
push %r12
sub $0x10,%rsp
# s1..s4 = r1..r4 * 5
mov r1,%eax
lea (%eax,%eax,4),%eax
mov %eax,s1
mov r2,%eax
lea (%eax,%eax,4),%eax
mov %eax,s2
mov r3,%eax
lea (%eax,%eax,4),%eax
mov %eax,s3
mov r4,%eax
lea (%eax,%eax,4),%eax
mov %eax,s4
movdqa ANMASK(%rip),mask
.Ldoblock:
# h01 = [0, h1, 0, h0]
# h23 = [0, h3, 0, h2]
# h44 = [0, h4, 0, h4]
movd h0,h01
movd h1,t1
movd h2,h23
movd h3,t2
movd h4,h44
punpcklqdq t1,h01
punpcklqdq t2,h23
punpcklqdq h44,h44
# h01 += [ (m[3-6] >> 2) & 0x3ffffff, m[0-3] & 0x3ffffff ]
movd 0x00(m),t1
movd 0x03(m),t2
psrld $2,t2
punpcklqdq t2,t1
pand mask,t1
paddd t1,h01
# h23 += [ (m[9-12] >> 6) & 0x3ffffff, (m[6-9] >> 4) & 0x3ffffff ]
movd 0x06(m),t1
movd 0x09(m),t2
psrld $4,t1
psrld $6,t2
punpcklqdq t2,t1
pand mask,t1
paddd t1,h23
# h44 += [ (m[12-15] >> 8) | (1 << 24), (m[12-15] >> 8) | (1 << 24) ]
mov 0x0c(m),%eax
shr $8,%eax
or $0x01000000,%eax
movd %eax,t1
pshufd $0xc4,t1,t1
paddd t1,h44
# t1[0] = h0 * r0 + h2 * s3
# t1[1] = h1 * s4 + h3 * s2
movd r0,t1
movd s4,t2
punpcklqdq t2,t1
pmuludq h01,t1
movd s3,t2
movd s2,t3
punpcklqdq t3,t2
pmuludq h23,t2
paddq t2,t1
# t2[0] = h0 * r1 + h2 * s4
# t2[1] = h1 * r0 + h3 * s3
movd r1,t2
movd r0,t3
punpcklqdq t3,t2
pmuludq h01,t2
movd s4,t3
movd s3,t4
punpcklqdq t4,t3
pmuludq h23,t3
paddq t3,t2
# t3[0] = h4 * s1
# t3[1] = h4 * s2
movd s1,t3
movd s2,t4
punpcklqdq t4,t3
pmuludq h44,t3
# d0 = t1[0] + t1[1] + t3[0]
# d1 = t2[0] + t2[1] + t3[1]
movdqa t1,t4
punpcklqdq t2,t4
punpckhqdq t2,t1
paddq t4,t1
paddq t3,t1
movq t1,d0
psrldq $8,t1
movq t1,d1
# t1[0] = h0 * r2 + h2 * r0
# t1[1] = h1 * r1 + h3 * s4
movd r2,t1
movd r1,t2
punpcklqdq t2,t1
pmuludq h01,t1
movd r0,t2
movd s4,t3
punpcklqdq t3,t2
pmuludq h23,t2
paddq t2,t1
# t2[0] = h0 * r3 + h2 * r1
# t2[1] = h1 * r2 + h3 * r0
movd r3,t2
movd r2,t3
punpcklqdq t3,t2
pmuludq h01,t2
movd r1,t3
movd r0,t4
punpcklqdq t4,t3
pmuludq h23,t3
paddq t3,t2
# t3[0] = h4 * s3
# t3[1] = h4 * s4
movd s3,t3
movd s4,t4
punpcklqdq t4,t3
pmuludq h44,t3
# d2 = t1[0] + t1[1] + t3[0]
# d3 = t2[0] + t2[1] + t3[1]
movdqa t1,t4
punpcklqdq t2,t4
punpckhqdq t2,t1
paddq t4,t1
paddq t3,t1
movq t1,d2
psrldq $8,t1
movq t1,d3
# t1[0] = h0 * r4 + h2 * r2
# t1[1] = h1 * r3 + h3 * r1
movd r4,t1
movd r3,t2
punpcklqdq t2,t1
pmuludq h01,t1
movd r2,t2
movd r1,t3
punpcklqdq t3,t2
pmuludq h23,t2
paddq t2,t1
# t3[0] = h4 * r0
movd r0,t3
pmuludq h44,t3
# d4 = t1[0] + t1[1] + t3[0]
movdqa t1,t4
psrldq $8,t4
paddq t4,t1
paddq t3,t1
movq t1,d4
# d1 += d0 >> 26
mov d0,%rax
shr $26,%rax
add %rax,d1
# h0 = d0 & 0x3ffffff
mov d0,%rbx
and $0x3ffffff,%ebx
# d2 += d1 >> 26
mov d1,%rax
shr $26,%rax
add %rax,d2
# h1 = d1 & 0x3ffffff
mov d1,%rax
and $0x3ffffff,%eax
mov %eax,h1
# d3 += d2 >> 26
mov d2,%rax
shr $26,%rax
add %rax,d3
# h2 = d2 & 0x3ffffff
mov d2,%rax
and $0x3ffffff,%eax
mov %eax,h2
# d4 += d3 >> 26
mov d3,%rax
shr $26,%rax
add %rax,d4
# h3 = d3 & 0x3ffffff
mov d3,%rax
and $0x3ffffff,%eax
mov %eax,h3
# h0 += (d4 >> 26) * 5
mov d4,%rax
shr $26,%rax
lea (%rax,%rax,4),%rax
add %rax,%rbx
# h4 = d4 & 0x3ffffff
mov d4,%rax
and $0x3ffffff,%eax
mov %eax,h4
# h1 += h0 >> 26
mov %rbx,%rax
shr $26,%rax
add %eax,h1
# h0 = h0 & 0x3ffffff
andl $0x3ffffff,%ebx
mov %ebx,h0
add $0x10,m
dec %rcx
jnz .Ldoblock
# Zeroing of key material
mov %rcx,0x00(%rsp)
mov %rcx,0x08(%rsp)
add $0x10,%rsp
pop %r12
pop %rbx
ret
ENDPROC(poly1305_block_sse2)
#define u0 0x00(%r8)
#define u1 0x04(%r8)
#define u2 0x08(%r8)
#define u3 0x0c(%r8)
#define u4 0x10(%r8)
#define hc0 %xmm0
#define hc1 %xmm1
#define hc2 %xmm2
#define hc3 %xmm5
#define hc4 %xmm6
#define ru0 %xmm7
#define ru1 %xmm8
#define ru2 %xmm9
#define ru3 %xmm10
#define ru4 %xmm11
#define sv1 %xmm12
#define sv2 %xmm13
#define sv3 %xmm14
#define sv4 %xmm15
#undef d0
#define d0 %r13
ENTRY(poly1305_2block_sse2)
# %rdi: Accumulator h[5]
# %rsi: 16 byte input block m
# %rdx: Poly1305 key r[5]
# %rcx: Doubleblock count
# %r8: Poly1305 derived key r^2 u[5]
# This two-block variant further improves performance by using loop
# unrolled block processing. This is more straight forward and does
# less byte shuffling, but requires a second Poly1305 key r^2:
# h = (h + m) * r => h = (h + m1) * r^2 + m2 * r
push %rbx
push %r12
push %r13
# combine r0,u0
movd u0,ru0
movd r0,t1
punpcklqdq t1,ru0
# combine r1,u1 and s1=r1*5,v1=u1*5
movd u1,ru1
movd r1,t1
punpcklqdq t1,ru1
movdqa ru1,sv1
pslld $2,sv1
paddd ru1,sv1
# combine r2,u2 and s2=r2*5,v2=u2*5
movd u2,ru2
movd r2,t1
punpcklqdq t1,ru2
movdqa ru2,sv2
pslld $2,sv2
paddd ru2,sv2
# combine r3,u3 and s3=r3*5,v3=u3*5
movd u3,ru3
movd r3,t1
punpcklqdq t1,ru3
movdqa ru3,sv3
pslld $2,sv3
paddd ru3,sv3
# combine r4,u4 and s4=r4*5,v4=u4*5
movd u4,ru4
movd r4,t1
punpcklqdq t1,ru4
movdqa ru4,sv4
pslld $2,sv4
paddd ru4,sv4
.Ldoblock2:
# hc0 = [ m[16-19] & 0x3ffffff, h0 + m[0-3] & 0x3ffffff ]
movd 0x00(m),hc0
movd 0x10(m),t1
punpcklqdq t1,hc0
pand ANMASK(%rip),hc0
movd h0,t1
paddd t1,hc0
# hc1 = [ (m[19-22] >> 2) & 0x3ffffff, h1 + (m[3-6] >> 2) & 0x3ffffff ]
movd 0x03(m),hc1
movd 0x13(m),t1
punpcklqdq t1,hc1
psrld $2,hc1
pand ANMASK(%rip),hc1
movd h1,t1
paddd t1,hc1
# hc2 = [ (m[22-25] >> 4) & 0x3ffffff, h2 + (m[6-9] >> 4) & 0x3ffffff ]
movd 0x06(m),hc2
movd 0x16(m),t1
punpcklqdq t1,hc2
psrld $4,hc2
pand ANMASK(%rip),hc2
movd h2,t1
paddd t1,hc2
# hc3 = [ (m[25-28] >> 6) & 0x3ffffff, h3 + (m[9-12] >> 6) & 0x3ffffff ]
movd 0x09(m),hc3
movd 0x19(m),t1
punpcklqdq t1,hc3
psrld $6,hc3
pand ANMASK(%rip),hc3
movd h3,t1
paddd t1,hc3
# hc4 = [ (m[28-31] >> 8) | (1<<24), h4 + (m[12-15] >> 8) | (1<<24) ]
movd 0x0c(m),hc4
movd 0x1c(m),t1
punpcklqdq t1,hc4
psrld $8,hc4
por ORMASK(%rip),hc4
movd h4,t1
paddd t1,hc4
# t1 = [ hc0[1] * r0, hc0[0] * u0 ]
movdqa ru0,t1
pmuludq hc0,t1
# t1 += [ hc1[1] * s4, hc1[0] * v4 ]
movdqa sv4,t2
pmuludq hc1,t2
paddq t2,t1
# t1 += [ hc2[1] * s3, hc2[0] * v3 ]
movdqa sv3,t2
pmuludq hc2,t2
paddq t2,t1
# t1 += [ hc3[1] * s2, hc3[0] * v2 ]
movdqa sv2,t2
pmuludq hc3,t2
paddq t2,t1
# t1 += [ hc4[1] * s1, hc4[0] * v1 ]
movdqa sv1,t2
pmuludq hc4,t2
paddq t2,t1
# d0 = t1[0] + t1[1]
movdqa t1,t2
psrldq $8,t2
paddq t2,t1
movq t1,d0
# t1 = [ hc0[1] * r1, hc0[0] * u1 ]
movdqa ru1,t1
pmuludq hc0,t1
# t1 += [ hc1[1] * r0, hc1[0] * u0 ]
movdqa ru0,t2
pmuludq hc1,t2
paddq t2,t1
# t1 += [ hc2[1] * s4, hc2[0] * v4 ]
movdqa sv4,t2
pmuludq hc2,t2
paddq t2,t1
# t1 += [ hc3[1] * s3, hc3[0] * v3 ]
movdqa sv3,t2
pmuludq hc3,t2
paddq t2,t1
# t1 += [ hc4[1] * s2, hc4[0] * v2 ]
movdqa sv2,t2
pmuludq hc4,t2
paddq t2,t1
# d1 = t1[0] + t1[1]
movdqa t1,t2
psrldq $8,t2
paddq t2,t1
movq t1,d1
# t1 = [ hc0[1] * r2, hc0[0] * u2 ]
movdqa ru2,t1
pmuludq hc0,t1
# t1 += [ hc1[1] * r1, hc1[0] * u1 ]
movdqa ru1,t2
pmuludq hc1,t2
paddq t2,t1
# t1 += [ hc2[1] * r0, hc2[0] * u0 ]
movdqa ru0,t2
pmuludq hc2,t2
paddq t2,t1
# t1 += [ hc3[1] * s4, hc3[0] * v4 ]
movdqa sv4,t2
pmuludq hc3,t2
paddq t2,t1
# t1 += [ hc4[1] * s3, hc4[0] * v3 ]
movdqa sv3,t2
pmuludq hc4,t2
paddq t2,t1
# d2 = t1[0] + t1[1]
movdqa t1,t2
psrldq $8,t2
paddq t2,t1
movq t1,d2
# t1 = [ hc0[1] * r3, hc0[0] * u3 ]
movdqa ru3,t1
pmuludq hc0,t1
# t1 += [ hc1[1] * r2, hc1[0] * u2 ]
movdqa ru2,t2
pmuludq hc1,t2
paddq t2,t1
# t1 += [ hc2[1] * r1, hc2[0] * u1 ]
movdqa ru1,t2
pmuludq hc2,t2
paddq t2,t1
# t1 += [ hc3[1] * r0, hc3[0] * u0 ]
movdqa ru0,t2
pmuludq hc3,t2
paddq t2,t1
# t1 += [ hc4[1] * s4, hc4[0] * v4 ]
movdqa sv4,t2
pmuludq hc4,t2
paddq t2,t1
# d3 = t1[0] + t1[1]
movdqa t1,t2
psrldq $8,t2
paddq t2,t1
movq t1,d3
# t1 = [ hc0[1] * r4, hc0[0] * u4 ]
movdqa ru4,t1
pmuludq hc0,t1
# t1 += [ hc1[1] * r3, hc1[0] * u3 ]
movdqa ru3,t2
pmuludq hc1,t2
paddq t2,t1
# t1 += [ hc2[1] * r2, hc2[0] * u2 ]
movdqa ru2,t2
pmuludq hc2,t2
paddq t2,t1
# t1 += [ hc3[1] * r1, hc3[0] * u1 ]
movdqa ru1,t2
pmuludq hc3,t2
paddq t2,t1
# t1 += [ hc4[1] * r0, hc4[0] * u0 ]
movdqa ru0,t2
pmuludq hc4,t2
paddq t2,t1
# d4 = t1[0] + t1[1]
movdqa t1,t2
psrldq $8,t2
paddq t2,t1
movq t1,d4
# Now do a partial reduction mod (2^130)-5, carrying h0 -> h1 -> h2 ->
# h3 -> h4 -> h0 -> h1 to get h0,h2,h3,h4 < 2^26 and h1 < 2^26 + a small
# amount. Careful: we must not assume the carry bits 'd0 >> 26',
# 'd1 >> 26', 'd2 >> 26', 'd3 >> 26', and '(d4 >> 26) * 5' fit in 32-bit
# integers. It's true in a single-block implementation, but not here.
# d1 += d0 >> 26
mov d0,%rax
shr $26,%rax
add %rax,d1
# h0 = d0 & 0x3ffffff
mov d0,%rbx
and $0x3ffffff,%ebx
# d2 += d1 >> 26
mov d1,%rax
shr $26,%rax
add %rax,d2
# h1 = d1 & 0x3ffffff
mov d1,%rax
and $0x3ffffff,%eax
mov %eax,h1
# d3 += d2 >> 26
mov d2,%rax
shr $26,%rax
add %rax,d3
# h2 = d2 & 0x3ffffff
mov d2,%rax
and $0x3ffffff,%eax
mov %eax,h2
# d4 += d3 >> 26
mov d3,%rax
shr $26,%rax
add %rax,d4
# h3 = d3 & 0x3ffffff
mov d3,%rax
and $0x3ffffff,%eax
mov %eax,h3
# h0 += (d4 >> 26) * 5
mov d4,%rax
shr $26,%rax
lea (%rax,%rax,4),%rax
add %rax,%rbx
# h4 = d4 & 0x3ffffff
mov d4,%rax
and $0x3ffffff,%eax
mov %eax,h4
# h1 += h0 >> 26
mov %rbx,%rax
shr $26,%rax
add %eax,h1
# h0 = h0 & 0x3ffffff
andl $0x3ffffff,%ebx
mov %ebx,h0
add $0x20,m
dec %rcx
jnz .Ldoblock2
pop %r13
pop %r12
pop %rbx
ret
ENDPROC(poly1305_2block_sse2)