mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 03:10:13 +07:00
518a0c7163
Simplify the code around one of the conditionals in the kexec_load syscall routine. The original code was confusing with a redundant check on KEXEC_ON_CRASH and comments outside of the conditional block. This change switches the order of the conditional check, and cleans up the comments for the conditional. There is no functional change to the code. Signed-off-by: Geoff Levand <geoff@infradead.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Maximilian Attems <max@stro.at> Cc: Michal Marek <mmarek@suse.cz> Cc: Paul Bolle <pebolle@tiscali.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2770 lines
68 KiB
C
2770 lines
68 KiB
C
/*
|
|
* kexec.c - kexec system call
|
|
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
|
|
*
|
|
* This source code is licensed under the GNU General Public License,
|
|
* Version 2. See the file COPYING for more details.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec: " fmt
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/file.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/device.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/console.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha.h>
|
|
|
|
/* Per cpu memory for storing cpu states in case of system crash. */
|
|
note_buf_t __percpu *crash_notes;
|
|
|
|
/* vmcoreinfo stuff */
|
|
static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
|
|
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
|
|
size_t vmcoreinfo_size;
|
|
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
|
|
|
|
/* Flag to indicate we are going to kexec a new kernel */
|
|
bool kexec_in_progress = false;
|
|
|
|
/*
|
|
* Declare these symbols weak so that if architecture provides a purgatory,
|
|
* these will be overridden.
|
|
*/
|
|
char __weak kexec_purgatory[0];
|
|
size_t __weak kexec_purgatory_size = 0;
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
static int kexec_calculate_store_digests(struct kimage *image);
|
|
#endif
|
|
|
|
/* Location of the reserved area for the crash kernel */
|
|
struct resource crashk_res = {
|
|
.name = "Crash kernel",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
|
|
};
|
|
struct resource crashk_low_res = {
|
|
.name = "Crash kernel",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
|
|
};
|
|
|
|
int kexec_should_crash(struct task_struct *p)
|
|
{
|
|
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When kexec transitions to the new kernel there is a one-to-one
|
|
* mapping between physical and virtual addresses. On processors
|
|
* where you can disable the MMU this is trivial, and easy. For
|
|
* others it is still a simple predictable page table to setup.
|
|
*
|
|
* In that environment kexec copies the new kernel to its final
|
|
* resting place. This means I can only support memory whose
|
|
* physical address can fit in an unsigned long. In particular
|
|
* addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
|
|
* If the assembly stub has more restrictive requirements
|
|
* KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
|
|
* defined more restrictively in <asm/kexec.h>.
|
|
*
|
|
* The code for the transition from the current kernel to the
|
|
* the new kernel is placed in the control_code_buffer, whose size
|
|
* is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
|
|
* page of memory is necessary, but some architectures require more.
|
|
* Because this memory must be identity mapped in the transition from
|
|
* virtual to physical addresses it must live in the range
|
|
* 0 - TASK_SIZE, as only the user space mappings are arbitrarily
|
|
* modifiable.
|
|
*
|
|
* The assembly stub in the control code buffer is passed a linked list
|
|
* of descriptor pages detailing the source pages of the new kernel,
|
|
* and the destination addresses of those source pages. As this data
|
|
* structure is not used in the context of the current OS, it must
|
|
* be self-contained.
|
|
*
|
|
* The code has been made to work with highmem pages and will use a
|
|
* destination page in its final resting place (if it happens
|
|
* to allocate it). The end product of this is that most of the
|
|
* physical address space, and most of RAM can be used.
|
|
*
|
|
* Future directions include:
|
|
* - allocating a page table with the control code buffer identity
|
|
* mapped, to simplify machine_kexec and make kexec_on_panic more
|
|
* reliable.
|
|
*/
|
|
|
|
/*
|
|
* KIMAGE_NO_DEST is an impossible destination address..., for
|
|
* allocating pages whose destination address we do not care about.
|
|
*/
|
|
#define KIMAGE_NO_DEST (-1UL)
|
|
|
|
static int kimage_is_destination_range(struct kimage *image,
|
|
unsigned long start, unsigned long end);
|
|
static struct page *kimage_alloc_page(struct kimage *image,
|
|
gfp_t gfp_mask,
|
|
unsigned long dest);
|
|
|
|
static int copy_user_segment_list(struct kimage *image,
|
|
unsigned long nr_segments,
|
|
struct kexec_segment __user *segments)
|
|
{
|
|
int ret;
|
|
size_t segment_bytes;
|
|
|
|
/* Read in the segments */
|
|
image->nr_segments = nr_segments;
|
|
segment_bytes = nr_segments * sizeof(*segments);
|
|
ret = copy_from_user(image->segment, segments, segment_bytes);
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sanity_check_segment_list(struct kimage *image)
|
|
{
|
|
int result, i;
|
|
unsigned long nr_segments = image->nr_segments;
|
|
|
|
/*
|
|
* Verify we have good destination addresses. The caller is
|
|
* responsible for making certain we don't attempt to load
|
|
* the new image into invalid or reserved areas of RAM. This
|
|
* just verifies it is an address we can use.
|
|
*
|
|
* Since the kernel does everything in page size chunks ensure
|
|
* the destination addresses are page aligned. Too many
|
|
* special cases crop of when we don't do this. The most
|
|
* insidious is getting overlapping destination addresses
|
|
* simply because addresses are changed to page size
|
|
* granularity.
|
|
*/
|
|
result = -EADDRNOTAVAIL;
|
|
for (i = 0; i < nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
|
|
return result;
|
|
if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
|
|
return result;
|
|
}
|
|
|
|
/* Verify our destination addresses do not overlap.
|
|
* If we alloed overlapping destination addresses
|
|
* through very weird things can happen with no
|
|
* easy explanation as one segment stops on another.
|
|
*/
|
|
result = -EINVAL;
|
|
for (i = 0; i < nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
unsigned long j;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
for (j = 0; j < i; j++) {
|
|
unsigned long pstart, pend;
|
|
pstart = image->segment[j].mem;
|
|
pend = pstart + image->segment[j].memsz;
|
|
/* Do the segments overlap ? */
|
|
if ((mend > pstart) && (mstart < pend))
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/* Ensure our buffer sizes are strictly less than
|
|
* our memory sizes. This should always be the case,
|
|
* and it is easier to check up front than to be surprised
|
|
* later on.
|
|
*/
|
|
result = -EINVAL;
|
|
for (i = 0; i < nr_segments; i++) {
|
|
if (image->segment[i].bufsz > image->segment[i].memsz)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Verify we have good destination addresses. Normally
|
|
* the caller is responsible for making certain we don't
|
|
* attempt to load the new image into invalid or reserved
|
|
* areas of RAM. But crash kernels are preloaded into a
|
|
* reserved area of ram. We must ensure the addresses
|
|
* are in the reserved area otherwise preloading the
|
|
* kernel could corrupt things.
|
|
*/
|
|
|
|
if (image->type == KEXEC_TYPE_CRASH) {
|
|
result = -EADDRNOTAVAIL;
|
|
for (i = 0; i < nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz - 1;
|
|
/* Ensure we are within the crash kernel limits */
|
|
if ((mstart < crashk_res.start) ||
|
|
(mend > crashk_res.end))
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kimage *do_kimage_alloc_init(void)
|
|
{
|
|
struct kimage *image;
|
|
|
|
/* Allocate a controlling structure */
|
|
image = kzalloc(sizeof(*image), GFP_KERNEL);
|
|
if (!image)
|
|
return NULL;
|
|
|
|
image->head = 0;
|
|
image->entry = &image->head;
|
|
image->last_entry = &image->head;
|
|
image->control_page = ~0; /* By default this does not apply */
|
|
image->type = KEXEC_TYPE_DEFAULT;
|
|
|
|
/* Initialize the list of control pages */
|
|
INIT_LIST_HEAD(&image->control_pages);
|
|
|
|
/* Initialize the list of destination pages */
|
|
INIT_LIST_HEAD(&image->dest_pages);
|
|
|
|
/* Initialize the list of unusable pages */
|
|
INIT_LIST_HEAD(&image->unusable_pages);
|
|
|
|
return image;
|
|
}
|
|
|
|
static void kimage_free_page_list(struct list_head *list);
|
|
|
|
static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
|
|
unsigned long nr_segments,
|
|
struct kexec_segment __user *segments,
|
|
unsigned long flags)
|
|
{
|
|
int ret;
|
|
struct kimage *image;
|
|
bool kexec_on_panic = flags & KEXEC_ON_CRASH;
|
|
|
|
if (kexec_on_panic) {
|
|
/* Verify we have a valid entry point */
|
|
if ((entry < crashk_res.start) || (entry > crashk_res.end))
|
|
return -EADDRNOTAVAIL;
|
|
}
|
|
|
|
/* Allocate and initialize a controlling structure */
|
|
image = do_kimage_alloc_init();
|
|
if (!image)
|
|
return -ENOMEM;
|
|
|
|
image->start = entry;
|
|
|
|
ret = copy_user_segment_list(image, nr_segments, segments);
|
|
if (ret)
|
|
goto out_free_image;
|
|
|
|
ret = sanity_check_segment_list(image);
|
|
if (ret)
|
|
goto out_free_image;
|
|
|
|
/* Enable the special crash kernel control page allocation policy. */
|
|
if (kexec_on_panic) {
|
|
image->control_page = crashk_res.start;
|
|
image->type = KEXEC_TYPE_CRASH;
|
|
}
|
|
|
|
/*
|
|
* Find a location for the control code buffer, and add it
|
|
* the vector of segments so that it's pages will also be
|
|
* counted as destination pages.
|
|
*/
|
|
ret = -ENOMEM;
|
|
image->control_code_page = kimage_alloc_control_pages(image,
|
|
get_order(KEXEC_CONTROL_PAGE_SIZE));
|
|
if (!image->control_code_page) {
|
|
pr_err("Could not allocate control_code_buffer\n");
|
|
goto out_free_image;
|
|
}
|
|
|
|
if (!kexec_on_panic) {
|
|
image->swap_page = kimage_alloc_control_pages(image, 0);
|
|
if (!image->swap_page) {
|
|
pr_err("Could not allocate swap buffer\n");
|
|
goto out_free_control_pages;
|
|
}
|
|
}
|
|
|
|
*rimage = image;
|
|
return 0;
|
|
out_free_control_pages:
|
|
kimage_free_page_list(&image->control_pages);
|
|
out_free_image:
|
|
kfree(image);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
|
|
{
|
|
struct fd f = fdget(fd);
|
|
int ret;
|
|
struct kstat stat;
|
|
loff_t pos;
|
|
ssize_t bytes = 0;
|
|
|
|
if (!f.file)
|
|
return -EBADF;
|
|
|
|
ret = vfs_getattr(&f.file->f_path, &stat);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (stat.size > INT_MAX) {
|
|
ret = -EFBIG;
|
|
goto out;
|
|
}
|
|
|
|
/* Don't hand 0 to vmalloc, it whines. */
|
|
if (stat.size == 0) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
*buf = vmalloc(stat.size);
|
|
if (!*buf) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
pos = 0;
|
|
while (pos < stat.size) {
|
|
bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
|
|
stat.size - pos);
|
|
if (bytes < 0) {
|
|
vfree(*buf);
|
|
ret = bytes;
|
|
goto out;
|
|
}
|
|
|
|
if (bytes == 0)
|
|
break;
|
|
pos += bytes;
|
|
}
|
|
|
|
if (pos != stat.size) {
|
|
ret = -EBADF;
|
|
vfree(*buf);
|
|
goto out;
|
|
}
|
|
|
|
*buf_len = pos;
|
|
out:
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
/* Architectures can provide this probe function */
|
|
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
void * __weak arch_kexec_kernel_image_load(struct kimage *image)
|
|
{
|
|
return ERR_PTR(-ENOEXEC);
|
|
}
|
|
|
|
void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
}
|
|
|
|
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
/* Apply relocations of type RELA */
|
|
int __weak
|
|
arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
|
unsigned int relsec)
|
|
{
|
|
pr_err("RELA relocation unsupported.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* Apply relocations of type REL */
|
|
int __weak
|
|
arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
|
unsigned int relsec)
|
|
{
|
|
pr_err("REL relocation unsupported.\n");
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/*
|
|
* Free up memory used by kernel, initrd, and command line. This is temporary
|
|
* memory allocation which is not needed any more after these buffers have
|
|
* been loaded into separate segments and have been copied elsewhere.
|
|
*/
|
|
static void kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
|
|
vfree(image->kernel_buf);
|
|
image->kernel_buf = NULL;
|
|
|
|
vfree(image->initrd_buf);
|
|
image->initrd_buf = NULL;
|
|
|
|
kfree(image->cmdline_buf);
|
|
image->cmdline_buf = NULL;
|
|
|
|
vfree(pi->purgatory_buf);
|
|
pi->purgatory_buf = NULL;
|
|
|
|
vfree(pi->sechdrs);
|
|
pi->sechdrs = NULL;
|
|
|
|
/* See if architecture has anything to cleanup post load */
|
|
arch_kimage_file_post_load_cleanup(image);
|
|
|
|
/*
|
|
* Above call should have called into bootloader to free up
|
|
* any data stored in kimage->image_loader_data. It should
|
|
* be ok now to free it up.
|
|
*/
|
|
kfree(image->image_loader_data);
|
|
image->image_loader_data = NULL;
|
|
}
|
|
|
|
/*
|
|
* In file mode list of segments is prepared by kernel. Copy relevant
|
|
* data from user space, do error checking, prepare segment list
|
|
*/
|
|
static int
|
|
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
|
|
const char __user *cmdline_ptr,
|
|
unsigned long cmdline_len, unsigned flags)
|
|
{
|
|
int ret = 0;
|
|
void *ldata;
|
|
|
|
ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
|
|
&image->kernel_buf_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Call arch image probe handlers */
|
|
ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
|
|
image->kernel_buf_len);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
#ifdef CONFIG_KEXEC_VERIFY_SIG
|
|
ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
|
|
image->kernel_buf_len);
|
|
if (ret) {
|
|
pr_debug("kernel signature verification failed.\n");
|
|
goto out;
|
|
}
|
|
pr_debug("kernel signature verification successful.\n");
|
|
#endif
|
|
/* It is possible that there no initramfs is being loaded */
|
|
if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
|
|
ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
|
|
&image->initrd_buf_len);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (cmdline_len) {
|
|
image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
|
|
if (!image->cmdline_buf) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
|
|
cmdline_len);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
image->cmdline_buf_len = cmdline_len;
|
|
|
|
/* command line should be a string with last byte null */
|
|
if (image->cmdline_buf[cmdline_len - 1] != '\0') {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Call arch image load handlers */
|
|
ldata = arch_kexec_kernel_image_load(image);
|
|
|
|
if (IS_ERR(ldata)) {
|
|
ret = PTR_ERR(ldata);
|
|
goto out;
|
|
}
|
|
|
|
image->image_loader_data = ldata;
|
|
out:
|
|
/* In case of error, free up all allocated memory in this function */
|
|
if (ret)
|
|
kimage_file_post_load_cleanup(image);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
|
|
int initrd_fd, const char __user *cmdline_ptr,
|
|
unsigned long cmdline_len, unsigned long flags)
|
|
{
|
|
int ret;
|
|
struct kimage *image;
|
|
bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
|
|
|
|
image = do_kimage_alloc_init();
|
|
if (!image)
|
|
return -ENOMEM;
|
|
|
|
image->file_mode = 1;
|
|
|
|
if (kexec_on_panic) {
|
|
/* Enable special crash kernel control page alloc policy. */
|
|
image->control_page = crashk_res.start;
|
|
image->type = KEXEC_TYPE_CRASH;
|
|
}
|
|
|
|
ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
|
|
cmdline_ptr, cmdline_len, flags);
|
|
if (ret)
|
|
goto out_free_image;
|
|
|
|
ret = sanity_check_segment_list(image);
|
|
if (ret)
|
|
goto out_free_post_load_bufs;
|
|
|
|
ret = -ENOMEM;
|
|
image->control_code_page = kimage_alloc_control_pages(image,
|
|
get_order(KEXEC_CONTROL_PAGE_SIZE));
|
|
if (!image->control_code_page) {
|
|
pr_err("Could not allocate control_code_buffer\n");
|
|
goto out_free_post_load_bufs;
|
|
}
|
|
|
|
if (!kexec_on_panic) {
|
|
image->swap_page = kimage_alloc_control_pages(image, 0);
|
|
if (!image->swap_page) {
|
|
pr_err("Could not allocate swap buffer\n");
|
|
goto out_free_control_pages;
|
|
}
|
|
}
|
|
|
|
*rimage = image;
|
|
return 0;
|
|
out_free_control_pages:
|
|
kimage_free_page_list(&image->control_pages);
|
|
out_free_post_load_bufs:
|
|
kimage_file_post_load_cleanup(image);
|
|
out_free_image:
|
|
kfree(image);
|
|
return ret;
|
|
}
|
|
#else /* CONFIG_KEXEC_FILE */
|
|
static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
static int kimage_is_destination_range(struct kimage *image,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
if ((end > mstart) && (start < mend))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
struct page *pages;
|
|
|
|
pages = alloc_pages(gfp_mask, order);
|
|
if (pages) {
|
|
unsigned int count, i;
|
|
pages->mapping = NULL;
|
|
set_page_private(pages, order);
|
|
count = 1 << order;
|
|
for (i = 0; i < count; i++)
|
|
SetPageReserved(pages + i);
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static void kimage_free_pages(struct page *page)
|
|
{
|
|
unsigned int order, count, i;
|
|
|
|
order = page_private(page);
|
|
count = 1 << order;
|
|
for (i = 0; i < count; i++)
|
|
ClearPageReserved(page + i);
|
|
__free_pages(page, order);
|
|
}
|
|
|
|
static void kimage_free_page_list(struct list_head *list)
|
|
{
|
|
struct list_head *pos, *next;
|
|
|
|
list_for_each_safe(pos, next, list) {
|
|
struct page *page;
|
|
|
|
page = list_entry(pos, struct page, lru);
|
|
list_del(&page->lru);
|
|
kimage_free_pages(page);
|
|
}
|
|
}
|
|
|
|
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
|
|
unsigned int order)
|
|
{
|
|
/* Control pages are special, they are the intermediaries
|
|
* that are needed while we copy the rest of the pages
|
|
* to their final resting place. As such they must
|
|
* not conflict with either the destination addresses
|
|
* or memory the kernel is already using.
|
|
*
|
|
* The only case where we really need more than one of
|
|
* these are for architectures where we cannot disable
|
|
* the MMU and must instead generate an identity mapped
|
|
* page table for all of the memory.
|
|
*
|
|
* At worst this runs in O(N) of the image size.
|
|
*/
|
|
struct list_head extra_pages;
|
|
struct page *pages;
|
|
unsigned int count;
|
|
|
|
count = 1 << order;
|
|
INIT_LIST_HEAD(&extra_pages);
|
|
|
|
/* Loop while I can allocate a page and the page allocated
|
|
* is a destination page.
|
|
*/
|
|
do {
|
|
unsigned long pfn, epfn, addr, eaddr;
|
|
|
|
pages = kimage_alloc_pages(GFP_KERNEL, order);
|
|
if (!pages)
|
|
break;
|
|
pfn = page_to_pfn(pages);
|
|
epfn = pfn + count;
|
|
addr = pfn << PAGE_SHIFT;
|
|
eaddr = epfn << PAGE_SHIFT;
|
|
if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
|
|
kimage_is_destination_range(image, addr, eaddr)) {
|
|
list_add(&pages->lru, &extra_pages);
|
|
pages = NULL;
|
|
}
|
|
} while (!pages);
|
|
|
|
if (pages) {
|
|
/* Remember the allocated page... */
|
|
list_add(&pages->lru, &image->control_pages);
|
|
|
|
/* Because the page is already in it's destination
|
|
* location we will never allocate another page at
|
|
* that address. Therefore kimage_alloc_pages
|
|
* will not return it (again) and we don't need
|
|
* to give it an entry in image->segment[].
|
|
*/
|
|
}
|
|
/* Deal with the destination pages I have inadvertently allocated.
|
|
*
|
|
* Ideally I would convert multi-page allocations into single
|
|
* page allocations, and add everything to image->dest_pages.
|
|
*
|
|
* For now it is simpler to just free the pages.
|
|
*/
|
|
kimage_free_page_list(&extra_pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
|
|
unsigned int order)
|
|
{
|
|
/* Control pages are special, they are the intermediaries
|
|
* that are needed while we copy the rest of the pages
|
|
* to their final resting place. As such they must
|
|
* not conflict with either the destination addresses
|
|
* or memory the kernel is already using.
|
|
*
|
|
* Control pages are also the only pags we must allocate
|
|
* when loading a crash kernel. All of the other pages
|
|
* are specified by the segments and we just memcpy
|
|
* into them directly.
|
|
*
|
|
* The only case where we really need more than one of
|
|
* these are for architectures where we cannot disable
|
|
* the MMU and must instead generate an identity mapped
|
|
* page table for all of the memory.
|
|
*
|
|
* Given the low demand this implements a very simple
|
|
* allocator that finds the first hole of the appropriate
|
|
* size in the reserved memory region, and allocates all
|
|
* of the memory up to and including the hole.
|
|
*/
|
|
unsigned long hole_start, hole_end, size;
|
|
struct page *pages;
|
|
|
|
pages = NULL;
|
|
size = (1 << order) << PAGE_SHIFT;
|
|
hole_start = (image->control_page + (size - 1)) & ~(size - 1);
|
|
hole_end = hole_start + size - 1;
|
|
while (hole_end <= crashk_res.end) {
|
|
unsigned long i;
|
|
|
|
if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
|
|
break;
|
|
/* See if I overlap any of the segments */
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz - 1;
|
|
if ((hole_end >= mstart) && (hole_start <= mend)) {
|
|
/* Advance the hole to the end of the segment */
|
|
hole_start = (mend + (size - 1)) & ~(size - 1);
|
|
hole_end = hole_start + size - 1;
|
|
break;
|
|
}
|
|
}
|
|
/* If I don't overlap any segments I have found my hole! */
|
|
if (i == image->nr_segments) {
|
|
pages = pfn_to_page(hole_start >> PAGE_SHIFT);
|
|
break;
|
|
}
|
|
}
|
|
if (pages)
|
|
image->control_page = hole_end;
|
|
|
|
return pages;
|
|
}
|
|
|
|
|
|
struct page *kimage_alloc_control_pages(struct kimage *image,
|
|
unsigned int order)
|
|
{
|
|
struct page *pages = NULL;
|
|
|
|
switch (image->type) {
|
|
case KEXEC_TYPE_DEFAULT:
|
|
pages = kimage_alloc_normal_control_pages(image, order);
|
|
break;
|
|
case KEXEC_TYPE_CRASH:
|
|
pages = kimage_alloc_crash_control_pages(image, order);
|
|
break;
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
|
|
{
|
|
if (*image->entry != 0)
|
|
image->entry++;
|
|
|
|
if (image->entry == image->last_entry) {
|
|
kimage_entry_t *ind_page;
|
|
struct page *page;
|
|
|
|
page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
ind_page = page_address(page);
|
|
*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
|
|
image->entry = ind_page;
|
|
image->last_entry = ind_page +
|
|
((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
|
|
}
|
|
*image->entry = entry;
|
|
image->entry++;
|
|
*image->entry = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kimage_set_destination(struct kimage *image,
|
|
unsigned long destination)
|
|
{
|
|
int result;
|
|
|
|
destination &= PAGE_MASK;
|
|
result = kimage_add_entry(image, destination | IND_DESTINATION);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static int kimage_add_page(struct kimage *image, unsigned long page)
|
|
{
|
|
int result;
|
|
|
|
page &= PAGE_MASK;
|
|
result = kimage_add_entry(image, page | IND_SOURCE);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static void kimage_free_extra_pages(struct kimage *image)
|
|
{
|
|
/* Walk through and free any extra destination pages I may have */
|
|
kimage_free_page_list(&image->dest_pages);
|
|
|
|
/* Walk through and free any unusable pages I have cached */
|
|
kimage_free_page_list(&image->unusable_pages);
|
|
|
|
}
|
|
static void kimage_terminate(struct kimage *image)
|
|
{
|
|
if (*image->entry != 0)
|
|
image->entry++;
|
|
|
|
*image->entry = IND_DONE;
|
|
}
|
|
|
|
#define for_each_kimage_entry(image, ptr, entry) \
|
|
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
|
|
ptr = (entry & IND_INDIRECTION) ? \
|
|
phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
|
|
|
|
static void kimage_free_entry(kimage_entry_t entry)
|
|
{
|
|
struct page *page;
|
|
|
|
page = pfn_to_page(entry >> PAGE_SHIFT);
|
|
kimage_free_pages(page);
|
|
}
|
|
|
|
static void kimage_free(struct kimage *image)
|
|
{
|
|
kimage_entry_t *ptr, entry;
|
|
kimage_entry_t ind = 0;
|
|
|
|
if (!image)
|
|
return;
|
|
|
|
kimage_free_extra_pages(image);
|
|
for_each_kimage_entry(image, ptr, entry) {
|
|
if (entry & IND_INDIRECTION) {
|
|
/* Free the previous indirection page */
|
|
if (ind & IND_INDIRECTION)
|
|
kimage_free_entry(ind);
|
|
/* Save this indirection page until we are
|
|
* done with it.
|
|
*/
|
|
ind = entry;
|
|
} else if (entry & IND_SOURCE)
|
|
kimage_free_entry(entry);
|
|
}
|
|
/* Free the final indirection page */
|
|
if (ind & IND_INDIRECTION)
|
|
kimage_free_entry(ind);
|
|
|
|
/* Handle any machine specific cleanup */
|
|
machine_kexec_cleanup(image);
|
|
|
|
/* Free the kexec control pages... */
|
|
kimage_free_page_list(&image->control_pages);
|
|
|
|
/*
|
|
* Free up any temporary buffers allocated. This might hit if
|
|
* error occurred much later after buffer allocation.
|
|
*/
|
|
if (image->file_mode)
|
|
kimage_file_post_load_cleanup(image);
|
|
|
|
kfree(image);
|
|
}
|
|
|
|
static kimage_entry_t *kimage_dst_used(struct kimage *image,
|
|
unsigned long page)
|
|
{
|
|
kimage_entry_t *ptr, entry;
|
|
unsigned long destination = 0;
|
|
|
|
for_each_kimage_entry(image, ptr, entry) {
|
|
if (entry & IND_DESTINATION)
|
|
destination = entry & PAGE_MASK;
|
|
else if (entry & IND_SOURCE) {
|
|
if (page == destination)
|
|
return ptr;
|
|
destination += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct page *kimage_alloc_page(struct kimage *image,
|
|
gfp_t gfp_mask,
|
|
unsigned long destination)
|
|
{
|
|
/*
|
|
* Here we implement safeguards to ensure that a source page
|
|
* is not copied to its destination page before the data on
|
|
* the destination page is no longer useful.
|
|
*
|
|
* To do this we maintain the invariant that a source page is
|
|
* either its own destination page, or it is not a
|
|
* destination page at all.
|
|
*
|
|
* That is slightly stronger than required, but the proof
|
|
* that no problems will not occur is trivial, and the
|
|
* implementation is simply to verify.
|
|
*
|
|
* When allocating all pages normally this algorithm will run
|
|
* in O(N) time, but in the worst case it will run in O(N^2)
|
|
* time. If the runtime is a problem the data structures can
|
|
* be fixed.
|
|
*/
|
|
struct page *page;
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* Walk through the list of destination pages, and see if I
|
|
* have a match.
|
|
*/
|
|
list_for_each_entry(page, &image->dest_pages, lru) {
|
|
addr = page_to_pfn(page) << PAGE_SHIFT;
|
|
if (addr == destination) {
|
|
list_del(&page->lru);
|
|
return page;
|
|
}
|
|
}
|
|
page = NULL;
|
|
while (1) {
|
|
kimage_entry_t *old;
|
|
|
|
/* Allocate a page, if we run out of memory give up */
|
|
page = kimage_alloc_pages(gfp_mask, 0);
|
|
if (!page)
|
|
return NULL;
|
|
/* If the page cannot be used file it away */
|
|
if (page_to_pfn(page) >
|
|
(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
|
|
list_add(&page->lru, &image->unusable_pages);
|
|
continue;
|
|
}
|
|
addr = page_to_pfn(page) << PAGE_SHIFT;
|
|
|
|
/* If it is the destination page we want use it */
|
|
if (addr == destination)
|
|
break;
|
|
|
|
/* If the page is not a destination page use it */
|
|
if (!kimage_is_destination_range(image, addr,
|
|
addr + PAGE_SIZE))
|
|
break;
|
|
|
|
/*
|
|
* I know that the page is someones destination page.
|
|
* See if there is already a source page for this
|
|
* destination page. And if so swap the source pages.
|
|
*/
|
|
old = kimage_dst_used(image, addr);
|
|
if (old) {
|
|
/* If so move it */
|
|
unsigned long old_addr;
|
|
struct page *old_page;
|
|
|
|
old_addr = *old & PAGE_MASK;
|
|
old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
|
|
copy_highpage(page, old_page);
|
|
*old = addr | (*old & ~PAGE_MASK);
|
|
|
|
/* The old page I have found cannot be a
|
|
* destination page, so return it if it's
|
|
* gfp_flags honor the ones passed in.
|
|
*/
|
|
if (!(gfp_mask & __GFP_HIGHMEM) &&
|
|
PageHighMem(old_page)) {
|
|
kimage_free_pages(old_page);
|
|
continue;
|
|
}
|
|
addr = old_addr;
|
|
page = old_page;
|
|
break;
|
|
} else {
|
|
/* Place the page on the destination list I
|
|
* will use it later.
|
|
*/
|
|
list_add(&page->lru, &image->dest_pages);
|
|
}
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static int kimage_load_normal_segment(struct kimage *image,
|
|
struct kexec_segment *segment)
|
|
{
|
|
unsigned long maddr;
|
|
size_t ubytes, mbytes;
|
|
int result;
|
|
unsigned char __user *buf = NULL;
|
|
unsigned char *kbuf = NULL;
|
|
|
|
result = 0;
|
|
if (image->file_mode)
|
|
kbuf = segment->kbuf;
|
|
else
|
|
buf = segment->buf;
|
|
ubytes = segment->bufsz;
|
|
mbytes = segment->memsz;
|
|
maddr = segment->mem;
|
|
|
|
result = kimage_set_destination(image, maddr);
|
|
if (result < 0)
|
|
goto out;
|
|
|
|
while (mbytes) {
|
|
struct page *page;
|
|
char *ptr;
|
|
size_t uchunk, mchunk;
|
|
|
|
page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
|
|
if (!page) {
|
|
result = -ENOMEM;
|
|
goto out;
|
|
}
|
|
result = kimage_add_page(image, page_to_pfn(page)
|
|
<< PAGE_SHIFT);
|
|
if (result < 0)
|
|
goto out;
|
|
|
|
ptr = kmap(page);
|
|
/* Start with a clear page */
|
|
clear_page(ptr);
|
|
ptr += maddr & ~PAGE_MASK;
|
|
mchunk = min_t(size_t, mbytes,
|
|
PAGE_SIZE - (maddr & ~PAGE_MASK));
|
|
uchunk = min(ubytes, mchunk);
|
|
|
|
/* For file based kexec, source pages are in kernel memory */
|
|
if (image->file_mode)
|
|
memcpy(ptr, kbuf, uchunk);
|
|
else
|
|
result = copy_from_user(ptr, buf, uchunk);
|
|
kunmap(page);
|
|
if (result) {
|
|
result = -EFAULT;
|
|
goto out;
|
|
}
|
|
ubytes -= uchunk;
|
|
maddr += mchunk;
|
|
if (image->file_mode)
|
|
kbuf += mchunk;
|
|
else
|
|
buf += mchunk;
|
|
mbytes -= mchunk;
|
|
}
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static int kimage_load_crash_segment(struct kimage *image,
|
|
struct kexec_segment *segment)
|
|
{
|
|
/* For crash dumps kernels we simply copy the data from
|
|
* user space to it's destination.
|
|
* We do things a page at a time for the sake of kmap.
|
|
*/
|
|
unsigned long maddr;
|
|
size_t ubytes, mbytes;
|
|
int result;
|
|
unsigned char __user *buf = NULL;
|
|
unsigned char *kbuf = NULL;
|
|
|
|
result = 0;
|
|
if (image->file_mode)
|
|
kbuf = segment->kbuf;
|
|
else
|
|
buf = segment->buf;
|
|
ubytes = segment->bufsz;
|
|
mbytes = segment->memsz;
|
|
maddr = segment->mem;
|
|
while (mbytes) {
|
|
struct page *page;
|
|
char *ptr;
|
|
size_t uchunk, mchunk;
|
|
|
|
page = pfn_to_page(maddr >> PAGE_SHIFT);
|
|
if (!page) {
|
|
result = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ptr = kmap(page);
|
|
ptr += maddr & ~PAGE_MASK;
|
|
mchunk = min_t(size_t, mbytes,
|
|
PAGE_SIZE - (maddr & ~PAGE_MASK));
|
|
uchunk = min(ubytes, mchunk);
|
|
if (mchunk > uchunk) {
|
|
/* Zero the trailing part of the page */
|
|
memset(ptr + uchunk, 0, mchunk - uchunk);
|
|
}
|
|
|
|
/* For file based kexec, source pages are in kernel memory */
|
|
if (image->file_mode)
|
|
memcpy(ptr, kbuf, uchunk);
|
|
else
|
|
result = copy_from_user(ptr, buf, uchunk);
|
|
kexec_flush_icache_page(page);
|
|
kunmap(page);
|
|
if (result) {
|
|
result = -EFAULT;
|
|
goto out;
|
|
}
|
|
ubytes -= uchunk;
|
|
maddr += mchunk;
|
|
if (image->file_mode)
|
|
kbuf += mchunk;
|
|
else
|
|
buf += mchunk;
|
|
mbytes -= mchunk;
|
|
}
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static int kimage_load_segment(struct kimage *image,
|
|
struct kexec_segment *segment)
|
|
{
|
|
int result = -ENOMEM;
|
|
|
|
switch (image->type) {
|
|
case KEXEC_TYPE_DEFAULT:
|
|
result = kimage_load_normal_segment(image, segment);
|
|
break;
|
|
case KEXEC_TYPE_CRASH:
|
|
result = kimage_load_crash_segment(image, segment);
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Exec Kernel system call: for obvious reasons only root may call it.
|
|
*
|
|
* This call breaks up into three pieces.
|
|
* - A generic part which loads the new kernel from the current
|
|
* address space, and very carefully places the data in the
|
|
* allocated pages.
|
|
*
|
|
* - A generic part that interacts with the kernel and tells all of
|
|
* the devices to shut down. Preventing on-going dmas, and placing
|
|
* the devices in a consistent state so a later kernel can
|
|
* reinitialize them.
|
|
*
|
|
* - A machine specific part that includes the syscall number
|
|
* and then copies the image to it's final destination. And
|
|
* jumps into the image at entry.
|
|
*
|
|
* kexec does not sync, or unmount filesystems so if you need
|
|
* that to happen you need to do that yourself.
|
|
*/
|
|
struct kimage *kexec_image;
|
|
struct kimage *kexec_crash_image;
|
|
int kexec_load_disabled;
|
|
|
|
static DEFINE_MUTEX(kexec_mutex);
|
|
|
|
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
|
|
struct kexec_segment __user *, segments, unsigned long, flags)
|
|
{
|
|
struct kimage **dest_image, *image;
|
|
int result;
|
|
|
|
/* We only trust the superuser with rebooting the system. */
|
|
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Verify we have a legal set of flags
|
|
* This leaves us room for future extensions.
|
|
*/
|
|
if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
|
|
return -EINVAL;
|
|
|
|
/* Verify we are on the appropriate architecture */
|
|
if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
|
|
((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
|
|
return -EINVAL;
|
|
|
|
/* Put an artificial cap on the number
|
|
* of segments passed to kexec_load.
|
|
*/
|
|
if (nr_segments > KEXEC_SEGMENT_MAX)
|
|
return -EINVAL;
|
|
|
|
image = NULL;
|
|
result = 0;
|
|
|
|
/* Because we write directly to the reserved memory
|
|
* region when loading crash kernels we need a mutex here to
|
|
* prevent multiple crash kernels from attempting to load
|
|
* simultaneously, and to prevent a crash kernel from loading
|
|
* over the top of a in use crash kernel.
|
|
*
|
|
* KISS: always take the mutex.
|
|
*/
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
|
|
dest_image = &kexec_image;
|
|
if (flags & KEXEC_ON_CRASH)
|
|
dest_image = &kexec_crash_image;
|
|
if (nr_segments > 0) {
|
|
unsigned long i;
|
|
|
|
if (flags & KEXEC_ON_CRASH) {
|
|
/*
|
|
* Loading another kernel to switch to if this one
|
|
* crashes. Free any current crash dump kernel before
|
|
* we corrupt it.
|
|
*/
|
|
|
|
kimage_free(xchg(&kexec_crash_image, NULL));
|
|
result = kimage_alloc_init(&image, entry, nr_segments,
|
|
segments, flags);
|
|
crash_map_reserved_pages();
|
|
} else {
|
|
/* Loading another kernel to reboot into. */
|
|
|
|
result = kimage_alloc_init(&image, entry, nr_segments,
|
|
segments, flags);
|
|
}
|
|
if (result)
|
|
goto out;
|
|
|
|
if (flags & KEXEC_PRESERVE_CONTEXT)
|
|
image->preserve_context = 1;
|
|
result = machine_kexec_prepare(image);
|
|
if (result)
|
|
goto out;
|
|
|
|
for (i = 0; i < nr_segments; i++) {
|
|
result = kimage_load_segment(image, &image->segment[i]);
|
|
if (result)
|
|
goto out;
|
|
}
|
|
kimage_terminate(image);
|
|
if (flags & KEXEC_ON_CRASH)
|
|
crash_unmap_reserved_pages();
|
|
}
|
|
/* Install the new kernel, and Uninstall the old */
|
|
image = xchg(dest_image, image);
|
|
|
|
out:
|
|
mutex_unlock(&kexec_mutex);
|
|
kimage_free(image);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Add and remove page tables for crashkernel memory
|
|
*
|
|
* Provide an empty default implementation here -- architecture
|
|
* code may override this
|
|
*/
|
|
void __weak crash_map_reserved_pages(void)
|
|
{}
|
|
|
|
void __weak crash_unmap_reserved_pages(void)
|
|
{}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
|
|
compat_ulong_t, nr_segments,
|
|
struct compat_kexec_segment __user *, segments,
|
|
compat_ulong_t, flags)
|
|
{
|
|
struct compat_kexec_segment in;
|
|
struct kexec_segment out, __user *ksegments;
|
|
unsigned long i, result;
|
|
|
|
/* Don't allow clients that don't understand the native
|
|
* architecture to do anything.
|
|
*/
|
|
if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
|
|
return -EINVAL;
|
|
|
|
if (nr_segments > KEXEC_SEGMENT_MAX)
|
|
return -EINVAL;
|
|
|
|
ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
|
|
for (i = 0; i < nr_segments; i++) {
|
|
result = copy_from_user(&in, &segments[i], sizeof(in));
|
|
if (result)
|
|
return -EFAULT;
|
|
|
|
out.buf = compat_ptr(in.buf);
|
|
out.bufsz = in.bufsz;
|
|
out.mem = in.mem;
|
|
out.memsz = in.memsz;
|
|
|
|
result = copy_to_user(&ksegments[i], &out, sizeof(out));
|
|
if (result)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return sys_kexec_load(entry, nr_segments, ksegments, flags);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
|
|
unsigned long, cmdline_len, const char __user *, cmdline_ptr,
|
|
unsigned long, flags)
|
|
{
|
|
int ret = 0, i;
|
|
struct kimage **dest_image, *image;
|
|
|
|
/* We only trust the superuser with rebooting the system. */
|
|
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
|
|
return -EPERM;
|
|
|
|
/* Make sure we have a legal set of flags */
|
|
if (flags != (flags & KEXEC_FILE_FLAGS))
|
|
return -EINVAL;
|
|
|
|
image = NULL;
|
|
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
|
|
dest_image = &kexec_image;
|
|
if (flags & KEXEC_FILE_ON_CRASH)
|
|
dest_image = &kexec_crash_image;
|
|
|
|
if (flags & KEXEC_FILE_UNLOAD)
|
|
goto exchange;
|
|
|
|
/*
|
|
* In case of crash, new kernel gets loaded in reserved region. It is
|
|
* same memory where old crash kernel might be loaded. Free any
|
|
* current crash dump kernel before we corrupt it.
|
|
*/
|
|
if (flags & KEXEC_FILE_ON_CRASH)
|
|
kimage_free(xchg(&kexec_crash_image, NULL));
|
|
|
|
ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
|
|
cmdline_len, flags);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = machine_kexec_prepare(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = kexec_calculate_store_digests(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
struct kexec_segment *ksegment;
|
|
|
|
ksegment = &image->segment[i];
|
|
pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
|
|
i, ksegment->buf, ksegment->bufsz, ksegment->mem,
|
|
ksegment->memsz);
|
|
|
|
ret = kimage_load_segment(image, &image->segment[i]);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
kimage_terminate(image);
|
|
|
|
/*
|
|
* Free up any temporary buffers allocated which are not needed
|
|
* after image has been loaded
|
|
*/
|
|
kimage_file_post_load_cleanup(image);
|
|
exchange:
|
|
image = xchg(dest_image, image);
|
|
out:
|
|
mutex_unlock(&kexec_mutex);
|
|
kimage_free(image);
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
void crash_kexec(struct pt_regs *regs)
|
|
{
|
|
/* Take the kexec_mutex here to prevent sys_kexec_load
|
|
* running on one cpu from replacing the crash kernel
|
|
* we are using after a panic on a different cpu.
|
|
*
|
|
* If the crash kernel was not located in a fixed area
|
|
* of memory the xchg(&kexec_crash_image) would be
|
|
* sufficient. But since I reuse the memory...
|
|
*/
|
|
if (mutex_trylock(&kexec_mutex)) {
|
|
if (kexec_crash_image) {
|
|
struct pt_regs fixed_regs;
|
|
|
|
crash_setup_regs(&fixed_regs, regs);
|
|
crash_save_vmcoreinfo();
|
|
machine_crash_shutdown(&fixed_regs);
|
|
machine_kexec(kexec_crash_image);
|
|
}
|
|
mutex_unlock(&kexec_mutex);
|
|
}
|
|
}
|
|
|
|
size_t crash_get_memory_size(void)
|
|
{
|
|
size_t size = 0;
|
|
mutex_lock(&kexec_mutex);
|
|
if (crashk_res.end != crashk_res.start)
|
|
size = resource_size(&crashk_res);
|
|
mutex_unlock(&kexec_mutex);
|
|
return size;
|
|
}
|
|
|
|
void __weak crash_free_reserved_phys_range(unsigned long begin,
|
|
unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = begin; addr < end; addr += PAGE_SIZE)
|
|
free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
|
|
}
|
|
|
|
int crash_shrink_memory(unsigned long new_size)
|
|
{
|
|
int ret = 0;
|
|
unsigned long start, end;
|
|
unsigned long old_size;
|
|
struct resource *ram_res;
|
|
|
|
mutex_lock(&kexec_mutex);
|
|
|
|
if (kexec_crash_image) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
start = crashk_res.start;
|
|
end = crashk_res.end;
|
|
old_size = (end == 0) ? 0 : end - start + 1;
|
|
if (new_size >= old_size) {
|
|
ret = (new_size == old_size) ? 0 : -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
|
|
if (!ram_res) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
|
|
end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
|
|
|
|
crash_map_reserved_pages();
|
|
crash_free_reserved_phys_range(end, crashk_res.end);
|
|
|
|
if ((start == end) && (crashk_res.parent != NULL))
|
|
release_resource(&crashk_res);
|
|
|
|
ram_res->start = end;
|
|
ram_res->end = crashk_res.end;
|
|
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
|
|
ram_res->name = "System RAM";
|
|
|
|
crashk_res.end = end - 1;
|
|
|
|
insert_resource(&iomem_resource, ram_res);
|
|
crash_unmap_reserved_pages();
|
|
|
|
unlock:
|
|
mutex_unlock(&kexec_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
|
|
size_t data_len)
|
|
{
|
|
struct elf_note note;
|
|
|
|
note.n_namesz = strlen(name) + 1;
|
|
note.n_descsz = data_len;
|
|
note.n_type = type;
|
|
memcpy(buf, ¬e, sizeof(note));
|
|
buf += (sizeof(note) + 3)/4;
|
|
memcpy(buf, name, note.n_namesz);
|
|
buf += (note.n_namesz + 3)/4;
|
|
memcpy(buf, data, note.n_descsz);
|
|
buf += (note.n_descsz + 3)/4;
|
|
|
|
return buf;
|
|
}
|
|
|
|
static void final_note(u32 *buf)
|
|
{
|
|
struct elf_note note;
|
|
|
|
note.n_namesz = 0;
|
|
note.n_descsz = 0;
|
|
note.n_type = 0;
|
|
memcpy(buf, ¬e, sizeof(note));
|
|
}
|
|
|
|
void crash_save_cpu(struct pt_regs *regs, int cpu)
|
|
{
|
|
struct elf_prstatus prstatus;
|
|
u32 *buf;
|
|
|
|
if ((cpu < 0) || (cpu >= nr_cpu_ids))
|
|
return;
|
|
|
|
/* Using ELF notes here is opportunistic.
|
|
* I need a well defined structure format
|
|
* for the data I pass, and I need tags
|
|
* on the data to indicate what information I have
|
|
* squirrelled away. ELF notes happen to provide
|
|
* all of that, so there is no need to invent something new.
|
|
*/
|
|
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
|
|
if (!buf)
|
|
return;
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
prstatus.pr_pid = current->pid;
|
|
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
|
|
buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
|
|
&prstatus, sizeof(prstatus));
|
|
final_note(buf);
|
|
}
|
|
|
|
static int __init crash_notes_memory_init(void)
|
|
{
|
|
/* Allocate memory for saving cpu registers. */
|
|
crash_notes = alloc_percpu(note_buf_t);
|
|
if (!crash_notes) {
|
|
pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
subsys_initcall(crash_notes_memory_init);
|
|
|
|
|
|
/*
|
|
* parsing the "crashkernel" commandline
|
|
*
|
|
* this code is intended to be called from architecture specific code
|
|
*/
|
|
|
|
|
|
/*
|
|
* This function parses command lines in the format
|
|
*
|
|
* crashkernel=ramsize-range:size[,...][@offset]
|
|
*
|
|
* The function returns 0 on success and -EINVAL on failure.
|
|
*/
|
|
static int __init parse_crashkernel_mem(char *cmdline,
|
|
unsigned long long system_ram,
|
|
unsigned long long *crash_size,
|
|
unsigned long long *crash_base)
|
|
{
|
|
char *cur = cmdline, *tmp;
|
|
|
|
/* for each entry of the comma-separated list */
|
|
do {
|
|
unsigned long long start, end = ULLONG_MAX, size;
|
|
|
|
/* get the start of the range */
|
|
start = memparse(cur, &tmp);
|
|
if (cur == tmp) {
|
|
pr_warn("crashkernel: Memory value expected\n");
|
|
return -EINVAL;
|
|
}
|
|
cur = tmp;
|
|
if (*cur != '-') {
|
|
pr_warn("crashkernel: '-' expected\n");
|
|
return -EINVAL;
|
|
}
|
|
cur++;
|
|
|
|
/* if no ':' is here, than we read the end */
|
|
if (*cur != ':') {
|
|
end = memparse(cur, &tmp);
|
|
if (cur == tmp) {
|
|
pr_warn("crashkernel: Memory value expected\n");
|
|
return -EINVAL;
|
|
}
|
|
cur = tmp;
|
|
if (end <= start) {
|
|
pr_warn("crashkernel: end <= start\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (*cur != ':') {
|
|
pr_warn("crashkernel: ':' expected\n");
|
|
return -EINVAL;
|
|
}
|
|
cur++;
|
|
|
|
size = memparse(cur, &tmp);
|
|
if (cur == tmp) {
|
|
pr_warn("Memory value expected\n");
|
|
return -EINVAL;
|
|
}
|
|
cur = tmp;
|
|
if (size >= system_ram) {
|
|
pr_warn("crashkernel: invalid size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* match ? */
|
|
if (system_ram >= start && system_ram < end) {
|
|
*crash_size = size;
|
|
break;
|
|
}
|
|
} while (*cur++ == ',');
|
|
|
|
if (*crash_size > 0) {
|
|
while (*cur && *cur != ' ' && *cur != '@')
|
|
cur++;
|
|
if (*cur == '@') {
|
|
cur++;
|
|
*crash_base = memparse(cur, &tmp);
|
|
if (cur == tmp) {
|
|
pr_warn("Memory value expected after '@'\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* That function parses "simple" (old) crashkernel command lines like
|
|
*
|
|
* crashkernel=size[@offset]
|
|
*
|
|
* It returns 0 on success and -EINVAL on failure.
|
|
*/
|
|
static int __init parse_crashkernel_simple(char *cmdline,
|
|
unsigned long long *crash_size,
|
|
unsigned long long *crash_base)
|
|
{
|
|
char *cur = cmdline;
|
|
|
|
*crash_size = memparse(cmdline, &cur);
|
|
if (cmdline == cur) {
|
|
pr_warn("crashkernel: memory value expected\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (*cur == '@')
|
|
*crash_base = memparse(cur+1, &cur);
|
|
else if (*cur != ' ' && *cur != '\0') {
|
|
pr_warn("crashkernel: unrecognized char\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SUFFIX_HIGH 0
|
|
#define SUFFIX_LOW 1
|
|
#define SUFFIX_NULL 2
|
|
static __initdata char *suffix_tbl[] = {
|
|
[SUFFIX_HIGH] = ",high",
|
|
[SUFFIX_LOW] = ",low",
|
|
[SUFFIX_NULL] = NULL,
|
|
};
|
|
|
|
/*
|
|
* That function parses "suffix" crashkernel command lines like
|
|
*
|
|
* crashkernel=size,[high|low]
|
|
*
|
|
* It returns 0 on success and -EINVAL on failure.
|
|
*/
|
|
static int __init parse_crashkernel_suffix(char *cmdline,
|
|
unsigned long long *crash_size,
|
|
const char *suffix)
|
|
{
|
|
char *cur = cmdline;
|
|
|
|
*crash_size = memparse(cmdline, &cur);
|
|
if (cmdline == cur) {
|
|
pr_warn("crashkernel: memory value expected\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check with suffix */
|
|
if (strncmp(cur, suffix, strlen(suffix))) {
|
|
pr_warn("crashkernel: unrecognized char\n");
|
|
return -EINVAL;
|
|
}
|
|
cur += strlen(suffix);
|
|
if (*cur != ' ' && *cur != '\0') {
|
|
pr_warn("crashkernel: unrecognized char\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init char *get_last_crashkernel(char *cmdline,
|
|
const char *name,
|
|
const char *suffix)
|
|
{
|
|
char *p = cmdline, *ck_cmdline = NULL;
|
|
|
|
/* find crashkernel and use the last one if there are more */
|
|
p = strstr(p, name);
|
|
while (p) {
|
|
char *end_p = strchr(p, ' ');
|
|
char *q;
|
|
|
|
if (!end_p)
|
|
end_p = p + strlen(p);
|
|
|
|
if (!suffix) {
|
|
int i;
|
|
|
|
/* skip the one with any known suffix */
|
|
for (i = 0; suffix_tbl[i]; i++) {
|
|
q = end_p - strlen(suffix_tbl[i]);
|
|
if (!strncmp(q, suffix_tbl[i],
|
|
strlen(suffix_tbl[i])))
|
|
goto next;
|
|
}
|
|
ck_cmdline = p;
|
|
} else {
|
|
q = end_p - strlen(suffix);
|
|
if (!strncmp(q, suffix, strlen(suffix)))
|
|
ck_cmdline = p;
|
|
}
|
|
next:
|
|
p = strstr(p+1, name);
|
|
}
|
|
|
|
if (!ck_cmdline)
|
|
return NULL;
|
|
|
|
return ck_cmdline;
|
|
}
|
|
|
|
static int __init __parse_crashkernel(char *cmdline,
|
|
unsigned long long system_ram,
|
|
unsigned long long *crash_size,
|
|
unsigned long long *crash_base,
|
|
const char *name,
|
|
const char *suffix)
|
|
{
|
|
char *first_colon, *first_space;
|
|
char *ck_cmdline;
|
|
|
|
BUG_ON(!crash_size || !crash_base);
|
|
*crash_size = 0;
|
|
*crash_base = 0;
|
|
|
|
ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
|
|
|
|
if (!ck_cmdline)
|
|
return -EINVAL;
|
|
|
|
ck_cmdline += strlen(name);
|
|
|
|
if (suffix)
|
|
return parse_crashkernel_suffix(ck_cmdline, crash_size,
|
|
suffix);
|
|
/*
|
|
* if the commandline contains a ':', then that's the extended
|
|
* syntax -- if not, it must be the classic syntax
|
|
*/
|
|
first_colon = strchr(ck_cmdline, ':');
|
|
first_space = strchr(ck_cmdline, ' ');
|
|
if (first_colon && (!first_space || first_colon < first_space))
|
|
return parse_crashkernel_mem(ck_cmdline, system_ram,
|
|
crash_size, crash_base);
|
|
|
|
return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
|
|
}
|
|
|
|
/*
|
|
* That function is the entry point for command line parsing and should be
|
|
* called from the arch-specific code.
|
|
*/
|
|
int __init parse_crashkernel(char *cmdline,
|
|
unsigned long long system_ram,
|
|
unsigned long long *crash_size,
|
|
unsigned long long *crash_base)
|
|
{
|
|
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
|
|
"crashkernel=", NULL);
|
|
}
|
|
|
|
int __init parse_crashkernel_high(char *cmdline,
|
|
unsigned long long system_ram,
|
|
unsigned long long *crash_size,
|
|
unsigned long long *crash_base)
|
|
{
|
|
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
|
|
"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
|
|
}
|
|
|
|
int __init parse_crashkernel_low(char *cmdline,
|
|
unsigned long long system_ram,
|
|
unsigned long long *crash_size,
|
|
unsigned long long *crash_base)
|
|
{
|
|
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
|
|
"crashkernel=", suffix_tbl[SUFFIX_LOW]);
|
|
}
|
|
|
|
static void update_vmcoreinfo_note(void)
|
|
{
|
|
u32 *buf = vmcoreinfo_note;
|
|
|
|
if (!vmcoreinfo_size)
|
|
return;
|
|
buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
|
|
vmcoreinfo_size);
|
|
final_note(buf);
|
|
}
|
|
|
|
void crash_save_vmcoreinfo(void)
|
|
{
|
|
vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
|
|
update_vmcoreinfo_note();
|
|
}
|
|
|
|
void vmcoreinfo_append_str(const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
char buf[0x50];
|
|
size_t r;
|
|
|
|
va_start(args, fmt);
|
|
r = vscnprintf(buf, sizeof(buf), fmt, args);
|
|
va_end(args);
|
|
|
|
r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
|
|
|
|
memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
|
|
|
|
vmcoreinfo_size += r;
|
|
}
|
|
|
|
/*
|
|
* provide an empty default implementation here -- architecture
|
|
* code may override this
|
|
*/
|
|
void __weak arch_crash_save_vmcoreinfo(void)
|
|
{}
|
|
|
|
unsigned long __weak paddr_vmcoreinfo_note(void)
|
|
{
|
|
return __pa((unsigned long)(char *)&vmcoreinfo_note);
|
|
}
|
|
|
|
static int __init crash_save_vmcoreinfo_init(void)
|
|
{
|
|
VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
|
|
VMCOREINFO_PAGESIZE(PAGE_SIZE);
|
|
|
|
VMCOREINFO_SYMBOL(init_uts_ns);
|
|
VMCOREINFO_SYMBOL(node_online_map);
|
|
#ifdef CONFIG_MMU
|
|
VMCOREINFO_SYMBOL(swapper_pg_dir);
|
|
#endif
|
|
VMCOREINFO_SYMBOL(_stext);
|
|
VMCOREINFO_SYMBOL(vmap_area_list);
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
VMCOREINFO_SYMBOL(mem_map);
|
|
VMCOREINFO_SYMBOL(contig_page_data);
|
|
#endif
|
|
#ifdef CONFIG_SPARSEMEM
|
|
VMCOREINFO_SYMBOL(mem_section);
|
|
VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
|
|
VMCOREINFO_STRUCT_SIZE(mem_section);
|
|
VMCOREINFO_OFFSET(mem_section, section_mem_map);
|
|
#endif
|
|
VMCOREINFO_STRUCT_SIZE(page);
|
|
VMCOREINFO_STRUCT_SIZE(pglist_data);
|
|
VMCOREINFO_STRUCT_SIZE(zone);
|
|
VMCOREINFO_STRUCT_SIZE(free_area);
|
|
VMCOREINFO_STRUCT_SIZE(list_head);
|
|
VMCOREINFO_SIZE(nodemask_t);
|
|
VMCOREINFO_OFFSET(page, flags);
|
|
VMCOREINFO_OFFSET(page, _count);
|
|
VMCOREINFO_OFFSET(page, mapping);
|
|
VMCOREINFO_OFFSET(page, lru);
|
|
VMCOREINFO_OFFSET(page, _mapcount);
|
|
VMCOREINFO_OFFSET(page, private);
|
|
VMCOREINFO_OFFSET(pglist_data, node_zones);
|
|
VMCOREINFO_OFFSET(pglist_data, nr_zones);
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
VMCOREINFO_OFFSET(pglist_data, node_mem_map);
|
|
#endif
|
|
VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
|
|
VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
|
|
VMCOREINFO_OFFSET(pglist_data, node_id);
|
|
VMCOREINFO_OFFSET(zone, free_area);
|
|
VMCOREINFO_OFFSET(zone, vm_stat);
|
|
VMCOREINFO_OFFSET(zone, spanned_pages);
|
|
VMCOREINFO_OFFSET(free_area, free_list);
|
|
VMCOREINFO_OFFSET(list_head, next);
|
|
VMCOREINFO_OFFSET(list_head, prev);
|
|
VMCOREINFO_OFFSET(vmap_area, va_start);
|
|
VMCOREINFO_OFFSET(vmap_area, list);
|
|
VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
|
|
log_buf_kexec_setup();
|
|
VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
|
|
VMCOREINFO_NUMBER(NR_FREE_PAGES);
|
|
VMCOREINFO_NUMBER(PG_lru);
|
|
VMCOREINFO_NUMBER(PG_private);
|
|
VMCOREINFO_NUMBER(PG_swapcache);
|
|
VMCOREINFO_NUMBER(PG_slab);
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
VMCOREINFO_NUMBER(PG_hwpoison);
|
|
#endif
|
|
VMCOREINFO_NUMBER(PG_head_mask);
|
|
VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
|
|
#ifdef CONFIG_HUGETLBFS
|
|
VMCOREINFO_SYMBOL(free_huge_page);
|
|
#endif
|
|
|
|
arch_crash_save_vmcoreinfo();
|
|
update_vmcoreinfo_note();
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(crash_save_vmcoreinfo_init);
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
struct kimage *image = kbuf->image;
|
|
unsigned long temp_start, temp_end;
|
|
|
|
temp_end = min(end, kbuf->buf_max);
|
|
temp_start = temp_end - kbuf->memsz;
|
|
|
|
do {
|
|
/* align down start */
|
|
temp_start = temp_start & (~(kbuf->buf_align - 1));
|
|
|
|
if (temp_start < start || temp_start < kbuf->buf_min)
|
|
return 0;
|
|
|
|
temp_end = temp_start + kbuf->memsz - 1;
|
|
|
|
/*
|
|
* Make sure this does not conflict with any of existing
|
|
* segments
|
|
*/
|
|
if (kimage_is_destination_range(image, temp_start, temp_end)) {
|
|
temp_start = temp_start - PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* We found a suitable memory range */
|
|
break;
|
|
} while (1);
|
|
|
|
/* If we are here, we found a suitable memory range */
|
|
kbuf->mem = temp_start;
|
|
|
|
/* Success, stop navigating through remaining System RAM ranges */
|
|
return 1;
|
|
}
|
|
|
|
static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
struct kimage *image = kbuf->image;
|
|
unsigned long temp_start, temp_end;
|
|
|
|
temp_start = max(start, kbuf->buf_min);
|
|
|
|
do {
|
|
temp_start = ALIGN(temp_start, kbuf->buf_align);
|
|
temp_end = temp_start + kbuf->memsz - 1;
|
|
|
|
if (temp_end > end || temp_end > kbuf->buf_max)
|
|
return 0;
|
|
/*
|
|
* Make sure this does not conflict with any of existing
|
|
* segments
|
|
*/
|
|
if (kimage_is_destination_range(image, temp_start, temp_end)) {
|
|
temp_start = temp_start + PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* We found a suitable memory range */
|
|
break;
|
|
} while (1);
|
|
|
|
/* If we are here, we found a suitable memory range */
|
|
kbuf->mem = temp_start;
|
|
|
|
/* Success, stop navigating through remaining System RAM ranges */
|
|
return 1;
|
|
}
|
|
|
|
static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
|
|
{
|
|
struct kexec_buf *kbuf = (struct kexec_buf *)arg;
|
|
unsigned long sz = end - start + 1;
|
|
|
|
/* Returning 0 will take to next memory range */
|
|
if (sz < kbuf->memsz)
|
|
return 0;
|
|
|
|
if (end < kbuf->buf_min || start > kbuf->buf_max)
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate memory top down with-in ram range. Otherwise bottom up
|
|
* allocation.
|
|
*/
|
|
if (kbuf->top_down)
|
|
return locate_mem_hole_top_down(start, end, kbuf);
|
|
return locate_mem_hole_bottom_up(start, end, kbuf);
|
|
}
|
|
|
|
/*
|
|
* Helper function for placing a buffer in a kexec segment. This assumes
|
|
* that kexec_mutex is held.
|
|
*/
|
|
int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
|
|
unsigned long memsz, unsigned long buf_align,
|
|
unsigned long buf_min, unsigned long buf_max,
|
|
bool top_down, unsigned long *load_addr)
|
|
{
|
|
|
|
struct kexec_segment *ksegment;
|
|
struct kexec_buf buf, *kbuf;
|
|
int ret;
|
|
|
|
/* Currently adding segment this way is allowed only in file mode */
|
|
if (!image->file_mode)
|
|
return -EINVAL;
|
|
|
|
if (image->nr_segments >= KEXEC_SEGMENT_MAX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Make sure we are not trying to add buffer after allocating
|
|
* control pages. All segments need to be placed first before
|
|
* any control pages are allocated. As control page allocation
|
|
* logic goes through list of segments to make sure there are
|
|
* no destination overlaps.
|
|
*/
|
|
if (!list_empty(&image->control_pages)) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(&buf, 0, sizeof(struct kexec_buf));
|
|
kbuf = &buf;
|
|
kbuf->image = image;
|
|
kbuf->buffer = buffer;
|
|
kbuf->bufsz = bufsz;
|
|
|
|
kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
|
|
kbuf->buf_align = max(buf_align, PAGE_SIZE);
|
|
kbuf->buf_min = buf_min;
|
|
kbuf->buf_max = buf_max;
|
|
kbuf->top_down = top_down;
|
|
|
|
/* Walk the RAM ranges and allocate a suitable range for the buffer */
|
|
if (image->type == KEXEC_TYPE_CRASH)
|
|
ret = walk_iomem_res("Crash kernel",
|
|
IORESOURCE_MEM | IORESOURCE_BUSY,
|
|
crashk_res.start, crashk_res.end, kbuf,
|
|
locate_mem_hole_callback);
|
|
else
|
|
ret = walk_system_ram_res(0, -1, kbuf,
|
|
locate_mem_hole_callback);
|
|
if (ret != 1) {
|
|
/* A suitable memory range could not be found for buffer */
|
|
return -EADDRNOTAVAIL;
|
|
}
|
|
|
|
/* Found a suitable memory range */
|
|
ksegment = &image->segment[image->nr_segments];
|
|
ksegment->kbuf = kbuf->buffer;
|
|
ksegment->bufsz = kbuf->bufsz;
|
|
ksegment->mem = kbuf->mem;
|
|
ksegment->memsz = kbuf->memsz;
|
|
image->nr_segments++;
|
|
*load_addr = ksegment->mem;
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate and store the digest of segments */
|
|
static int kexec_calculate_store_digests(struct kimage *image)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
struct shash_desc *desc;
|
|
int ret = 0, i, j, zero_buf_sz, sha_region_sz;
|
|
size_t desc_size, nullsz;
|
|
char *digest;
|
|
void *zero_buf;
|
|
struct kexec_sha_region *sha_regions;
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
|
|
zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
|
|
zero_buf_sz = PAGE_SIZE;
|
|
|
|
tfm = crypto_alloc_shash("sha256", 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
ret = PTR_ERR(tfm);
|
|
goto out;
|
|
}
|
|
|
|
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
desc = kzalloc(desc_size, GFP_KERNEL);
|
|
if (!desc) {
|
|
ret = -ENOMEM;
|
|
goto out_free_tfm;
|
|
}
|
|
|
|
sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
|
|
sha_regions = vzalloc(sha_region_sz);
|
|
if (!sha_regions)
|
|
goto out_free_desc;
|
|
|
|
desc->tfm = tfm;
|
|
desc->flags = 0;
|
|
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto out_free_sha_regions;
|
|
|
|
digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
|
|
if (!digest) {
|
|
ret = -ENOMEM;
|
|
goto out_free_sha_regions;
|
|
}
|
|
|
|
for (j = i = 0; i < image->nr_segments; i++) {
|
|
struct kexec_segment *ksegment;
|
|
|
|
ksegment = &image->segment[i];
|
|
/*
|
|
* Skip purgatory as it will be modified once we put digest
|
|
* info in purgatory.
|
|
*/
|
|
if (ksegment->kbuf == pi->purgatory_buf)
|
|
continue;
|
|
|
|
ret = crypto_shash_update(desc, ksegment->kbuf,
|
|
ksegment->bufsz);
|
|
if (ret)
|
|
break;
|
|
|
|
/*
|
|
* Assume rest of the buffer is filled with zero and
|
|
* update digest accordingly.
|
|
*/
|
|
nullsz = ksegment->memsz - ksegment->bufsz;
|
|
while (nullsz) {
|
|
unsigned long bytes = nullsz;
|
|
|
|
if (bytes > zero_buf_sz)
|
|
bytes = zero_buf_sz;
|
|
ret = crypto_shash_update(desc, zero_buf, bytes);
|
|
if (ret)
|
|
break;
|
|
nullsz -= bytes;
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
sha_regions[j].start = ksegment->mem;
|
|
sha_regions[j].len = ksegment->memsz;
|
|
j++;
|
|
}
|
|
|
|
if (!ret) {
|
|
ret = crypto_shash_final(desc, digest);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
|
|
sha_regions, sha_region_sz, 0);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
|
|
digest, SHA256_DIGEST_SIZE, 0);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
}
|
|
|
|
out_free_digest:
|
|
kfree(digest);
|
|
out_free_sha_regions:
|
|
vfree(sha_regions);
|
|
out_free_desc:
|
|
kfree(desc);
|
|
out_free_tfm:
|
|
kfree(tfm);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Actually load purgatory. Lot of code taken from kexec-tools */
|
|
static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
|
|
unsigned long max, int top_down)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
|
|
unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
|
|
unsigned char *buf_addr, *src;
|
|
int i, ret = 0, entry_sidx = -1;
|
|
const Elf_Shdr *sechdrs_c;
|
|
Elf_Shdr *sechdrs = NULL;
|
|
void *purgatory_buf = NULL;
|
|
|
|
/*
|
|
* sechdrs_c points to section headers in purgatory and are read
|
|
* only. No modifications allowed.
|
|
*/
|
|
sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
|
|
|
|
/*
|
|
* We can not modify sechdrs_c[] and its fields. It is read only.
|
|
* Copy it over to a local copy where one can store some temporary
|
|
* data and free it at the end. We need to modify ->sh_addr and
|
|
* ->sh_offset fields to keep track of permanent and temporary
|
|
* locations of sections.
|
|
*/
|
|
sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
|
|
if (!sechdrs)
|
|
return -ENOMEM;
|
|
|
|
memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
|
|
|
|
/*
|
|
* We seem to have multiple copies of sections. First copy is which
|
|
* is embedded in kernel in read only section. Some of these sections
|
|
* will be copied to a temporary buffer and relocated. And these
|
|
* sections will finally be copied to their final destination at
|
|
* segment load time.
|
|
*
|
|
* Use ->sh_offset to reflect section address in memory. It will
|
|
* point to original read only copy if section is not allocatable.
|
|
* Otherwise it will point to temporary copy which will be relocated.
|
|
*
|
|
* Use ->sh_addr to contain final address of the section where it
|
|
* will go during execution time.
|
|
*/
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
if (sechdrs[i].sh_type == SHT_NOBITS)
|
|
continue;
|
|
|
|
sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
|
|
sechdrs[i].sh_offset;
|
|
}
|
|
|
|
/*
|
|
* Identify entry point section and make entry relative to section
|
|
* start.
|
|
*/
|
|
entry = pi->ehdr->e_entry;
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
|
|
continue;
|
|
|
|
/* Make entry section relative */
|
|
if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
|
|
((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
|
|
pi->ehdr->e_entry)) {
|
|
entry_sidx = i;
|
|
entry -= sechdrs[i].sh_addr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Determine how much memory is needed to load relocatable object. */
|
|
buf_align = 1;
|
|
bss_align = 1;
|
|
buf_sz = 0;
|
|
bss_sz = 0;
|
|
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
align = sechdrs[i].sh_addralign;
|
|
if (sechdrs[i].sh_type != SHT_NOBITS) {
|
|
if (buf_align < align)
|
|
buf_align = align;
|
|
buf_sz = ALIGN(buf_sz, align);
|
|
buf_sz += sechdrs[i].sh_size;
|
|
} else {
|
|
/* bss section */
|
|
if (bss_align < align)
|
|
bss_align = align;
|
|
bss_sz = ALIGN(bss_sz, align);
|
|
bss_sz += sechdrs[i].sh_size;
|
|
}
|
|
}
|
|
|
|
/* Determine the bss padding required to align bss properly */
|
|
bss_pad = 0;
|
|
if (buf_sz & (bss_align - 1))
|
|
bss_pad = bss_align - (buf_sz & (bss_align - 1));
|
|
|
|
memsz = buf_sz + bss_pad + bss_sz;
|
|
|
|
/* Allocate buffer for purgatory */
|
|
purgatory_buf = vzalloc(buf_sz);
|
|
if (!purgatory_buf) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (buf_align < bss_align)
|
|
buf_align = bss_align;
|
|
|
|
/* Add buffer to segment list */
|
|
ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
|
|
buf_align, min, max, top_down,
|
|
&pi->purgatory_load_addr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Load SHF_ALLOC sections */
|
|
buf_addr = purgatory_buf;
|
|
load_addr = curr_load_addr = pi->purgatory_load_addr;
|
|
bss_addr = load_addr + buf_sz + bss_pad;
|
|
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
align = sechdrs[i].sh_addralign;
|
|
if (sechdrs[i].sh_type != SHT_NOBITS) {
|
|
curr_load_addr = ALIGN(curr_load_addr, align);
|
|
offset = curr_load_addr - load_addr;
|
|
/* We already modifed ->sh_offset to keep src addr */
|
|
src = (char *) sechdrs[i].sh_offset;
|
|
memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
|
|
|
|
/* Store load address and source address of section */
|
|
sechdrs[i].sh_addr = curr_load_addr;
|
|
|
|
/*
|
|
* This section got copied to temporary buffer. Update
|
|
* ->sh_offset accordingly.
|
|
*/
|
|
sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
|
|
|
|
/* Advance to the next address */
|
|
curr_load_addr += sechdrs[i].sh_size;
|
|
} else {
|
|
bss_addr = ALIGN(bss_addr, align);
|
|
sechdrs[i].sh_addr = bss_addr;
|
|
bss_addr += sechdrs[i].sh_size;
|
|
}
|
|
}
|
|
|
|
/* Update entry point based on load address of text section */
|
|
if (entry_sidx >= 0)
|
|
entry += sechdrs[entry_sidx].sh_addr;
|
|
|
|
/* Make kernel jump to purgatory after shutdown */
|
|
image->start = entry;
|
|
|
|
/* Used later to get/set symbol values */
|
|
pi->sechdrs = sechdrs;
|
|
|
|
/*
|
|
* Used later to identify which section is purgatory and skip it
|
|
* from checksumming.
|
|
*/
|
|
pi->purgatory_buf = purgatory_buf;
|
|
return ret;
|
|
out:
|
|
vfree(sechdrs);
|
|
vfree(purgatory_buf);
|
|
return ret;
|
|
}
|
|
|
|
static int kexec_apply_relocations(struct kimage *image)
|
|
{
|
|
int i, ret;
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
Elf_Shdr *sechdrs = pi->sechdrs;
|
|
|
|
/* Apply relocations */
|
|
for (i = 0; i < pi->ehdr->e_shnum; i++) {
|
|
Elf_Shdr *section, *symtab;
|
|
|
|
if (sechdrs[i].sh_type != SHT_RELA &&
|
|
sechdrs[i].sh_type != SHT_REL)
|
|
continue;
|
|
|
|
/*
|
|
* For section of type SHT_RELA/SHT_REL,
|
|
* ->sh_link contains section header index of associated
|
|
* symbol table. And ->sh_info contains section header
|
|
* index of section to which relocations apply.
|
|
*/
|
|
if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
|
|
sechdrs[i].sh_link >= pi->ehdr->e_shnum)
|
|
return -ENOEXEC;
|
|
|
|
section = &sechdrs[sechdrs[i].sh_info];
|
|
symtab = &sechdrs[sechdrs[i].sh_link];
|
|
|
|
if (!(section->sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
/*
|
|
* symtab->sh_link contain section header index of associated
|
|
* string table.
|
|
*/
|
|
if (symtab->sh_link >= pi->ehdr->e_shnum)
|
|
/* Invalid section number? */
|
|
continue;
|
|
|
|
/*
|
|
* Respective architecture needs to provide support for applying
|
|
* relocations of type SHT_RELA/SHT_REL.
|
|
*/
|
|
if (sechdrs[i].sh_type == SHT_RELA)
|
|
ret = arch_kexec_apply_relocations_add(pi->ehdr,
|
|
sechdrs, i);
|
|
else if (sechdrs[i].sh_type == SHT_REL)
|
|
ret = arch_kexec_apply_relocations(pi->ehdr,
|
|
sechdrs, i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Load relocatable purgatory object and relocate it appropriately */
|
|
int kexec_load_purgatory(struct kimage *image, unsigned long min,
|
|
unsigned long max, int top_down,
|
|
unsigned long *load_addr)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
int ret;
|
|
|
|
if (kexec_purgatory_size <= 0)
|
|
return -EINVAL;
|
|
|
|
if (kexec_purgatory_size < sizeof(Elf_Ehdr))
|
|
return -ENOEXEC;
|
|
|
|
pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
|
|
|
|
if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
|
|
|| pi->ehdr->e_type != ET_REL
|
|
|| !elf_check_arch(pi->ehdr)
|
|
|| pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
|
|
return -ENOEXEC;
|
|
|
|
if (pi->ehdr->e_shoff >= kexec_purgatory_size
|
|
|| (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
|
|
kexec_purgatory_size - pi->ehdr->e_shoff))
|
|
return -ENOEXEC;
|
|
|
|
ret = __kexec_load_purgatory(image, min, max, top_down);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = kexec_apply_relocations(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
*load_addr = pi->purgatory_load_addr;
|
|
return 0;
|
|
out:
|
|
vfree(pi->sechdrs);
|
|
vfree(pi->purgatory_buf);
|
|
return ret;
|
|
}
|
|
|
|
static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
|
|
const char *name)
|
|
{
|
|
Elf_Sym *syms;
|
|
Elf_Shdr *sechdrs;
|
|
Elf_Ehdr *ehdr;
|
|
int i, k;
|
|
const char *strtab;
|
|
|
|
if (!pi->sechdrs || !pi->ehdr)
|
|
return NULL;
|
|
|
|
sechdrs = pi->sechdrs;
|
|
ehdr = pi->ehdr;
|
|
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
if (sechdrs[i].sh_type != SHT_SYMTAB)
|
|
continue;
|
|
|
|
if (sechdrs[i].sh_link >= ehdr->e_shnum)
|
|
/* Invalid strtab section number */
|
|
continue;
|
|
strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
|
|
syms = (Elf_Sym *)sechdrs[i].sh_offset;
|
|
|
|
/* Go through symbols for a match */
|
|
for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
|
|
if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
|
|
continue;
|
|
|
|
if (strcmp(strtab + syms[k].st_name, name) != 0)
|
|
continue;
|
|
|
|
if (syms[k].st_shndx == SHN_UNDEF ||
|
|
syms[k].st_shndx >= ehdr->e_shnum) {
|
|
pr_debug("Symbol: %s has bad section index %d.\n",
|
|
name, syms[k].st_shndx);
|
|
return NULL;
|
|
}
|
|
|
|
/* Found the symbol we are looking for */
|
|
return &syms[k];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
|
|
{
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
Elf_Sym *sym;
|
|
Elf_Shdr *sechdr;
|
|
|
|
sym = kexec_purgatory_find_symbol(pi, name);
|
|
if (!sym)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sechdr = &pi->sechdrs[sym->st_shndx];
|
|
|
|
/*
|
|
* Returns the address where symbol will finally be loaded after
|
|
* kexec_load_segment()
|
|
*/
|
|
return (void *)(sechdr->sh_addr + sym->st_value);
|
|
}
|
|
|
|
/*
|
|
* Get or set value of a symbol. If "get_value" is true, symbol value is
|
|
* returned in buf otherwise symbol value is set based on value in buf.
|
|
*/
|
|
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
|
|
void *buf, unsigned int size, bool get_value)
|
|
{
|
|
Elf_Sym *sym;
|
|
Elf_Shdr *sechdrs;
|
|
struct purgatory_info *pi = &image->purgatory_info;
|
|
char *sym_buf;
|
|
|
|
sym = kexec_purgatory_find_symbol(pi, name);
|
|
if (!sym)
|
|
return -EINVAL;
|
|
|
|
if (sym->st_size != size) {
|
|
pr_err("symbol %s size mismatch: expected %lu actual %u\n",
|
|
name, (unsigned long)sym->st_size, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sechdrs = pi->sechdrs;
|
|
|
|
if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
|
|
pr_err("symbol %s is in a bss section. Cannot %s\n", name,
|
|
get_value ? "get" : "set");
|
|
return -EINVAL;
|
|
}
|
|
|
|
sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
|
|
sym->st_value;
|
|
|
|
if (get_value)
|
|
memcpy((void *)buf, sym_buf, size);
|
|
else
|
|
memcpy((void *)sym_buf, buf, size);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
/*
|
|
* Move into place and start executing a preloaded standalone
|
|
* executable. If nothing was preloaded return an error.
|
|
*/
|
|
int kernel_kexec(void)
|
|
{
|
|
int error = 0;
|
|
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
if (!kexec_image) {
|
|
error = -EINVAL;
|
|
goto Unlock;
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (kexec_image->preserve_context) {
|
|
lock_system_sleep();
|
|
pm_prepare_console();
|
|
error = freeze_processes();
|
|
if (error) {
|
|
error = -EBUSY;
|
|
goto Restore_console;
|
|
}
|
|
suspend_console();
|
|
error = dpm_suspend_start(PMSG_FREEZE);
|
|
if (error)
|
|
goto Resume_console;
|
|
/* At this point, dpm_suspend_start() has been called,
|
|
* but *not* dpm_suspend_end(). We *must* call
|
|
* dpm_suspend_end() now. Otherwise, drivers for
|
|
* some devices (e.g. interrupt controllers) become
|
|
* desynchronized with the actual state of the
|
|
* hardware at resume time, and evil weirdness ensues.
|
|
*/
|
|
error = dpm_suspend_end(PMSG_FREEZE);
|
|
if (error)
|
|
goto Resume_devices;
|
|
error = disable_nonboot_cpus();
|
|
if (error)
|
|
goto Enable_cpus;
|
|
local_irq_disable();
|
|
error = syscore_suspend();
|
|
if (error)
|
|
goto Enable_irqs;
|
|
} else
|
|
#endif
|
|
{
|
|
kexec_in_progress = true;
|
|
kernel_restart_prepare(NULL);
|
|
migrate_to_reboot_cpu();
|
|
|
|
/*
|
|
* migrate_to_reboot_cpu() disables CPU hotplug assuming that
|
|
* no further code needs to use CPU hotplug (which is true in
|
|
* the reboot case). However, the kexec path depends on using
|
|
* CPU hotplug again; so re-enable it here.
|
|
*/
|
|
cpu_hotplug_enable();
|
|
pr_emerg("Starting new kernel\n");
|
|
machine_shutdown();
|
|
}
|
|
|
|
machine_kexec(kexec_image);
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (kexec_image->preserve_context) {
|
|
syscore_resume();
|
|
Enable_irqs:
|
|
local_irq_enable();
|
|
Enable_cpus:
|
|
enable_nonboot_cpus();
|
|
dpm_resume_start(PMSG_RESTORE);
|
|
Resume_devices:
|
|
dpm_resume_end(PMSG_RESTORE);
|
|
Resume_console:
|
|
resume_console();
|
|
thaw_processes();
|
|
Restore_console:
|
|
pm_restore_console();
|
|
unlock_system_sleep();
|
|
}
|
|
#endif
|
|
|
|
Unlock:
|
|
mutex_unlock(&kexec_mutex);
|
|
return error;
|
|
}
|