mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 22:00:53 +07:00
b3c16bfc6a
This patch introduces the skcipher_ialg_simple helper which fetches the crypto_alg structure from a simple skcipher instance's spawn. This allows us to remove the third argument from the function skcipher_alloc_instance_simple. In doing so the reference count to the algorithm is now maintained by the Crypto API and the caller no longer needs to drop the alg refcount. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
253 lines
6.1 KiB
C
253 lines
6.1 KiB
C
//SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* CFB: Cipher FeedBack mode
|
|
*
|
|
* Copyright (c) 2018 James.Bottomley@HansenPartnership.com
|
|
*
|
|
* CFB is a stream cipher mode which is layered on to a block
|
|
* encryption scheme. It works very much like a one time pad where
|
|
* the pad is generated initially from the encrypted IV and then
|
|
* subsequently from the encrypted previous block of ciphertext. The
|
|
* pad is XOR'd into the plain text to get the final ciphertext.
|
|
*
|
|
* The scheme of CFB is best described by wikipedia:
|
|
*
|
|
* https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB
|
|
*
|
|
* Note that since the pad for both encryption and decryption is
|
|
* generated by an encryption operation, CFB never uses the block
|
|
* decryption function.
|
|
*/
|
|
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
|
|
static unsigned int crypto_cfb_bsize(struct crypto_skcipher *tfm)
|
|
{
|
|
return crypto_cipher_blocksize(skcipher_cipher_simple(tfm));
|
|
}
|
|
|
|
static void crypto_cfb_encrypt_one(struct crypto_skcipher *tfm,
|
|
const u8 *src, u8 *dst)
|
|
{
|
|
crypto_cipher_encrypt_one(skcipher_cipher_simple(tfm), dst, src);
|
|
}
|
|
|
|
/* final encrypt and decrypt is the same */
|
|
static void crypto_cfb_final(struct skcipher_walk *walk,
|
|
struct crypto_skcipher *tfm)
|
|
{
|
|
const unsigned long alignmask = crypto_skcipher_alignmask(tfm);
|
|
u8 tmp[MAX_CIPHER_BLOCKSIZE + MAX_CIPHER_ALIGNMASK];
|
|
u8 *stream = PTR_ALIGN(tmp + 0, alignmask + 1);
|
|
u8 *src = walk->src.virt.addr;
|
|
u8 *dst = walk->dst.virt.addr;
|
|
u8 *iv = walk->iv;
|
|
unsigned int nbytes = walk->nbytes;
|
|
|
|
crypto_cfb_encrypt_one(tfm, iv, stream);
|
|
crypto_xor_cpy(dst, stream, src, nbytes);
|
|
}
|
|
|
|
static int crypto_cfb_encrypt_segment(struct skcipher_walk *walk,
|
|
struct crypto_skcipher *tfm)
|
|
{
|
|
const unsigned int bsize = crypto_cfb_bsize(tfm);
|
|
unsigned int nbytes = walk->nbytes;
|
|
u8 *src = walk->src.virt.addr;
|
|
u8 *dst = walk->dst.virt.addr;
|
|
u8 *iv = walk->iv;
|
|
|
|
do {
|
|
crypto_cfb_encrypt_one(tfm, iv, dst);
|
|
crypto_xor(dst, src, bsize);
|
|
iv = dst;
|
|
|
|
src += bsize;
|
|
dst += bsize;
|
|
} while ((nbytes -= bsize) >= bsize);
|
|
|
|
memcpy(walk->iv, iv, bsize);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int crypto_cfb_encrypt_inplace(struct skcipher_walk *walk,
|
|
struct crypto_skcipher *tfm)
|
|
{
|
|
const unsigned int bsize = crypto_cfb_bsize(tfm);
|
|
unsigned int nbytes = walk->nbytes;
|
|
u8 *src = walk->src.virt.addr;
|
|
u8 *iv = walk->iv;
|
|
u8 tmp[MAX_CIPHER_BLOCKSIZE];
|
|
|
|
do {
|
|
crypto_cfb_encrypt_one(tfm, iv, tmp);
|
|
crypto_xor(src, tmp, bsize);
|
|
iv = src;
|
|
|
|
src += bsize;
|
|
} while ((nbytes -= bsize) >= bsize);
|
|
|
|
memcpy(walk->iv, iv, bsize);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int crypto_cfb_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct skcipher_walk walk;
|
|
unsigned int bsize = crypto_cfb_bsize(tfm);
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while (walk.nbytes >= bsize) {
|
|
if (walk.src.virt.addr == walk.dst.virt.addr)
|
|
err = crypto_cfb_encrypt_inplace(&walk, tfm);
|
|
else
|
|
err = crypto_cfb_encrypt_segment(&walk, tfm);
|
|
err = skcipher_walk_done(&walk, err);
|
|
}
|
|
|
|
if (walk.nbytes) {
|
|
crypto_cfb_final(&walk, tfm);
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int crypto_cfb_decrypt_segment(struct skcipher_walk *walk,
|
|
struct crypto_skcipher *tfm)
|
|
{
|
|
const unsigned int bsize = crypto_cfb_bsize(tfm);
|
|
unsigned int nbytes = walk->nbytes;
|
|
u8 *src = walk->src.virt.addr;
|
|
u8 *dst = walk->dst.virt.addr;
|
|
u8 *iv = walk->iv;
|
|
|
|
do {
|
|
crypto_cfb_encrypt_one(tfm, iv, dst);
|
|
crypto_xor(dst, src, bsize);
|
|
iv = src;
|
|
|
|
src += bsize;
|
|
dst += bsize;
|
|
} while ((nbytes -= bsize) >= bsize);
|
|
|
|
memcpy(walk->iv, iv, bsize);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int crypto_cfb_decrypt_inplace(struct skcipher_walk *walk,
|
|
struct crypto_skcipher *tfm)
|
|
{
|
|
const unsigned int bsize = crypto_cfb_bsize(tfm);
|
|
unsigned int nbytes = walk->nbytes;
|
|
u8 *src = walk->src.virt.addr;
|
|
u8 * const iv = walk->iv;
|
|
u8 tmp[MAX_CIPHER_BLOCKSIZE];
|
|
|
|
do {
|
|
crypto_cfb_encrypt_one(tfm, iv, tmp);
|
|
memcpy(iv, src, bsize);
|
|
crypto_xor(src, tmp, bsize);
|
|
src += bsize;
|
|
} while ((nbytes -= bsize) >= bsize);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int crypto_cfb_decrypt_blocks(struct skcipher_walk *walk,
|
|
struct crypto_skcipher *tfm)
|
|
{
|
|
if (walk->src.virt.addr == walk->dst.virt.addr)
|
|
return crypto_cfb_decrypt_inplace(walk, tfm);
|
|
else
|
|
return crypto_cfb_decrypt_segment(walk, tfm);
|
|
}
|
|
|
|
static int crypto_cfb_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct skcipher_walk walk;
|
|
const unsigned int bsize = crypto_cfb_bsize(tfm);
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while (walk.nbytes >= bsize) {
|
|
err = crypto_cfb_decrypt_blocks(&walk, tfm);
|
|
err = skcipher_walk_done(&walk, err);
|
|
}
|
|
|
|
if (walk.nbytes) {
|
|
crypto_cfb_final(&walk, tfm);
|
|
err = skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int crypto_cfb_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
{
|
|
struct skcipher_instance *inst;
|
|
struct crypto_alg *alg;
|
|
int err;
|
|
|
|
inst = skcipher_alloc_instance_simple(tmpl, tb);
|
|
if (IS_ERR(inst))
|
|
return PTR_ERR(inst);
|
|
|
|
alg = skcipher_ialg_simple(inst);
|
|
|
|
/* CFB mode is a stream cipher. */
|
|
inst->alg.base.cra_blocksize = 1;
|
|
|
|
/*
|
|
* To simplify the implementation, configure the skcipher walk to only
|
|
* give a partial block at the very end, never earlier.
|
|
*/
|
|
inst->alg.chunksize = alg->cra_blocksize;
|
|
|
|
inst->alg.encrypt = crypto_cfb_encrypt;
|
|
inst->alg.decrypt = crypto_cfb_decrypt;
|
|
|
|
err = skcipher_register_instance(tmpl, inst);
|
|
if (err)
|
|
inst->free(inst);
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct crypto_template crypto_cfb_tmpl = {
|
|
.name = "cfb",
|
|
.create = crypto_cfb_create,
|
|
.module = THIS_MODULE,
|
|
};
|
|
|
|
static int __init crypto_cfb_module_init(void)
|
|
{
|
|
return crypto_register_template(&crypto_cfb_tmpl);
|
|
}
|
|
|
|
static void __exit crypto_cfb_module_exit(void)
|
|
{
|
|
crypto_unregister_template(&crypto_cfb_tmpl);
|
|
}
|
|
|
|
subsys_initcall(crypto_cfb_module_init);
|
|
module_exit(crypto_cfb_module_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("CFB block cipher mode of operation");
|
|
MODULE_ALIAS_CRYPTO("cfb");
|