mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 04:05:18 +07:00
1b44f93eb3
Pointer ctx is being re-assigned with the same value as it was initialized with. The second assignment is redundant and can be removed. Addresses-Coverity: ("Unused value") Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1446 lines
35 KiB
C
1446 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019 HiSilicon Limited. */
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <crypto/xts.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/idr.h>
|
|
|
|
#include "sec.h"
|
|
#include "sec_crypto.h"
|
|
|
|
#define SEC_PRIORITY 4001
|
|
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
|
|
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
|
|
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
|
|
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
|
|
|
|
/* SEC sqe(bd) bit operational relative MACRO */
|
|
#define SEC_DE_OFFSET 1
|
|
#define SEC_CIPHER_OFFSET 4
|
|
#define SEC_SCENE_OFFSET 3
|
|
#define SEC_DST_SGL_OFFSET 2
|
|
#define SEC_SRC_SGL_OFFSET 7
|
|
#define SEC_CKEY_OFFSET 9
|
|
#define SEC_CMODE_OFFSET 12
|
|
#define SEC_AKEY_OFFSET 5
|
|
#define SEC_AEAD_ALG_OFFSET 11
|
|
#define SEC_AUTH_OFFSET 6
|
|
|
|
#define SEC_FLAG_OFFSET 7
|
|
#define SEC_FLAG_MASK 0x0780
|
|
#define SEC_TYPE_MASK 0x0F
|
|
#define SEC_DONE_MASK 0x0001
|
|
|
|
#define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH)
|
|
#define SEC_SGL_SGE_NR 128
|
|
#define SEC_CTX_DEV(ctx) (&(ctx)->sec->qm.pdev->dev)
|
|
#define SEC_CIPHER_AUTH 0xfe
|
|
#define SEC_AUTH_CIPHER 0x1
|
|
#define SEC_MAX_MAC_LEN 64
|
|
#define SEC_TOTAL_MAC_SZ (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
|
|
#define SEC_SQE_LEN_RATE 4
|
|
#define SEC_SQE_CFLAG 2
|
|
#define SEC_SQE_AEAD_FLAG 3
|
|
#define SEC_SQE_DONE 0x1
|
|
|
|
static atomic_t sec_active_devs;
|
|
|
|
/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
|
|
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
if (req->c_req.encrypt)
|
|
return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
|
|
ctx->hlf_q_num;
|
|
|
|
return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
|
|
ctx->hlf_q_num;
|
|
}
|
|
|
|
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
if (req->c_req.encrypt)
|
|
atomic_dec(&ctx->enc_qcyclic);
|
|
else
|
|
atomic_dec(&ctx->dec_qcyclic);
|
|
}
|
|
|
|
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
int req_id;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
|
|
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
|
|
0, QM_Q_DEPTH, GFP_ATOMIC);
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
if (unlikely(req_id < 0)) {
|
|
dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
|
|
return req_id;
|
|
}
|
|
|
|
req->qp_ctx = qp_ctx;
|
|
qp_ctx->req_list[req_id] = req;
|
|
return req_id;
|
|
}
|
|
|
|
static void sec_free_req_id(struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int req_id = req->req_id;
|
|
|
|
if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
|
|
dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
|
|
return;
|
|
}
|
|
|
|
qp_ctx->req_list[req_id] = NULL;
|
|
req->qp_ctx = NULL;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
idr_remove(&qp_ctx->req_idr, req_id);
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
}
|
|
|
|
static int sec_aead_verify(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
|
|
u8 *mac_out = qp_ctx->res[req->req_id].out_mac;
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
u8 *mac = mac_out + SEC_MAX_MAC_LEN;
|
|
struct scatterlist *sgl = aead_req->src;
|
|
size_t sz;
|
|
|
|
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
|
|
aead_req->cryptlen + aead_req->assoclen -
|
|
authsize);
|
|
if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
|
|
dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_req_cb(struct hisi_qp *qp, void *resp)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
|
|
struct sec_sqe *bd = resp;
|
|
struct sec_ctx *ctx;
|
|
struct sec_req *req;
|
|
u16 done, flag;
|
|
int err = 0;
|
|
u8 type;
|
|
|
|
type = bd->type_cipher_auth & SEC_TYPE_MASK;
|
|
if (unlikely(type != SEC_BD_TYPE2)) {
|
|
pr_err("err bd type [%d]\n", type);
|
|
return;
|
|
}
|
|
|
|
req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
|
|
req->err_type = bd->type2.error_type;
|
|
ctx = req->ctx;
|
|
done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
|
|
flag = (le16_to_cpu(bd->type2.done_flag) &
|
|
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
|
|
if (unlikely(req->err_type || done != SEC_SQE_DONE ||
|
|
(ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
|
|
(ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
|
|
dev_err(SEC_CTX_DEV(ctx),
|
|
"err_type[%d],done[%d],flag[%d]\n",
|
|
req->err_type, done, flag);
|
|
err = -EIO;
|
|
}
|
|
|
|
if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
|
|
err = sec_aead_verify(req, qp_ctx);
|
|
|
|
atomic64_inc(&ctx->sec->debug.dfx.recv_cnt);
|
|
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
|
|
ctx->req_op->callback(ctx, req, err);
|
|
}
|
|
|
|
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int ret;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
|
|
|
|
if (unlikely(ret == -EBUSY))
|
|
return -ENOBUFS;
|
|
|
|
if (!ret) {
|
|
if (req->fake_busy)
|
|
ret = -EBUSY;
|
|
else
|
|
ret = -EINPROGRESS;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Get DMA memory resources */
|
|
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
int i;
|
|
|
|
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
|
|
&res->c_ivin_dma, GFP_KERNEL);
|
|
if (!res->c_ivin)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < QM_Q_DEPTH; i++) {
|
|
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
|
|
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->c_ivin)
|
|
dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
|
|
res->c_ivin, res->c_ivin_dma);
|
|
}
|
|
|
|
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
int i;
|
|
|
|
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
|
|
&res->out_mac_dma, GFP_KERNEL);
|
|
if (!res->out_mac)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < QM_Q_DEPTH; i++) {
|
|
res[i].out_mac_dma = res->out_mac_dma +
|
|
i * (SEC_MAX_MAC_LEN << 1);
|
|
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->out_mac)
|
|
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
|
|
res->out_mac, res->out_mac_dma);
|
|
}
|
|
|
|
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
struct sec_alg_res *res = qp_ctx->res;
|
|
int ret;
|
|
|
|
ret = sec_alloc_civ_resource(dev, res);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
ret = sec_alloc_mac_resource(dev, res);
|
|
if (ret)
|
|
goto get_fail;
|
|
}
|
|
|
|
return 0;
|
|
get_fail:
|
|
sec_free_civ_resource(dev, res);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_alg_resource_free(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
|
|
sec_free_civ_resource(dev, qp_ctx->res);
|
|
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
sec_free_mac_resource(dev, qp_ctx->res);
|
|
}
|
|
|
|
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
|
|
int qp_ctx_id, int alg_type)
|
|
{
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
struct sec_qp_ctx *qp_ctx;
|
|
struct hisi_qp *qp;
|
|
int ret = -ENOMEM;
|
|
|
|
qp = hisi_qm_create_qp(qm, alg_type);
|
|
if (IS_ERR(qp))
|
|
return PTR_ERR(qp);
|
|
|
|
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
|
|
qp->req_type = 0;
|
|
qp->qp_ctx = qp_ctx;
|
|
qp->req_cb = sec_req_cb;
|
|
qp_ctx->qp = qp;
|
|
qp_ctx->ctx = ctx;
|
|
|
|
mutex_init(&qp_ctx->req_lock);
|
|
atomic_set(&qp_ctx->pending_reqs, 0);
|
|
idr_init(&qp_ctx->req_idr);
|
|
|
|
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
|
|
SEC_SGL_SGE_NR);
|
|
if (IS_ERR(qp_ctx->c_in_pool)) {
|
|
dev_err(dev, "fail to create sgl pool for input!\n");
|
|
goto err_destroy_idr;
|
|
}
|
|
|
|
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
|
|
SEC_SGL_SGE_NR);
|
|
if (IS_ERR(qp_ctx->c_out_pool)) {
|
|
dev_err(dev, "fail to create sgl pool for output!\n");
|
|
goto err_free_c_in_pool;
|
|
}
|
|
|
|
ret = sec_alg_resource_alloc(ctx, qp_ctx);
|
|
if (ret)
|
|
goto err_free_c_out_pool;
|
|
|
|
ret = hisi_qm_start_qp(qp, 0);
|
|
if (ret < 0)
|
|
goto err_queue_free;
|
|
|
|
return 0;
|
|
|
|
err_queue_free:
|
|
sec_alg_resource_free(ctx, qp_ctx);
|
|
err_free_c_out_pool:
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
|
|
err_free_c_in_pool:
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
|
|
err_destroy_idr:
|
|
idr_destroy(&qp_ctx->req_idr);
|
|
hisi_qm_release_qp(qp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_release_qp_ctx(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
|
|
hisi_qm_stop_qp(qp_ctx->qp);
|
|
sec_alg_resource_free(ctx, qp_ctx);
|
|
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
|
|
|
|
idr_destroy(&qp_ctx->req_idr);
|
|
hisi_qm_release_qp(qp_ctx->qp);
|
|
}
|
|
|
|
static int sec_ctx_base_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_dev *sec;
|
|
int i, ret;
|
|
|
|
sec = sec_find_device(cpu_to_node(smp_processor_id()));
|
|
if (!sec) {
|
|
pr_err("Can not find proper Hisilicon SEC device!\n");
|
|
return -ENODEV;
|
|
}
|
|
ctx->sec = sec;
|
|
ctx->hlf_q_num = sec->ctx_q_num >> 1;
|
|
|
|
/* Half of queue depth is taken as fake requests limit in the queue. */
|
|
ctx->fake_req_limit = QM_Q_DEPTH >> 1;
|
|
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
|
|
GFP_KERNEL);
|
|
if (!ctx->qp_ctx)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < sec->ctx_q_num; i++) {
|
|
ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
|
|
if (ret)
|
|
goto err_sec_release_qp_ctx;
|
|
}
|
|
|
|
return 0;
|
|
err_sec_release_qp_ctx:
|
|
for (i = i - 1; i >= 0; i--)
|
|
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
|
|
|
|
kfree(ctx->qp_ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ctx->sec->ctx_q_num; i++)
|
|
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
|
|
|
|
kfree(ctx->qp_ctx);
|
|
}
|
|
|
|
static int sec_cipher_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
|
|
&c_ctx->c_key_dma, GFP_KERNEL);
|
|
if (!c_ctx->c_key)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_uninit(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
|
|
dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
|
|
c_ctx->c_key, c_ctx->c_key_dma);
|
|
}
|
|
|
|
static int sec_auth_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
|
|
&a_ctx->a_key_dma, GFP_KERNEL);
|
|
if (!a_ctx->a_key)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_auth_uninit(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
|
|
dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
|
|
a_ctx->a_key, a_ctx->a_key_dma);
|
|
}
|
|
|
|
static int sec_skcipher_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ctx->alg_type = SEC_SKCIPHER;
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
|
|
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
|
|
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
|
|
dev_err(SEC_CTX_DEV(ctx), "get error skcipher iv size!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sec_ctx_base_init(ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sec_cipher_init(ctx);
|
|
if (ret)
|
|
goto err_cipher_init;
|
|
|
|
return 0;
|
|
err_cipher_init:
|
|
sec_ctx_base_uninit(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
sec_cipher_uninit(ctx);
|
|
sec_ctx_base_uninit(ctx);
|
|
}
|
|
|
|
static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
|
|
const u32 keylen,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
switch (keylen) {
|
|
case SEC_DES3_2KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
|
|
break;
|
|
case SEC_DES3_3KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
|
|
const u32 keylen,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
if (c_mode == SEC_CMODE_XTS) {
|
|
switch (keylen) {
|
|
case SEC_XTS_MIN_KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case SEC_XTS_MAX_KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: xts mode key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
c_ctx->c_key_len = SEC_CKEY_192BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: aes key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
const u32 keylen, const enum sec_calg c_alg,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
int ret;
|
|
|
|
if (c_mode == SEC_CMODE_XTS) {
|
|
ret = xts_verify_key(tfm, key, keylen);
|
|
if (ret) {
|
|
dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
c_ctx->c_alg = c_alg;
|
|
c_ctx->c_mode = c_mode;
|
|
|
|
switch (c_alg) {
|
|
case SEC_CALG_3DES:
|
|
ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
|
|
break;
|
|
case SEC_CALG_AES:
|
|
case SEC_CALG_SM4:
|
|
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
|
|
return ret;
|
|
}
|
|
|
|
memcpy(c_ctx->c_key, key, keylen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
|
|
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
|
|
u32 keylen) \
|
|
{ \
|
|
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
|
|
}
|
|
|
|
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
|
|
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
|
|
|
|
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
|
|
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
|
|
|
|
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
|
|
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
|
|
|
|
static int sec_cipher_map(struct device *dev, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
|
|
c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
|
|
qp_ctx->c_in_pool,
|
|
req->req_id,
|
|
&c_req->c_in_dma);
|
|
|
|
if (IS_ERR(c_req->c_in)) {
|
|
dev_err(dev, "fail to dma map input sgl buffers!\n");
|
|
return PTR_ERR(c_req->c_in);
|
|
}
|
|
|
|
if (dst == src) {
|
|
c_req->c_out = c_req->c_in;
|
|
c_req->c_out_dma = c_req->c_in_dma;
|
|
} else {
|
|
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
|
|
qp_ctx->c_out_pool,
|
|
req->req_id,
|
|
&c_req->c_out_dma);
|
|
|
|
if (IS_ERR(c_req->c_out)) {
|
|
dev_err(dev, "fail to dma map output sgl buffers!\n");
|
|
hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
|
|
return PTR_ERR(c_req->c_out);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_unmap(struct device *dev, struct sec_cipher_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
if (dst != src)
|
|
hisi_acc_sg_buf_unmap(dev, src, req->c_in);
|
|
|
|
hisi_acc_sg_buf_unmap(dev, dst, req->c_out);
|
|
}
|
|
|
|
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sq = req->c_req.sk_req;
|
|
|
|
return sec_cipher_map(SEC_CTX_DEV(ctx), req, sq->src, sq->dst);
|
|
}
|
|
|
|
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct skcipher_request *sk_req = c_req->sk_req;
|
|
|
|
sec_cipher_unmap(dev, c_req, sk_req->src, sk_req->dst);
|
|
}
|
|
|
|
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
|
|
struct crypto_authenc_keys *keys)
|
|
{
|
|
switch (keys->enckeylen) {
|
|
case AES_KEYSIZE_128:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
c_ctx->c_key_len = SEC_CKEY_192BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: aead aes key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
|
|
struct crypto_authenc_keys *keys)
|
|
{
|
|
struct crypto_shash *hash_tfm = ctx->hash_tfm;
|
|
SHASH_DESC_ON_STACK(shash, hash_tfm);
|
|
int blocksize, ret;
|
|
|
|
if (!keys->authkeylen) {
|
|
pr_err("hisi_sec2: aead auth key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
blocksize = crypto_shash_blocksize(hash_tfm);
|
|
if (keys->authkeylen > blocksize) {
|
|
ret = crypto_shash_digest(shash, keys->authkey,
|
|
keys->authkeylen, ctx->a_key);
|
|
if (ret) {
|
|
pr_err("hisi_sec2: aead auth digest error!\n");
|
|
return -EINVAL;
|
|
}
|
|
ctx->a_key_len = blocksize;
|
|
} else {
|
|
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
|
|
ctx->a_key_len = keys->authkeylen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
const u32 keylen, const enum sec_hash_alg a_alg,
|
|
const enum sec_calg c_alg,
|
|
const enum sec_mac_len mac_len,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct crypto_authenc_keys keys;
|
|
int ret;
|
|
|
|
ctx->a_ctx.a_alg = a_alg;
|
|
ctx->c_ctx.c_alg = c_alg;
|
|
ctx->a_ctx.mac_len = mac_len;
|
|
c_ctx->c_mode = c_mode;
|
|
|
|
if (crypto_authenc_extractkeys(&keys, key, keylen))
|
|
goto bad_key;
|
|
|
|
ret = sec_aead_aes_set_key(c_ctx, &keys);
|
|
if (ret) {
|
|
dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
|
|
if (ret) {
|
|
dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
return 0;
|
|
bad_key:
|
|
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
|
|
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
|
|
u32 keylen) \
|
|
{ \
|
|
return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
|
|
}
|
|
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
|
|
SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
|
|
SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
|
|
SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
|
|
|
|
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aq = req->aead_req.aead_req;
|
|
|
|
return sec_cipher_map(SEC_CTX_DEV(ctx), req, aq->src, aq->dst);
|
|
}
|
|
|
|
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
struct sec_cipher_req *cq = &req->c_req;
|
|
struct aead_request *aq = req->aead_req.aead_req;
|
|
|
|
sec_cipher_unmap(dev, cq, aq->src, aq->dst);
|
|
}
|
|
|
|
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = ctx->req_op->buf_map(ctx, req);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ctx->req_op->do_transfer(ctx, req);
|
|
|
|
ret = ctx->req_op->bd_fill(ctx, req);
|
|
if (unlikely(ret))
|
|
goto unmap_req_buf;
|
|
|
|
return ret;
|
|
|
|
unmap_req_buf:
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
}
|
|
|
|
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;
|
|
|
|
memcpy(c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_sqe *sec_sqe = &req->sec_sqe;
|
|
u8 scene, sa_type, da_type;
|
|
u8 bd_type, cipher;
|
|
u8 de = 0;
|
|
|
|
memset(sec_sqe, 0, sizeof(struct sec_sqe));
|
|
|
|
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
|
|
sec_sqe->type2.c_ivin_addr =
|
|
cpu_to_le64(req->qp_ctx->res[req->req_id].c_ivin_dma);
|
|
sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
|
|
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
|
|
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
|
|
SEC_CMODE_OFFSET);
|
|
sec_sqe->type2.c_alg = c_ctx->c_alg;
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
|
|
SEC_CKEY_OFFSET);
|
|
|
|
bd_type = SEC_BD_TYPE2;
|
|
if (c_req->encrypt)
|
|
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
|
|
else
|
|
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
|
|
sec_sqe->type_cipher_auth = bd_type | cipher;
|
|
|
|
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
|
|
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
|
|
if (c_req->c_in_dma != c_req->c_out_dma)
|
|
de = 0x1 << SEC_DE_OFFSET;
|
|
|
|
sec_sqe->sds_sa_type = (de | scene | sa_type);
|
|
|
|
/* Just set DST address type */
|
|
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
|
|
sec_sqe->sdm_addr_type |= da_type;
|
|
|
|
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
|
|
sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
u32 iv_size = req->ctx->c_ctx.ivsize;
|
|
struct scatterlist *sgl;
|
|
unsigned int cryptlen;
|
|
size_t sz;
|
|
u8 *iv;
|
|
|
|
if (req->c_req.encrypt)
|
|
sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
|
|
else
|
|
sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
|
|
|
|
if (alg_type == SEC_SKCIPHER) {
|
|
iv = sk_req->iv;
|
|
cryptlen = sk_req->cryptlen;
|
|
} else {
|
|
iv = aead_req->iv;
|
|
cryptlen = aead_req->cryptlen;
|
|
}
|
|
|
|
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
|
|
cryptlen - iv_size);
|
|
if (unlikely(sz != iv_size))
|
|
dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
|
|
}
|
|
|
|
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
|
|
int err)
|
|
{
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
|
|
atomic_dec(&qp_ctx->pending_reqs);
|
|
sec_free_req_id(req);
|
|
|
|
/* IV output at encrypto of CBC mode */
|
|
if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
|
|
sec_update_iv(req, SEC_SKCIPHER);
|
|
|
|
if (req->fake_busy)
|
|
sk_req->base.complete(&sk_req->base, -EINPROGRESS);
|
|
|
|
sk_req->base.complete(&sk_req->base, err);
|
|
}
|
|
|
|
static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;
|
|
|
|
memcpy(c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe *sec_sqe)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
|
|
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
|
|
|
|
sec_sqe->type2.mac_key_alg =
|
|
cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
|
|
|
|
sec_sqe->type2.mac_key_alg |=
|
|
cpu_to_le32((u32)((ctx->a_key_len) /
|
|
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
|
|
|
|
sec_sqe->type2.mac_key_alg |=
|
|
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
|
|
|
|
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
|
|
|
|
if (dir)
|
|
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
|
|
else
|
|
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
|
|
|
|
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
|
|
|
|
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sec_sqe->type2.mac_addr =
|
|
cpu_to_le64(req->qp_ctx->res[req->req_id].out_mac_dma);
|
|
}
|
|
|
|
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
struct sec_sqe *sec_sqe = &req->sec_sqe;
|
|
int ret;
|
|
|
|
ret = sec_skcipher_bd_fill(ctx, req);
|
|
if (unlikely(ret)) {
|
|
dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
|
|
return ret;
|
|
}
|
|
|
|
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
|
|
{
|
|
struct aead_request *a_req = req->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
size_t sz;
|
|
|
|
atomic_dec(&qp_ctx->pending_reqs);
|
|
|
|
if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
|
|
sec_update_iv(req, SEC_AEAD);
|
|
|
|
/* Copy output mac */
|
|
if (!err && c_req->encrypt) {
|
|
struct scatterlist *sgl = a_req->dst;
|
|
|
|
sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
|
|
qp_ctx->res[req->req_id].out_mac,
|
|
authsize, a_req->cryptlen +
|
|
a_req->assoclen);
|
|
|
|
if (unlikely(sz != authsize)) {
|
|
dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
sec_free_req_id(req);
|
|
|
|
if (req->fake_busy)
|
|
a_req->base.complete(&a_req->base, -EINPROGRESS);
|
|
|
|
a_req->base.complete(&a_req->base, err);
|
|
}
|
|
|
|
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
|
|
atomic_dec(&qp_ctx->pending_reqs);
|
|
sec_free_req_id(req);
|
|
sec_free_queue_id(ctx, req);
|
|
}
|
|
|
|
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx;
|
|
int queue_id;
|
|
|
|
/* To load balance */
|
|
queue_id = sec_alloc_queue_id(ctx, req);
|
|
qp_ctx = &ctx->qp_ctx[queue_id];
|
|
|
|
req->req_id = sec_alloc_req_id(req, qp_ctx);
|
|
if (unlikely(req->req_id < 0)) {
|
|
sec_free_queue_id(ctx, req);
|
|
return req->req_id;
|
|
}
|
|
|
|
if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
|
|
req->fake_busy = true;
|
|
else
|
|
req->fake_busy = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = sec_request_init(ctx, req);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ret = sec_request_transfer(ctx, req);
|
|
if (unlikely(ret))
|
|
goto err_uninit_req;
|
|
|
|
/* Output IV as decrypto */
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
|
|
sec_update_iv(req, ctx->alg_type);
|
|
|
|
ret = ctx->req_op->bd_send(ctx, req);
|
|
if (unlikely(ret != -EBUSY && ret != -EINPROGRESS)) {
|
|
dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
|
|
goto err_send_req;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_send_req:
|
|
/* As failing, restore the IV from user */
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
|
|
if (ctx->alg_type == SEC_SKCIPHER)
|
|
memcpy(req->c_req.sk_req->iv,
|
|
req->qp_ctx->res[req->req_id].c_ivin,
|
|
ctx->c_ctx.ivsize);
|
|
else
|
|
memcpy(req->aead_req.aead_req->iv,
|
|
req->qp_ctx->res[req->req_id].c_ivin,
|
|
ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
sec_request_untransfer(ctx, req);
|
|
err_uninit_req:
|
|
sec_request_uninit(ctx, req);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct sec_req_op sec_skcipher_req_ops = {
|
|
.buf_map = sec_skcipher_sgl_map,
|
|
.buf_unmap = sec_skcipher_sgl_unmap,
|
|
.do_transfer = sec_skcipher_copy_iv,
|
|
.bd_fill = sec_skcipher_bd_fill,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_skcipher_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_aead_req_ops = {
|
|
.buf_map = sec_aead_sgl_map,
|
|
.buf_unmap = sec_aead_sgl_unmap,
|
|
.do_transfer = sec_aead_copy_iv,
|
|
.bd_fill = sec_aead_bd_fill,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_aead_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
ctx->req_op = &sec_skcipher_req_ops;
|
|
|
|
return sec_skcipher_init(tfm);
|
|
}
|
|
|
|
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
sec_skcipher_uninit(tfm);
|
|
}
|
|
|
|
static int sec_aead_init(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int ret;
|
|
|
|
crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
|
|
ctx->alg_type = SEC_AEAD;
|
|
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
|
|
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
|
|
dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->req_op = &sec_aead_req_ops;
|
|
ret = sec_ctx_base_init(ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sec_auth_init(ctx);
|
|
if (ret)
|
|
goto err_auth_init;
|
|
|
|
ret = sec_cipher_init(ctx);
|
|
if (ret)
|
|
goto err_cipher_init;
|
|
|
|
return ret;
|
|
|
|
err_cipher_init:
|
|
sec_auth_uninit(ctx);
|
|
err_auth_init:
|
|
sec_ctx_base_uninit(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_aead_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
sec_cipher_uninit(ctx);
|
|
sec_auth_uninit(ctx);
|
|
sec_ctx_base_uninit(ctx);
|
|
}
|
|
|
|
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
int ret;
|
|
|
|
ret = sec_aead_init(tfm);
|
|
if (ret) {
|
|
pr_err("hisi_sec2: aead init error!\n");
|
|
return ret;
|
|
}
|
|
|
|
auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
|
|
if (IS_ERR(auth_ctx->hash_tfm)) {
|
|
dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
|
|
sec_aead_exit(tfm);
|
|
return PTR_ERR(auth_ctx->hash_tfm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
crypto_free_shash(ctx->a_ctx.hash_tfm);
|
|
sec_aead_exit(tfm);
|
|
}
|
|
|
|
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha1");
|
|
}
|
|
|
|
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha256");
|
|
}
|
|
|
|
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha512");
|
|
}
|
|
|
|
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
struct skcipher_request *sk_req = sreq->c_req.sk_req;
|
|
struct device *dev = SEC_CTX_DEV(ctx);
|
|
u8 c_alg = ctx->c_ctx.c_alg;
|
|
|
|
if (unlikely(!sk_req->src || !sk_req->dst)) {
|
|
dev_err(dev, "skcipher input param error!\n");
|
|
return -EINVAL;
|
|
}
|
|
sreq->c_req.c_len = sk_req->cryptlen;
|
|
if (c_alg == SEC_CALG_3DES) {
|
|
if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "skcipher 3des input length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
|
|
if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "skcipher aes input length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
dev_err(dev, "skcipher algorithm error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
|
|
struct sec_req *req = skcipher_request_ctx(sk_req);
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
if (!sk_req->cryptlen)
|
|
return 0;
|
|
|
|
req->c_req.sk_req = sk_req;
|
|
req->c_req.encrypt = encrypt;
|
|
req->ctx = ctx;
|
|
|
|
ret = sec_skcipher_param_check(ctx, req);
|
|
if (unlikely(ret))
|
|
return -EINVAL;
|
|
|
|
return ctx->req_op->process(ctx, req);
|
|
}
|
|
|
|
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
|
|
{
|
|
return sec_skcipher_crypto(sk_req, true);
|
|
}
|
|
|
|
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
|
|
{
|
|
return sec_skcipher_crypto(sk_req, false);
|
|
}
|
|
|
|
#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
|
|
sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
|
|
{\
|
|
.base = {\
|
|
.cra_name = sec_cra_name,\
|
|
.cra_driver_name = "hisi_sec_"sec_cra_name,\
|
|
.cra_priority = SEC_PRIORITY,\
|
|
.cra_flags = CRYPTO_ALG_ASYNC,\
|
|
.cra_blocksize = blk_size,\
|
|
.cra_ctxsize = sizeof(struct sec_ctx),\
|
|
.cra_module = THIS_MODULE,\
|
|
},\
|
|
.init = ctx_init,\
|
|
.exit = ctx_exit,\
|
|
.setkey = sec_set_key,\
|
|
.decrypt = sec_skcipher_decrypt,\
|
|
.encrypt = sec_skcipher_encrypt,\
|
|
.min_keysize = sec_min_key_size,\
|
|
.max_keysize = sec_max_key_size,\
|
|
.ivsize = iv_size,\
|
|
},
|
|
|
|
#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
|
|
max_key_size, blk_size, iv_size) \
|
|
SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
|
|
sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
|
|
|
|
static struct skcipher_alg sec_skciphers[] = {
|
|
SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
AES_BLOCK_SIZE, 0)
|
|
|
|
SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
|
|
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
|
|
SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
|
|
DES3_EDE_BLOCK_SIZE, 0)
|
|
|
|
SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
|
|
SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
|
|
DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
|
|
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
|
|
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
};
|
|
|
|
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
u8 c_alg = ctx->c_ctx.c_alg;
|
|
struct aead_request *req = sreq->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
|
|
if (unlikely(!req->src || !req->dst || !req->cryptlen)) {
|
|
dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Support AES only */
|
|
if (unlikely(c_alg != SEC_CALG_AES)) {
|
|
dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
|
|
return -EINVAL;
|
|
|
|
}
|
|
if (sreq->c_req.encrypt)
|
|
sreq->c_req.c_len = req->cryptlen;
|
|
else
|
|
sreq->c_req.c_len = req->cryptlen - authsize;
|
|
|
|
if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
|
|
dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
|
|
struct sec_req *req = aead_request_ctx(a_req);
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int ret;
|
|
|
|
req->aead_req.aead_req = a_req;
|
|
req->c_req.encrypt = encrypt;
|
|
req->ctx = ctx;
|
|
|
|
ret = sec_aead_param_check(ctx, req);
|
|
if (unlikely(ret))
|
|
return -EINVAL;
|
|
|
|
return ctx->req_op->process(ctx, req);
|
|
}
|
|
|
|
static int sec_aead_encrypt(struct aead_request *a_req)
|
|
{
|
|
return sec_aead_crypto(a_req, true);
|
|
}
|
|
|
|
static int sec_aead_decrypt(struct aead_request *a_req)
|
|
{
|
|
return sec_aead_crypto(a_req, false);
|
|
}
|
|
|
|
#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
|
|
ctx_exit, blk_size, iv_size, max_authsize)\
|
|
{\
|
|
.base = {\
|
|
.cra_name = sec_cra_name,\
|
|
.cra_driver_name = "hisi_sec_"sec_cra_name,\
|
|
.cra_priority = SEC_PRIORITY,\
|
|
.cra_flags = CRYPTO_ALG_ASYNC,\
|
|
.cra_blocksize = blk_size,\
|
|
.cra_ctxsize = sizeof(struct sec_ctx),\
|
|
.cra_module = THIS_MODULE,\
|
|
},\
|
|
.init = ctx_init,\
|
|
.exit = ctx_exit,\
|
|
.setkey = sec_set_key,\
|
|
.decrypt = sec_aead_decrypt,\
|
|
.encrypt = sec_aead_encrypt,\
|
|
.ivsize = iv_size,\
|
|
.maxauthsize = max_authsize,\
|
|
}
|
|
|
|
#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
|
|
SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
|
|
sec_aead_ctx_exit, blksize, ivsize, authsize)
|
|
|
|
static struct aead_alg sec_aeads[] = {
|
|
SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
|
|
sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
|
|
|
|
SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
|
|
sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
|
|
|
|
SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
|
|
sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
|
|
};
|
|
|
|
int sec_register_to_crypto(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* To avoid repeat register */
|
|
if (atomic_add_return(1, &sec_active_devs) == 1) {
|
|
ret = crypto_register_skciphers(sec_skciphers,
|
|
ARRAY_SIZE(sec_skciphers));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
|
|
if (ret)
|
|
goto reg_aead_fail;
|
|
}
|
|
|
|
return ret;
|
|
|
|
reg_aead_fail:
|
|
crypto_unregister_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers));
|
|
|
|
return ret;
|
|
}
|
|
|
|
void sec_unregister_from_crypto(void)
|
|
{
|
|
if (atomic_sub_return(1, &sec_active_devs) == 0) {
|
|
crypto_unregister_skciphers(sec_skciphers,
|
|
ARRAY_SIZE(sec_skciphers));
|
|
crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
|
|
}
|
|
}
|