mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
3cc215198e
In preparation for adding XChaCha12 support, rename/refactor the NEON implementation of ChaCha20 to support different numbers of rounds. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
561 lines
13 KiB
ArmAsm
561 lines
13 KiB
ArmAsm
/*
|
|
* ChaCha/XChaCha NEON helper functions
|
|
*
|
|
* Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Based on:
|
|
* ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSE3 functions
|
|
*
|
|
* Copyright (C) 2015 Martin Willi
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
/*
|
|
* NEON doesn't have a rotate instruction. The alternatives are, more or less:
|
|
*
|
|
* (a) vshl.u32 + vsri.u32 (needs temporary register)
|
|
* (b) vshl.u32 + vshr.u32 + vorr (needs temporary register)
|
|
* (c) vrev32.16 (16-bit rotations only)
|
|
* (d) vtbl.8 + vtbl.8 (multiple of 8 bits rotations only,
|
|
* needs index vector)
|
|
*
|
|
* ChaCha has 16, 12, 8, and 7-bit rotations. For the 12 and 7-bit rotations,
|
|
* the only choices are (a) and (b). We use (a) since it takes two-thirds the
|
|
* cycles of (b) on both Cortex-A7 and Cortex-A53.
|
|
*
|
|
* For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
|
|
* and doesn't need a temporary register.
|
|
*
|
|
* For the 8-bit rotation, we use vtbl.8 + vtbl.8. On Cortex-A7, this sequence
|
|
* is twice as fast as (a), even when doing (a) on multiple registers
|
|
* simultaneously to eliminate the stall between vshl and vsri. Also, it
|
|
* parallelizes better when temporary registers are scarce.
|
|
*
|
|
* A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
|
|
* (a), so the need to load the rotation table actually makes the vtbl method
|
|
* slightly slower overall on that CPU (~1.3% slower ChaCha20). Still, it
|
|
* seems to be a good compromise to get a more significant speed boost on some
|
|
* CPUs, e.g. ~4.8% faster ChaCha20 on Cortex-A7.
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
.text
|
|
.fpu neon
|
|
.align 5
|
|
|
|
/*
|
|
* chacha_permute - permute one block
|
|
*
|
|
* Permute one 64-byte block where the state matrix is stored in the four NEON
|
|
* registers q0-q3. It performs matrix operations on four words in parallel,
|
|
* but requires shuffling to rearrange the words after each round.
|
|
*
|
|
* The round count is given in r3.
|
|
*
|
|
* Clobbers: r3, ip, q4-q5
|
|
*/
|
|
chacha_permute:
|
|
|
|
adr ip, .Lrol8_table
|
|
vld1.8 {d10}, [ip, :64]
|
|
|
|
.Ldoubleround:
|
|
// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
vadd.i32 q0, q0, q1
|
|
veor q3, q3, q0
|
|
vrev32.16 q3, q3
|
|
|
|
// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
vadd.i32 q2, q2, q3
|
|
veor q4, q1, q2
|
|
vshl.u32 q1, q4, #12
|
|
vsri.u32 q1, q4, #20
|
|
|
|
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
vadd.i32 q0, q0, q1
|
|
veor q3, q3, q0
|
|
vtbl.8 d6, {d6}, d10
|
|
vtbl.8 d7, {d7}, d10
|
|
|
|
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
vadd.i32 q2, q2, q3
|
|
veor q4, q1, q2
|
|
vshl.u32 q1, q4, #7
|
|
vsri.u32 q1, q4, #25
|
|
|
|
// x1 = shuffle32(x1, MASK(0, 3, 2, 1))
|
|
vext.8 q1, q1, q1, #4
|
|
// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
vext.8 q2, q2, q2, #8
|
|
// x3 = shuffle32(x3, MASK(2, 1, 0, 3))
|
|
vext.8 q3, q3, q3, #12
|
|
|
|
// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
|
|
vadd.i32 q0, q0, q1
|
|
veor q3, q3, q0
|
|
vrev32.16 q3, q3
|
|
|
|
// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
|
|
vadd.i32 q2, q2, q3
|
|
veor q4, q1, q2
|
|
vshl.u32 q1, q4, #12
|
|
vsri.u32 q1, q4, #20
|
|
|
|
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
|
|
vadd.i32 q0, q0, q1
|
|
veor q3, q3, q0
|
|
vtbl.8 d6, {d6}, d10
|
|
vtbl.8 d7, {d7}, d10
|
|
|
|
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
|
|
vadd.i32 q2, q2, q3
|
|
veor q4, q1, q2
|
|
vshl.u32 q1, q4, #7
|
|
vsri.u32 q1, q4, #25
|
|
|
|
// x1 = shuffle32(x1, MASK(2, 1, 0, 3))
|
|
vext.8 q1, q1, q1, #12
|
|
// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
|
|
vext.8 q2, q2, q2, #8
|
|
// x3 = shuffle32(x3, MASK(0, 3, 2, 1))
|
|
vext.8 q3, q3, q3, #4
|
|
|
|
subs r3, r3, #2
|
|
bne .Ldoubleround
|
|
|
|
bx lr
|
|
ENDPROC(chacha_permute)
|
|
|
|
ENTRY(chacha_block_xor_neon)
|
|
// r0: Input state matrix, s
|
|
// r1: 1 data block output, o
|
|
// r2: 1 data block input, i
|
|
// r3: nrounds
|
|
push {lr}
|
|
|
|
// x0..3 = s0..3
|
|
add ip, r0, #0x20
|
|
vld1.32 {q0-q1}, [r0]
|
|
vld1.32 {q2-q3}, [ip]
|
|
|
|
vmov q8, q0
|
|
vmov q9, q1
|
|
vmov q10, q2
|
|
vmov q11, q3
|
|
|
|
bl chacha_permute
|
|
|
|
add ip, r2, #0x20
|
|
vld1.8 {q4-q5}, [r2]
|
|
vld1.8 {q6-q7}, [ip]
|
|
|
|
// o0 = i0 ^ (x0 + s0)
|
|
vadd.i32 q0, q0, q8
|
|
veor q0, q0, q4
|
|
|
|
// o1 = i1 ^ (x1 + s1)
|
|
vadd.i32 q1, q1, q9
|
|
veor q1, q1, q5
|
|
|
|
// o2 = i2 ^ (x2 + s2)
|
|
vadd.i32 q2, q2, q10
|
|
veor q2, q2, q6
|
|
|
|
// o3 = i3 ^ (x3 + s3)
|
|
vadd.i32 q3, q3, q11
|
|
veor q3, q3, q7
|
|
|
|
add ip, r1, #0x20
|
|
vst1.8 {q0-q1}, [r1]
|
|
vst1.8 {q2-q3}, [ip]
|
|
|
|
pop {pc}
|
|
ENDPROC(chacha_block_xor_neon)
|
|
|
|
ENTRY(hchacha_block_neon)
|
|
// r0: Input state matrix, s
|
|
// r1: output (8 32-bit words)
|
|
// r2: nrounds
|
|
push {lr}
|
|
|
|
vld1.32 {q0-q1}, [r0]!
|
|
vld1.32 {q2-q3}, [r0]
|
|
|
|
mov r3, r2
|
|
bl chacha_permute
|
|
|
|
vst1.32 {q0}, [r1]!
|
|
vst1.32 {q3}, [r1]
|
|
|
|
pop {pc}
|
|
ENDPROC(hchacha_block_neon)
|
|
|
|
.align 4
|
|
.Lctrinc: .word 0, 1, 2, 3
|
|
.Lrol8_table: .byte 3, 0, 1, 2, 7, 4, 5, 6
|
|
|
|
.align 5
|
|
ENTRY(chacha_4block_xor_neon)
|
|
push {r4-r5}
|
|
mov r4, sp // preserve the stack pointer
|
|
sub ip, sp, #0x20 // allocate a 32 byte buffer
|
|
bic ip, ip, #0x1f // aligned to 32 bytes
|
|
mov sp, ip
|
|
|
|
// r0: Input state matrix, s
|
|
// r1: 4 data blocks output, o
|
|
// r2: 4 data blocks input, i
|
|
// r3: nrounds
|
|
|
|
//
|
|
// This function encrypts four consecutive ChaCha blocks by loading
|
|
// the state matrix in NEON registers four times. The algorithm performs
|
|
// each operation on the corresponding word of each state matrix, hence
|
|
// requires no word shuffling. The words are re-interleaved before the
|
|
// final addition of the original state and the XORing step.
|
|
//
|
|
|
|
// x0..15[0-3] = s0..15[0-3]
|
|
add ip, r0, #0x20
|
|
vld1.32 {q0-q1}, [r0]
|
|
vld1.32 {q2-q3}, [ip]
|
|
|
|
adr r5, .Lctrinc
|
|
vdup.32 q15, d7[1]
|
|
vdup.32 q14, d7[0]
|
|
vld1.32 {q4}, [r5, :128]
|
|
vdup.32 q13, d6[1]
|
|
vdup.32 q12, d6[0]
|
|
vdup.32 q11, d5[1]
|
|
vdup.32 q10, d5[0]
|
|
vadd.u32 q12, q12, q4 // x12 += counter values 0-3
|
|
vdup.32 q9, d4[1]
|
|
vdup.32 q8, d4[0]
|
|
vdup.32 q7, d3[1]
|
|
vdup.32 q6, d3[0]
|
|
vdup.32 q5, d2[1]
|
|
vdup.32 q4, d2[0]
|
|
vdup.32 q3, d1[1]
|
|
vdup.32 q2, d1[0]
|
|
vdup.32 q1, d0[1]
|
|
vdup.32 q0, d0[0]
|
|
|
|
adr ip, .Lrol8_table
|
|
b 1f
|
|
|
|
.Ldoubleround4:
|
|
vld1.32 {q8-q9}, [sp, :256]
|
|
1:
|
|
// x0 += x4, x12 = rotl32(x12 ^ x0, 16)
|
|
// x1 += x5, x13 = rotl32(x13 ^ x1, 16)
|
|
// x2 += x6, x14 = rotl32(x14 ^ x2, 16)
|
|
// x3 += x7, x15 = rotl32(x15 ^ x3, 16)
|
|
vadd.i32 q0, q0, q4
|
|
vadd.i32 q1, q1, q5
|
|
vadd.i32 q2, q2, q6
|
|
vadd.i32 q3, q3, q7
|
|
|
|
veor q12, q12, q0
|
|
veor q13, q13, q1
|
|
veor q14, q14, q2
|
|
veor q15, q15, q3
|
|
|
|
vrev32.16 q12, q12
|
|
vrev32.16 q13, q13
|
|
vrev32.16 q14, q14
|
|
vrev32.16 q15, q15
|
|
|
|
// x8 += x12, x4 = rotl32(x4 ^ x8, 12)
|
|
// x9 += x13, x5 = rotl32(x5 ^ x9, 12)
|
|
// x10 += x14, x6 = rotl32(x6 ^ x10, 12)
|
|
// x11 += x15, x7 = rotl32(x7 ^ x11, 12)
|
|
vadd.i32 q8, q8, q12
|
|
vadd.i32 q9, q9, q13
|
|
vadd.i32 q10, q10, q14
|
|
vadd.i32 q11, q11, q15
|
|
|
|
vst1.32 {q8-q9}, [sp, :256]
|
|
|
|
veor q8, q4, q8
|
|
veor q9, q5, q9
|
|
vshl.u32 q4, q8, #12
|
|
vshl.u32 q5, q9, #12
|
|
vsri.u32 q4, q8, #20
|
|
vsri.u32 q5, q9, #20
|
|
|
|
veor q8, q6, q10
|
|
veor q9, q7, q11
|
|
vshl.u32 q6, q8, #12
|
|
vshl.u32 q7, q9, #12
|
|
vsri.u32 q6, q8, #20
|
|
vsri.u32 q7, q9, #20
|
|
|
|
// x0 += x4, x12 = rotl32(x12 ^ x0, 8)
|
|
// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
|
|
// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
|
|
// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
|
|
vld1.8 {d16}, [ip, :64]
|
|
vadd.i32 q0, q0, q4
|
|
vadd.i32 q1, q1, q5
|
|
vadd.i32 q2, q2, q6
|
|
vadd.i32 q3, q3, q7
|
|
|
|
veor q12, q12, q0
|
|
veor q13, q13, q1
|
|
veor q14, q14, q2
|
|
veor q15, q15, q3
|
|
|
|
vtbl.8 d24, {d24}, d16
|
|
vtbl.8 d25, {d25}, d16
|
|
vtbl.8 d26, {d26}, d16
|
|
vtbl.8 d27, {d27}, d16
|
|
vtbl.8 d28, {d28}, d16
|
|
vtbl.8 d29, {d29}, d16
|
|
vtbl.8 d30, {d30}, d16
|
|
vtbl.8 d31, {d31}, d16
|
|
|
|
vld1.32 {q8-q9}, [sp, :256]
|
|
|
|
// x8 += x12, x4 = rotl32(x4 ^ x8, 7)
|
|
// x9 += x13, x5 = rotl32(x5 ^ x9, 7)
|
|
// x10 += x14, x6 = rotl32(x6 ^ x10, 7)
|
|
// x11 += x15, x7 = rotl32(x7 ^ x11, 7)
|
|
vadd.i32 q8, q8, q12
|
|
vadd.i32 q9, q9, q13
|
|
vadd.i32 q10, q10, q14
|
|
vadd.i32 q11, q11, q15
|
|
|
|
vst1.32 {q8-q9}, [sp, :256]
|
|
|
|
veor q8, q4, q8
|
|
veor q9, q5, q9
|
|
vshl.u32 q4, q8, #7
|
|
vshl.u32 q5, q9, #7
|
|
vsri.u32 q4, q8, #25
|
|
vsri.u32 q5, q9, #25
|
|
|
|
veor q8, q6, q10
|
|
veor q9, q7, q11
|
|
vshl.u32 q6, q8, #7
|
|
vshl.u32 q7, q9, #7
|
|
vsri.u32 q6, q8, #25
|
|
vsri.u32 q7, q9, #25
|
|
|
|
vld1.32 {q8-q9}, [sp, :256]
|
|
|
|
// x0 += x5, x15 = rotl32(x15 ^ x0, 16)
|
|
// x1 += x6, x12 = rotl32(x12 ^ x1, 16)
|
|
// x2 += x7, x13 = rotl32(x13 ^ x2, 16)
|
|
// x3 += x4, x14 = rotl32(x14 ^ x3, 16)
|
|
vadd.i32 q0, q0, q5
|
|
vadd.i32 q1, q1, q6
|
|
vadd.i32 q2, q2, q7
|
|
vadd.i32 q3, q3, q4
|
|
|
|
veor q15, q15, q0
|
|
veor q12, q12, q1
|
|
veor q13, q13, q2
|
|
veor q14, q14, q3
|
|
|
|
vrev32.16 q15, q15
|
|
vrev32.16 q12, q12
|
|
vrev32.16 q13, q13
|
|
vrev32.16 q14, q14
|
|
|
|
// x10 += x15, x5 = rotl32(x5 ^ x10, 12)
|
|
// x11 += x12, x6 = rotl32(x6 ^ x11, 12)
|
|
// x8 += x13, x7 = rotl32(x7 ^ x8, 12)
|
|
// x9 += x14, x4 = rotl32(x4 ^ x9, 12)
|
|
vadd.i32 q10, q10, q15
|
|
vadd.i32 q11, q11, q12
|
|
vadd.i32 q8, q8, q13
|
|
vadd.i32 q9, q9, q14
|
|
|
|
vst1.32 {q8-q9}, [sp, :256]
|
|
|
|
veor q8, q7, q8
|
|
veor q9, q4, q9
|
|
vshl.u32 q7, q8, #12
|
|
vshl.u32 q4, q9, #12
|
|
vsri.u32 q7, q8, #20
|
|
vsri.u32 q4, q9, #20
|
|
|
|
veor q8, q5, q10
|
|
veor q9, q6, q11
|
|
vshl.u32 q5, q8, #12
|
|
vshl.u32 q6, q9, #12
|
|
vsri.u32 q5, q8, #20
|
|
vsri.u32 q6, q9, #20
|
|
|
|
// x0 += x5, x15 = rotl32(x15 ^ x0, 8)
|
|
// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
|
|
// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
|
|
// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
|
|
vld1.8 {d16}, [ip, :64]
|
|
vadd.i32 q0, q0, q5
|
|
vadd.i32 q1, q1, q6
|
|
vadd.i32 q2, q2, q7
|
|
vadd.i32 q3, q3, q4
|
|
|
|
veor q15, q15, q0
|
|
veor q12, q12, q1
|
|
veor q13, q13, q2
|
|
veor q14, q14, q3
|
|
|
|
vtbl.8 d30, {d30}, d16
|
|
vtbl.8 d31, {d31}, d16
|
|
vtbl.8 d24, {d24}, d16
|
|
vtbl.8 d25, {d25}, d16
|
|
vtbl.8 d26, {d26}, d16
|
|
vtbl.8 d27, {d27}, d16
|
|
vtbl.8 d28, {d28}, d16
|
|
vtbl.8 d29, {d29}, d16
|
|
|
|
vld1.32 {q8-q9}, [sp, :256]
|
|
|
|
// x10 += x15, x5 = rotl32(x5 ^ x10, 7)
|
|
// x11 += x12, x6 = rotl32(x6 ^ x11, 7)
|
|
// x8 += x13, x7 = rotl32(x7 ^ x8, 7)
|
|
// x9 += x14, x4 = rotl32(x4 ^ x9, 7)
|
|
vadd.i32 q10, q10, q15
|
|
vadd.i32 q11, q11, q12
|
|
vadd.i32 q8, q8, q13
|
|
vadd.i32 q9, q9, q14
|
|
|
|
vst1.32 {q8-q9}, [sp, :256]
|
|
|
|
veor q8, q7, q8
|
|
veor q9, q4, q9
|
|
vshl.u32 q7, q8, #7
|
|
vshl.u32 q4, q9, #7
|
|
vsri.u32 q7, q8, #25
|
|
vsri.u32 q4, q9, #25
|
|
|
|
veor q8, q5, q10
|
|
veor q9, q6, q11
|
|
vshl.u32 q5, q8, #7
|
|
vshl.u32 q6, q9, #7
|
|
vsri.u32 q5, q8, #25
|
|
vsri.u32 q6, q9, #25
|
|
|
|
subs r3, r3, #2
|
|
bne .Ldoubleround4
|
|
|
|
// x0..7[0-3] are in q0-q7, x10..15[0-3] are in q10-q15.
|
|
// x8..9[0-3] are on the stack.
|
|
|
|
// Re-interleave the words in the first two rows of each block (x0..7).
|
|
// Also add the counter values 0-3 to x12[0-3].
|
|
vld1.32 {q8}, [r5, :128] // load counter values 0-3
|
|
vzip.32 q0, q1 // => (0 1 0 1) (0 1 0 1)
|
|
vzip.32 q2, q3 // => (2 3 2 3) (2 3 2 3)
|
|
vzip.32 q4, q5 // => (4 5 4 5) (4 5 4 5)
|
|
vzip.32 q6, q7 // => (6 7 6 7) (6 7 6 7)
|
|
vadd.u32 q12, q8 // x12 += counter values 0-3
|
|
vswp d1, d4
|
|
vswp d3, d6
|
|
vld1.32 {q8-q9}, [r0]! // load s0..7
|
|
vswp d9, d12
|
|
vswp d11, d14
|
|
|
|
// Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
|
|
// after XORing the first 32 bytes.
|
|
vswp q1, q4
|
|
|
|
// First two rows of each block are (q0 q1) (q2 q6) (q4 q5) (q3 q7)
|
|
|
|
// x0..3[0-3] += s0..3[0-3] (add orig state to 1st row of each block)
|
|
vadd.u32 q0, q0, q8
|
|
vadd.u32 q2, q2, q8
|
|
vadd.u32 q4, q4, q8
|
|
vadd.u32 q3, q3, q8
|
|
|
|
// x4..7[0-3] += s4..7[0-3] (add orig state to 2nd row of each block)
|
|
vadd.u32 q1, q1, q9
|
|
vadd.u32 q6, q6, q9
|
|
vadd.u32 q5, q5, q9
|
|
vadd.u32 q7, q7, q9
|
|
|
|
// XOR first 32 bytes using keystream from first two rows of first block
|
|
vld1.8 {q8-q9}, [r2]!
|
|
veor q8, q8, q0
|
|
veor q9, q9, q1
|
|
vst1.8 {q8-q9}, [r1]!
|
|
|
|
// Re-interleave the words in the last two rows of each block (x8..15).
|
|
vld1.32 {q8-q9}, [sp, :256]
|
|
vzip.32 q12, q13 // => (12 13 12 13) (12 13 12 13)
|
|
vzip.32 q14, q15 // => (14 15 14 15) (14 15 14 15)
|
|
vzip.32 q8, q9 // => (8 9 8 9) (8 9 8 9)
|
|
vzip.32 q10, q11 // => (10 11 10 11) (10 11 10 11)
|
|
vld1.32 {q0-q1}, [r0] // load s8..15
|
|
vswp d25, d28
|
|
vswp d27, d30
|
|
vswp d17, d20
|
|
vswp d19, d22
|
|
|
|
// Last two rows of each block are (q8 q12) (q10 q14) (q9 q13) (q11 q15)
|
|
|
|
// x8..11[0-3] += s8..11[0-3] (add orig state to 3rd row of each block)
|
|
vadd.u32 q8, q8, q0
|
|
vadd.u32 q10, q10, q0
|
|
vadd.u32 q9, q9, q0
|
|
vadd.u32 q11, q11, q0
|
|
|
|
// x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
|
|
vadd.u32 q12, q12, q1
|
|
vadd.u32 q14, q14, q1
|
|
vadd.u32 q13, q13, q1
|
|
vadd.u32 q15, q15, q1
|
|
|
|
// XOR the rest of the data with the keystream
|
|
|
|
vld1.8 {q0-q1}, [r2]!
|
|
veor q0, q0, q8
|
|
veor q1, q1, q12
|
|
vst1.8 {q0-q1}, [r1]!
|
|
|
|
vld1.8 {q0-q1}, [r2]!
|
|
veor q0, q0, q2
|
|
veor q1, q1, q6
|
|
vst1.8 {q0-q1}, [r1]!
|
|
|
|
vld1.8 {q0-q1}, [r2]!
|
|
veor q0, q0, q10
|
|
veor q1, q1, q14
|
|
vst1.8 {q0-q1}, [r1]!
|
|
|
|
vld1.8 {q0-q1}, [r2]!
|
|
veor q0, q0, q4
|
|
veor q1, q1, q5
|
|
vst1.8 {q0-q1}, [r1]!
|
|
|
|
vld1.8 {q0-q1}, [r2]!
|
|
veor q0, q0, q9
|
|
veor q1, q1, q13
|
|
vst1.8 {q0-q1}, [r1]!
|
|
|
|
vld1.8 {q0-q1}, [r2]!
|
|
veor q0, q0, q3
|
|
veor q1, q1, q7
|
|
vst1.8 {q0-q1}, [r1]!
|
|
|
|
vld1.8 {q0-q1}, [r2]
|
|
mov sp, r4 // restore original stack pointer
|
|
veor q0, q0, q11
|
|
veor q1, q1, q15
|
|
vst1.8 {q0-q1}, [r1]
|
|
|
|
pop {r4-r5}
|
|
bx lr
|
|
ENDPROC(chacha_4block_xor_neon)
|