linux_dsm_epyc7002/drivers/pcmcia/pcmcia_cis.c
Dominik Brodowski 00990e7ce0 pcmcia: use autoconfiguration feature for ioports and iomem
When CONF_AUTO_SET_IO or CONF_AUTO_SET_IOMEM are set, the corresponding
fields in struct pcmcia_device *p_dev->resource[0,1,2] are set
accordinly. Drivers wishing to override certain settings may do so in
the callback function, but they no longer need to parse the CIS entries
stored in cistpl_cftable_entry_t themselves.

CC: netdev@vger.kernel.org
CC: linux-wireless@vger.kernel.org
CC: linux-ide@vger.kernel.org
CC: linux-usb@vger.kernel.org
CC: laforge@gnumonks.org
CC: linux-mtd@lists.infradead.org
CC: linux-bluetooth@vger.kernel.org
CC: alsa-devel@alsa-project.org
CC: linux-serial@vger.kernel.org
CC: Jiri Kosina <jkosina@suse.cz>
CC: linux-scsi@vger.kernel.org
Tested-by: Wolfram Sang <w.sang@pengutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2010-09-29 17:20:24 +02:00

439 lines
13 KiB
C

/*
* PCMCIA high-level CIS access functions
*
* The initial developer of the original code is David A. Hinds
* <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
* are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
*
* Copyright (C) 1999 David A. Hinds
* Copyright (C) 2004-2010 Dominik Brodowski
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ss.h>
#include <pcmcia/ds.h>
#include "cs_internal.h"
/**
* pccard_read_tuple() - internal CIS tuple access
* @s: the struct pcmcia_socket where the card is inserted
* @function: the device function we loop for
* @code: which CIS code shall we look for?
* @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
*
* pccard_read_tuple() reads out one tuple and attempts to parse it
*/
int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
cisdata_t code, void *parse)
{
tuple_t tuple;
cisdata_t *buf;
int ret;
buf = kmalloc(256, GFP_KERNEL);
if (buf == NULL) {
dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
return -ENOMEM;
}
tuple.DesiredTuple = code;
tuple.Attributes = 0;
if (function == BIND_FN_ALL)
tuple.Attributes = TUPLE_RETURN_COMMON;
ret = pccard_get_first_tuple(s, function, &tuple);
if (ret != 0)
goto done;
tuple.TupleData = buf;
tuple.TupleOffset = 0;
tuple.TupleDataMax = 255;
ret = pccard_get_tuple_data(s, &tuple);
if (ret != 0)
goto done;
ret = pcmcia_parse_tuple(&tuple, parse);
done:
kfree(buf);
return ret;
}
/**
* pccard_loop_tuple() - loop over tuples in the CIS
* @s: the struct pcmcia_socket where the card is inserted
* @function: the device function we loop for
* @code: which CIS code shall we look for?
* @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
* @priv_data: private data to be passed to the loop_tuple function.
* @loop_tuple: function to call for each CIS entry of type @function. IT
* gets passed the raw tuple, the paresed tuple (if @parse is
* set) and @priv_data.
*
* pccard_loop_tuple() loops over all CIS entries of type @function, and
* calls the @loop_tuple function for each entry. If the call to @loop_tuple
* returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
*/
int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
cisdata_t code, cisparse_t *parse, void *priv_data,
int (*loop_tuple) (tuple_t *tuple,
cisparse_t *parse,
void *priv_data))
{
tuple_t tuple;
cisdata_t *buf;
int ret;
buf = kzalloc(256, GFP_KERNEL);
if (buf == NULL) {
dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
return -ENOMEM;
}
tuple.TupleData = buf;
tuple.TupleDataMax = 255;
tuple.TupleOffset = 0;
tuple.DesiredTuple = code;
tuple.Attributes = 0;
ret = pccard_get_first_tuple(s, function, &tuple);
while (!ret) {
if (pccard_get_tuple_data(s, &tuple))
goto next_entry;
if (parse)
if (pcmcia_parse_tuple(&tuple, parse))
goto next_entry;
ret = loop_tuple(&tuple, parse, priv_data);
if (!ret)
break;
next_entry:
ret = pccard_get_next_tuple(s, function, &tuple);
}
kfree(buf);
return ret;
}
/**
* pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
*/
static int pcmcia_io_cfg_data_width(unsigned int flags)
{
if (!(flags & CISTPL_IO_8BIT))
return IO_DATA_PATH_WIDTH_16;
if (!(flags & CISTPL_IO_16BIT))
return IO_DATA_PATH_WIDTH_8;
return IO_DATA_PATH_WIDTH_AUTO;
}
struct pcmcia_cfg_mem {
struct pcmcia_device *p_dev;
int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
void *priv_data;
cisparse_t parse;
cistpl_cftable_entry_t dflt;
};
/**
* pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
*
* pcmcia_do_loop_config() is the internal callback for the call from
* pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
* by a struct pcmcia_cfg_mem.
*/
static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
{
struct pcmcia_cfg_mem *cfg_mem = priv;
struct pcmcia_device *p_dev = cfg_mem->p_dev;
cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
unsigned int flags = p_dev->config_flags;
unsigned int vcc = p_dev->socket->socket.Vcc;
dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
cfg->index, flags);
/* default values */
cfg_mem->p_dev->config_index = cfg->index;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
cfg_mem->dflt = *cfg;
/* check for matching Vcc? */
if (flags & CONF_AUTO_CHECK_VCC) {
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
return -ENODEV;
} else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
return -ENODEV;
}
}
/* set Vpp? */
if (flags & CONF_AUTO_SET_VPP) {
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
p_dev->vpp =
dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
}
/* enable audio? */
if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
p_dev->config_flags |= CONF_ENABLE_SPKR;
/* IO window settings? */
if (flags & CONF_AUTO_SET_IO) {
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
int i = 0;
p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
if (io->nwin == 0)
return -ENODEV;
p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
p_dev->resource[0]->flags |=
pcmcia_io_cfg_data_width(io->flags);
if (io->nwin > 1) {
/* For multifunction cards, by convention, we
* configure the network function with window 0,
* and serial with window 1 */
i = (io->win[1].len > io->win[0].len);
p_dev->resource[1]->flags = p_dev->resource[0]->flags;
p_dev->resource[1]->start = io->win[1-i].base;
p_dev->resource[1]->end = io->win[1-i].len;
}
p_dev->resource[0]->start = io->win[i].base;
p_dev->resource[0]->end = io->win[i].len;
p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
}
/* MEM window settings? */
if (flags & CONF_AUTO_SET_IOMEM) {
/* so far, we only set one memory window */
cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
if (mem->nwin == 0)
return -ENODEV;
p_dev->resource[2]->start = mem->win[0].host_addr;
p_dev->resource[2]->end = mem->win[0].len;
if (p_dev->resource[2]->end < 0x1000)
p_dev->resource[2]->end = 0x1000;
p_dev->card_addr = mem->win[0].card_addr;
}
dev_dbg(&p_dev->dev,
"checking configuration %x: %pr %pr %pr (%d lines)\n",
p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
p_dev->resource[2], p_dev->io_lines);
return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
}
/**
* pcmcia_loop_config() - loop over configuration options
* @p_dev: the struct pcmcia_device which we need to loop for.
* @conf_check: function to call for each configuration option.
* It gets passed the struct pcmcia_device and private data
* being passed to pcmcia_loop_config()
* @priv_data: private data to be passed to the conf_check function.
*
* pcmcia_loop_config() loops over all configuration options, and calls
* the driver-specific conf_check() for each one, checking whether
* it is a valid one. Returns 0 on success or errorcode otherwise.
*/
int pcmcia_loop_config(struct pcmcia_device *p_dev,
int (*conf_check) (struct pcmcia_device *p_dev,
void *priv_data),
void *priv_data)
{
struct pcmcia_cfg_mem *cfg_mem;
int ret;
cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
if (cfg_mem == NULL)
return -ENOMEM;
cfg_mem->p_dev = p_dev;
cfg_mem->conf_check = conf_check;
cfg_mem->priv_data = priv_data;
ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
cfg_mem, pcmcia_do_loop_config);
kfree(cfg_mem);
return ret;
}
EXPORT_SYMBOL(pcmcia_loop_config);
struct pcmcia_loop_mem {
struct pcmcia_device *p_dev;
void *priv_data;
int (*loop_tuple) (struct pcmcia_device *p_dev,
tuple_t *tuple,
void *priv_data);
};
/**
* pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
*
* pcmcia_do_loop_tuple() is the internal callback for the call from
* pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
* by a struct pcmcia_cfg_mem.
*/
static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
{
struct pcmcia_loop_mem *loop = priv;
return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
};
/**
* pcmcia_loop_tuple() - loop over tuples in the CIS
* @p_dev: the struct pcmcia_device which we need to loop for.
* @code: which CIS code shall we look for?
* @priv_data: private data to be passed to the loop_tuple function.
* @loop_tuple: function to call for each CIS entry of type @function. IT
* gets passed the raw tuple and @priv_data.
*
* pcmcia_loop_tuple() loops over all CIS entries of type @function, and
* calls the @loop_tuple function for each entry. If the call to @loop_tuple
* returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
*/
int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
int (*loop_tuple) (struct pcmcia_device *p_dev,
tuple_t *tuple,
void *priv_data),
void *priv_data)
{
struct pcmcia_loop_mem loop = {
.p_dev = p_dev,
.loop_tuple = loop_tuple,
.priv_data = priv_data};
return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
&loop, pcmcia_do_loop_tuple);
}
EXPORT_SYMBOL(pcmcia_loop_tuple);
struct pcmcia_loop_get {
size_t len;
cisdata_t **buf;
};
/**
* pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
*
* pcmcia_do_get_tuple() is the internal callback for the call from
* pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
* the first tuple, return 0 unconditionally. Create a memory buffer large
* enough to hold the content of the tuple, and fill it with the tuple data.
* The caller is responsible to free the buffer.
*/
static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
void *priv)
{
struct pcmcia_loop_get *get = priv;
*get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
if (*get->buf) {
get->len = tuple->TupleDataLen;
memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
} else
dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
return 0;
}
/**
* pcmcia_get_tuple() - get first tuple from CIS
* @p_dev: the struct pcmcia_device which we need to loop for.
* @code: which CIS code shall we look for?
* @buf: pointer to store the buffer to.
*
* pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
* It returns the buffer length (or zero). The caller is responsible to free
* the buffer passed in @buf.
*/
size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
unsigned char **buf)
{
struct pcmcia_loop_get get = {
.len = 0,
.buf = buf,
};
*get.buf = NULL;
pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
return get.len;
}
EXPORT_SYMBOL(pcmcia_get_tuple);
/**
* pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
*
* pcmcia_do_get_mac() is the internal callback for the call from
* pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
* tuple contains a proper LAN_NODE_ID of length 6, and copy the data
* to struct net_device->dev_addr[i].
*/
static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
void *priv)
{
struct net_device *dev = priv;
int i;
if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
return -EINVAL;
if (tuple->TupleDataLen < ETH_ALEN + 2) {
dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
"LAN_NODE_ID\n");
return -EINVAL;
}
if (tuple->TupleData[1] != ETH_ALEN) {
dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
return -EINVAL;
}
for (i = 0; i < 6; i++)
dev->dev_addr[i] = tuple->TupleData[i+2];
return 0;
}
/**
* pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
* @p_dev: the struct pcmcia_device for which we want the address.
* @dev: a properly prepared struct net_device to store the info to.
*
* pcmcia_get_mac_from_cis() reads out the hardware MAC address from
* CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
* must be set up properly by the driver (see examples!).
*/
int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
{
return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
}
EXPORT_SYMBOL(pcmcia_get_mac_from_cis);