linux_dsm_epyc7002/drivers/infiniband/hw/mlx5/odp.c
Artemy Kovalyov 4df4a5bac3 IB/mlx5: Decrease verbosity level of ODP errors
Decrease verbosity level of ODP error flows messages to debug level.
Remove one redundant print since debug level message already exists in
this flow.

Fixes: d9aaed8387 ('{net,IB}/mlx5: Refactor page fault handling')
Signed-off-by: Artemy Kovalyov <artemyko@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-04-25 15:40:28 -04:00

1156 lines
30 KiB
C

/*
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
#include "mlx5_ib.h"
#include "cmd.h"
#define MAX_PREFETCH_LEN (4*1024*1024U)
/* Timeout in ms to wait for an active mmu notifier to complete when handling
* a pagefault. */
#define MMU_NOTIFIER_TIMEOUT 1000
#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
static u64 mlx5_imr_ksm_entries;
static int check_parent(struct ib_umem_odp *odp,
struct mlx5_ib_mr *parent)
{
struct mlx5_ib_mr *mr = odp->private;
return mr && mr->parent == parent && !odp->dying;
}
static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
{
struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
struct ib_ucontext *ctx = odp->umem->context;
struct rb_node *rb;
down_read(&ctx->umem_rwsem);
while (1) {
rb = rb_next(&odp->interval_tree.rb);
if (!rb)
goto not_found;
odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
if (check_parent(odp, parent))
goto end;
}
not_found:
odp = NULL;
end:
up_read(&ctx->umem_rwsem);
return odp;
}
static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
u64 start, u64 length,
struct mlx5_ib_mr *parent)
{
struct ib_umem_odp *odp;
struct rb_node *rb;
down_read(&ctx->umem_rwsem);
odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
if (!odp)
goto end;
while (1) {
if (check_parent(odp, parent))
goto end;
rb = rb_next(&odp->interval_tree.rb);
if (!rb)
goto not_found;
odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
if (ib_umem_start(odp->umem) > start + length)
goto not_found;
}
not_found:
odp = NULL;
end:
up_read(&ctx->umem_rwsem);
return odp;
}
void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
size_t nentries, struct mlx5_ib_mr *mr, int flags)
{
struct ib_pd *pd = mr->ibmr.pd;
struct ib_ucontext *ctx = pd->uobject->context;
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct ib_umem_odp *odp;
unsigned long va;
int i;
if (flags & MLX5_IB_UPD_XLT_ZAP) {
for (i = 0; i < nentries; i++, pklm++) {
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
pklm->key = cpu_to_be32(dev->null_mkey);
pklm->va = 0;
}
return;
}
odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
nentries * MLX5_IMR_MTT_SIZE, mr);
for (i = 0; i < nentries; i++, pklm++) {
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
va = (offset + i) * MLX5_IMR_MTT_SIZE;
if (odp && odp->umem->address == va) {
struct mlx5_ib_mr *mtt = odp->private;
pklm->key = cpu_to_be32(mtt->ibmr.lkey);
odp = odp_next(odp);
} else {
pklm->key = cpu_to_be32(dev->null_mkey);
}
mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
i, va, be32_to_cpu(pklm->key));
}
}
static void mr_leaf_free_action(struct work_struct *work)
{
struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
mr->parent = NULL;
synchronize_srcu(&mr->dev->mr_srcu);
ib_umem_release(odp->umem);
if (imr->live)
mlx5_ib_update_xlt(imr, idx, 1, 0,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ATOMIC);
mlx5_mr_cache_free(mr->dev, mr);
if (atomic_dec_and_test(&imr->num_leaf_free))
wake_up(&imr->q_leaf_free);
}
void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
unsigned long end)
{
struct mlx5_ib_mr *mr;
const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
sizeof(struct mlx5_mtt)) - 1;
u64 idx = 0, blk_start_idx = 0;
int in_block = 0;
u64 addr;
if (!umem || !umem->odp_data) {
pr_err("invalidation called on NULL umem or non-ODP umem\n");
return;
}
mr = umem->odp_data->private;
if (!mr || !mr->ibmr.pd)
return;
start = max_t(u64, ib_umem_start(umem), start);
end = min_t(u64, ib_umem_end(umem), end);
/*
* Iteration one - zap the HW's MTTs. The notifiers_count ensures that
* while we are doing the invalidation, no page fault will attempt to
* overwrite the same MTTs. Concurent invalidations might race us,
* but they will write 0s as well, so no difference in the end result.
*/
for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
/*
* Strive to write the MTTs in chunks, but avoid overwriting
* non-existing MTTs. The huristic here can be improved to
* estimate the cost of another UMR vs. the cost of bigger
* UMR.
*/
if (umem->odp_data->dma_list[idx] &
(ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
if (!in_block) {
blk_start_idx = idx;
in_block = 1;
}
} else {
u64 umr_offset = idx & umr_block_mask;
if (in_block && umr_offset == 0) {
mlx5_ib_update_xlt(mr, blk_start_idx,
idx - blk_start_idx,
PAGE_SHIFT,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ATOMIC);
in_block = 0;
}
}
}
if (in_block)
mlx5_ib_update_xlt(mr, blk_start_idx,
idx - blk_start_idx + 1,
PAGE_SHIFT,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ATOMIC);
/*
* We are now sure that the device will not access the
* memory. We can safely unmap it, and mark it as dirty if
* needed.
*/
ib_umem_odp_unmap_dma_pages(umem, start, end);
if (unlikely(!umem->npages && mr->parent &&
!umem->odp_data->dying)) {
WRITE_ONCE(umem->odp_data->dying, 1);
atomic_inc(&mr->parent->num_leaf_free);
schedule_work(&umem->odp_data->work);
}
}
void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
{
struct ib_odp_caps *caps = &dev->odp_caps;
memset(caps, 0, sizeof(*caps));
if (!MLX5_CAP_GEN(dev->mdev, pg))
return;
caps->general_caps = IB_ODP_SUPPORT;
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
dev->odp_max_size = U64_MAX;
else
dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
MLX5_CAP_GEN(dev->mdev, null_mkey) &&
MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
return;
}
static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
u32 key)
{
u32 base_key = mlx5_base_mkey(key);
struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
struct mlx5_ib_mr *mr;
if (!mmkey || mmkey->key != key || mmkey->type != MLX5_MKEY_MR)
return NULL;
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
if (!mr->live)
return NULL;
return container_of(mmkey, struct mlx5_ib_mr, mmkey);
}
static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault,
int error)
{
int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
pfault->wqe.wq_num : pfault->token;
int ret = mlx5_core_page_fault_resume(dev->mdev,
pfault->token,
wq_num,
pfault->type,
error);
if (ret)
mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
wq_num);
}
static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
struct ib_umem *umem,
bool ksm, int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr;
int err;
mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
MLX5_IMR_MTT_CACHE_ENTRY);
if (IS_ERR(mr))
return mr;
mr->ibmr.pd = pd;
mr->dev = dev;
mr->access_flags = access_flags;
mr->mmkey.iova = 0;
mr->umem = umem;
if (ksm) {
err = mlx5_ib_update_xlt(mr, 0,
mlx5_imr_ksm_entries,
MLX5_KSM_PAGE_SHIFT,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ENABLE);
} else {
err = mlx5_ib_update_xlt(mr, 0,
MLX5_IMR_MTT_ENTRIES,
PAGE_SHIFT,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ENABLE |
MLX5_IB_UPD_XLT_ATOMIC);
}
if (err)
goto fail;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->live = 1;
mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
mr->mmkey.key, dev->mdev, mr);
return mr;
fail:
mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
mlx5_mr_cache_free(dev, mr);
return ERR_PTR(err);
}
static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
u64 io_virt, size_t bcnt)
{
struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
struct ib_umem_odp *odp, *result = NULL;
u64 addr = io_virt & MLX5_IMR_MTT_MASK;
int nentries = 0, start_idx = 0, ret;
struct mlx5_ib_mr *mtt;
struct ib_umem *umem;
mutex_lock(&mr->umem->odp_data->umem_mutex);
odp = odp_lookup(ctx, addr, 1, mr);
mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
io_virt, bcnt, addr, odp);
next_mr:
if (likely(odp)) {
if (nentries)
nentries++;
} else {
umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
if (IS_ERR(umem)) {
mutex_unlock(&mr->umem->odp_data->umem_mutex);
return ERR_CAST(umem);
}
mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
if (IS_ERR(mtt)) {
mutex_unlock(&mr->umem->odp_data->umem_mutex);
ib_umem_release(umem);
return ERR_CAST(mtt);
}
odp = umem->odp_data;
odp->private = mtt;
mtt->umem = umem;
mtt->mmkey.iova = addr;
mtt->parent = mr;
INIT_WORK(&odp->work, mr_leaf_free_action);
if (!nentries)
start_idx = addr >> MLX5_IMR_MTT_SHIFT;
nentries++;
}
/* Return first odp if region not covered by single one */
if (likely(!result))
result = odp;
addr += MLX5_IMR_MTT_SIZE;
if (unlikely(addr < io_virt + bcnt)) {
odp = odp_next(odp);
if (odp && odp->umem->address != addr)
odp = NULL;
goto next_mr;
}
if (unlikely(nentries)) {
ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ATOMIC);
if (ret) {
mlx5_ib_err(dev, "Failed to update PAS\n");
result = ERR_PTR(ret);
}
}
mutex_unlock(&mr->umem->odp_data->umem_mutex);
return result;
}
struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
int access_flags)
{
struct ib_ucontext *ctx = pd->ibpd.uobject->context;
struct mlx5_ib_mr *imr;
struct ib_umem *umem;
umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
if (IS_ERR(umem))
return ERR_CAST(umem);
imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
if (IS_ERR(imr)) {
ib_umem_release(umem);
return ERR_CAST(imr);
}
imr->umem = umem;
init_waitqueue_head(&imr->q_leaf_free);
atomic_set(&imr->num_leaf_free, 0);
return imr;
}
static int mr_leaf_free(struct ib_umem *umem, u64 start,
u64 end, void *cookie)
{
struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
if (mr->parent != imr)
return 0;
ib_umem_odp_unmap_dma_pages(umem,
ib_umem_start(umem),
ib_umem_end(umem));
if (umem->odp_data->dying)
return 0;
WRITE_ONCE(umem->odp_data->dying, 1);
atomic_inc(&imr->num_leaf_free);
schedule_work(&umem->odp_data->work);
return 0;
}
void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
{
struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
down_read(&ctx->umem_rwsem);
rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
mr_leaf_free, imr);
up_read(&ctx->umem_rwsem);
wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
}
/*
* Handle a single data segment in a page-fault WQE or RDMA region.
*
* Returns number of pages retrieved on success. The caller may continue to
* the next data segment.
* Can return the following error codes:
* -EAGAIN to designate a temporary error. The caller will abort handling the
* page fault and resolve it.
* -EFAULT when there's an error mapping the requested pages. The caller will
* abort the page fault handling.
*/
static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
u32 key, u64 io_virt, size_t bcnt,
u32 *bytes_committed,
u32 *bytes_mapped)
{
int srcu_key;
unsigned int current_seq = 0;
u64 start_idx;
int npages = 0, ret = 0;
struct mlx5_ib_mr *mr;
u64 access_mask = ODP_READ_ALLOWED_BIT;
struct ib_umem_odp *odp;
int implicit = 0;
size_t size;
srcu_key = srcu_read_lock(&dev->mr_srcu);
mr = mlx5_ib_odp_find_mr_lkey(dev, key);
/*
* If we didn't find the MR, it means the MR was closed while we were
* handling the ODP event. In this case we return -EFAULT so that the
* QP will be closed.
*/
if (!mr || !mr->ibmr.pd) {
mlx5_ib_dbg(dev, "Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
key);
ret = -EFAULT;
goto srcu_unlock;
}
if (!mr->umem->odp_data) {
mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
key);
if (bytes_mapped)
*bytes_mapped +=
(bcnt - *bytes_committed);
goto srcu_unlock;
}
/*
* Avoid branches - this code will perform correctly
* in all iterations (in iteration 2 and above,
* bytes_committed == 0).
*/
io_virt += *bytes_committed;
bcnt -= *bytes_committed;
if (!mr->umem->odp_data->page_list) {
odp = implicit_mr_get_data(mr, io_virt, bcnt);
if (IS_ERR(odp)) {
ret = PTR_ERR(odp);
goto srcu_unlock;
}
mr = odp->private;
implicit = 1;
} else {
odp = mr->umem->odp_data;
}
next_mr:
current_seq = READ_ONCE(odp->notifiers_seq);
/*
* Ensure the sequence number is valid for some time before we call
* gup.
*/
smp_rmb();
size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
if (mr->umem->writable)
access_mask |= ODP_WRITE_ALLOWED_BIT;
ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
access_mask, current_seq);
if (ret < 0)
goto srcu_unlock;
if (ret > 0) {
int np = ret;
mutex_lock(&odp->umem_mutex);
if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
/*
* No need to check whether the MTTs really belong to
* this MR, since ib_umem_odp_map_dma_pages already
* checks this.
*/
ret = mlx5_ib_update_xlt(mr, start_idx, np,
PAGE_SHIFT,
MLX5_IB_UPD_XLT_ATOMIC);
} else {
ret = -EAGAIN;
}
mutex_unlock(&odp->umem_mutex);
if (ret < 0) {
if (ret != -EAGAIN)
mlx5_ib_err(dev, "Failed to update mkey page tables\n");
goto srcu_unlock;
}
if (bytes_mapped) {
u32 new_mappings = np * PAGE_SIZE -
(io_virt - round_down(io_virt, PAGE_SIZE));
*bytes_mapped += min_t(u32, new_mappings, size);
}
npages += np;
}
bcnt -= size;
if (unlikely(bcnt)) {
struct ib_umem_odp *next;
io_virt += size;
next = odp_next(odp);
if (unlikely(!next || next->umem->address != io_virt)) {
mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
io_virt, next);
ret = -EAGAIN;
goto srcu_unlock_no_wait;
}
odp = next;
mr = odp->private;
goto next_mr;
}
srcu_unlock:
if (ret == -EAGAIN) {
if (implicit || !odp->dying) {
unsigned long timeout =
msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
if (!wait_for_completion_timeout(
&odp->notifier_completion,
timeout)) {
mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
current_seq, odp->notifiers_seq);
}
} else {
/* The MR is being killed, kill the QP as well. */
ret = -EFAULT;
}
}
srcu_unlock_no_wait:
srcu_read_unlock(&dev->mr_srcu, srcu_key);
*bytes_committed = 0;
return ret ? ret : npages;
}
/**
* Parse a series of data segments for page fault handling.
*
* @qp the QP on which the fault occurred.
* @pfault contains page fault information.
* @wqe points at the first data segment in the WQE.
* @wqe_end points after the end of the WQE.
* @bytes_mapped receives the number of bytes that the function was able to
* map. This allows the caller to decide intelligently whether
* enough memory was mapped to resolve the page fault
* successfully (e.g. enough for the next MTU, or the entire
* WQE).
* @total_wqe_bytes receives the total data size of this WQE in bytes (minus
* the committed bytes).
*
* Returns the number of pages loaded if positive, zero for an empty WQE, or a
* negative error code.
*/
static int pagefault_data_segments(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault,
struct mlx5_ib_qp *qp, void *wqe,
void *wqe_end, u32 *bytes_mapped,
u32 *total_wqe_bytes, int receive_queue)
{
int ret = 0, npages = 0;
u64 io_virt;
u32 key;
u32 byte_count;
size_t bcnt;
int inline_segment;
/* Skip SRQ next-WQE segment. */
if (receive_queue && qp->ibqp.srq)
wqe += sizeof(struct mlx5_wqe_srq_next_seg);
if (bytes_mapped)
*bytes_mapped = 0;
if (total_wqe_bytes)
*total_wqe_bytes = 0;
while (wqe < wqe_end) {
struct mlx5_wqe_data_seg *dseg = wqe;
io_virt = be64_to_cpu(dseg->addr);
key = be32_to_cpu(dseg->lkey);
byte_count = be32_to_cpu(dseg->byte_count);
inline_segment = !!(byte_count & MLX5_INLINE_SEG);
bcnt = byte_count & ~MLX5_INLINE_SEG;
if (inline_segment) {
bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
16);
} else {
wqe += sizeof(*dseg);
}
/* receive WQE end of sg list. */
if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
io_virt == 0)
break;
if (!inline_segment && total_wqe_bytes) {
*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
pfault->bytes_committed);
}
/* A zero length data segment designates a length of 2GB. */
if (bcnt == 0)
bcnt = 1U << 31;
if (inline_segment || bcnt <= pfault->bytes_committed) {
pfault->bytes_committed -=
min_t(size_t, bcnt,
pfault->bytes_committed);
continue;
}
ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
&pfault->bytes_committed,
bytes_mapped);
if (ret < 0)
break;
npages += ret;
}
return ret < 0 ? ret : npages;
}
static const u32 mlx5_ib_odp_opcode_cap[] = {
[MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
[MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
[MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
[MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
[MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
[MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
[MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
[MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
};
/*
* Parse initiator WQE. Advances the wqe pointer to point at the
* scatter-gather list, and set wqe_end to the end of the WQE.
*/
static int mlx5_ib_mr_initiator_pfault_handler(
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
{
struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
u16 wqe_index = pfault->wqe.wqe_index;
u32 transport_caps;
struct mlx5_base_av *av;
unsigned ds, opcode;
#if defined(DEBUG)
u32 ctrl_wqe_index, ctrl_qpn;
#endif
u32 qpn = qp->trans_qp.base.mqp.qpn;
ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
ds, wqe_length);
return -EFAULT;
}
if (ds == 0) {
mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
wqe_index, qpn);
return -EFAULT;
}
#if defined(DEBUG)
ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
if (wqe_index != ctrl_wqe_index) {
mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
wqe_index, qpn,
ctrl_wqe_index);
return -EFAULT;
}
ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
MLX5_WQE_CTRL_QPN_SHIFT;
if (qpn != ctrl_qpn) {
mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
wqe_index, qpn,
ctrl_qpn);
return -EFAULT;
}
#endif /* DEBUG */
*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
*wqe += sizeof(*ctrl);
opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
MLX5_WQE_CTRL_OPCODE_MASK;
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
break;
case IB_QPT_UD:
transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
break;
default:
mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
qp->ibqp.qp_type);
return -EFAULT;
}
if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
sizeof(mlx5_ib_odp_opcode_cap[0]) ||
!(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
opcode);
return -EFAULT;
}
if (qp->ibqp.qp_type != IB_QPT_RC) {
av = *wqe;
if (av->dqp_dct & be32_to_cpu(MLX5_WQE_AV_EXT))
*wqe += sizeof(struct mlx5_av);
else
*wqe += sizeof(struct mlx5_base_av);
}
switch (opcode) {
case MLX5_OPCODE_RDMA_WRITE:
case MLX5_OPCODE_RDMA_WRITE_IMM:
case MLX5_OPCODE_RDMA_READ:
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
break;
case MLX5_OPCODE_ATOMIC_CS:
case MLX5_OPCODE_ATOMIC_FA:
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
*wqe += sizeof(struct mlx5_wqe_atomic_seg);
break;
}
return 0;
}
/*
* Parse responder WQE. Advances the wqe pointer to point at the
* scatter-gather list, and set wqe_end to the end of the WQE.
*/
static int mlx5_ib_mr_responder_pfault_handler(
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
{
struct mlx5_ib_wq *wq = &qp->rq;
int wqe_size = 1 << wq->wqe_shift;
if (qp->ibqp.srq) {
mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
return -EFAULT;
}
if (qp->wq_sig) {
mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
return -EFAULT;
}
if (wqe_size > wqe_length) {
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
return -EFAULT;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
IB_ODP_SUPPORT_RECV))
goto invalid_transport_or_opcode;
break;
default:
invalid_transport_or_opcode:
mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
qp->ibqp.qp_type);
return -EFAULT;
}
*wqe_end = *wqe + wqe_size;
return 0;
}
static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
u32 wq_num)
{
struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
if (!mqp) {
mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
return NULL;
}
return to_mibqp(mqp);
}
static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault)
{
int ret;
void *wqe, *wqe_end;
u32 bytes_mapped, total_wqe_bytes;
char *buffer = NULL;
int resume_with_error = 1;
u16 wqe_index = pfault->wqe.wqe_index;
int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
struct mlx5_ib_qp *qp;
buffer = (char *)__get_free_page(GFP_KERNEL);
if (!buffer) {
mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
goto resolve_page_fault;
}
qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
if (!qp)
goto resolve_page_fault;
ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
PAGE_SIZE, &qp->trans_qp.base);
if (ret < 0) {
mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
ret, wqe_index, pfault->token);
goto resolve_page_fault;
}
wqe = buffer;
if (requestor)
ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
&wqe_end, ret);
else
ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
&wqe_end, ret);
if (ret < 0)
goto resolve_page_fault;
if (wqe >= wqe_end) {
mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
goto resolve_page_fault;
}
ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
&bytes_mapped, &total_wqe_bytes,
!requestor);
if (ret == -EAGAIN) {
resume_with_error = 0;
goto resolve_page_fault;
} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
goto resolve_page_fault;
}
resume_with_error = 0;
resolve_page_fault:
mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
pfault->wqe.wq_num, resume_with_error,
pfault->type);
free_page((unsigned long)buffer);
}
static int pages_in_range(u64 address, u32 length)
{
return (ALIGN(address + length, PAGE_SIZE) -
(address & PAGE_MASK)) >> PAGE_SHIFT;
}
static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault)
{
u64 address;
u32 length;
u32 prefetch_len = pfault->bytes_committed;
int prefetch_activated = 0;
u32 rkey = pfault->rdma.r_key;
int ret;
/* The RDMA responder handler handles the page fault in two parts.
* First it brings the necessary pages for the current packet
* (and uses the pfault context), and then (after resuming the QP)
* prefetches more pages. The second operation cannot use the pfault
* context and therefore uses the dummy_pfault context allocated on
* the stack */
pfault->rdma.rdma_va += pfault->bytes_committed;
pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
pfault->rdma.rdma_op_len);
pfault->bytes_committed = 0;
address = pfault->rdma.rdma_va;
length = pfault->rdma.rdma_op_len;
/* For some operations, the hardware cannot tell the exact message
* length, and in those cases it reports zero. Use prefetch
* logic. */
if (length == 0) {
prefetch_activated = 1;
length = pfault->rdma.packet_size;
prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
}
ret = pagefault_single_data_segment(dev, rkey, address, length,
&pfault->bytes_committed, NULL);
if (ret == -EAGAIN) {
/* We're racing with an invalidation, don't prefetch */
prefetch_activated = 0;
} else if (ret < 0 || pages_in_range(address, length) > ret) {
mlx5_ib_page_fault_resume(dev, pfault, 1);
if (ret != -ENOENT)
mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
ret, pfault->token, pfault->type);
return;
}
mlx5_ib_page_fault_resume(dev, pfault, 0);
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
pfault->token, pfault->type,
prefetch_activated);
/* At this point, there might be a new pagefault already arriving in
* the eq, switch to the dummy pagefault for the rest of the
* processing. We're still OK with the objects being alive as the
* work-queue is being fenced. */
if (prefetch_activated) {
u32 bytes_committed = 0;
ret = pagefault_single_data_segment(dev, rkey, address,
prefetch_len,
&bytes_committed, NULL);
if (ret < 0 && ret != -EAGAIN) {
mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
ret, pfault->token, address, prefetch_len);
}
}
}
void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
struct mlx5_pagefault *pfault)
{
struct mlx5_ib_dev *dev = context;
u8 event_subtype = pfault->event_subtype;
switch (event_subtype) {
case MLX5_PFAULT_SUBTYPE_WQE:
mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
break;
case MLX5_PFAULT_SUBTYPE_RDMA:
mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
break;
default:
mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
event_subtype);
mlx5_ib_page_fault_resume(dev, pfault, 1);
}
}
void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
{
if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
return;
switch (ent->order - 2) {
case MLX5_IMR_MTT_CACHE_ENTRY:
ent->page = PAGE_SHIFT;
ent->xlt = MLX5_IMR_MTT_ENTRIES *
sizeof(struct mlx5_mtt) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
ent->limit = 0;
break;
case MLX5_IMR_KSM_CACHE_ENTRY:
ent->page = MLX5_KSM_PAGE_SHIFT;
ent->xlt = mlx5_imr_ksm_entries *
sizeof(struct mlx5_klm) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
ent->limit = 0;
break;
}
}
int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
{
int ret;
ret = init_srcu_struct(&dev->mr_srcu);
if (ret)
return ret;
if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
if (ret) {
mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
return ret;
}
}
return 0;
}
void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
{
cleanup_srcu_struct(&dev->mr_srcu);
}
int mlx5_ib_odp_init(void)
{
mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
MLX5_IMR_MTT_BITS);
return 0;
}