mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 19:46:56 +07:00
974aa5630b
Common: - Python 3 support in kvm_stat - Accounting of slabs to kmemcg ARM: - Optimized arch timer handling for KVM/ARM - Improvements to the VGIC ITS code and introduction of an ITS reset ioctl - Unification of the 32-bit fault injection logic - More exact external abort matching logic PPC: - Support for running hashed page table (HPT) MMU mode on a host that is using the radix MMU mode; single threaded mode on POWER 9 is added as a pre-requisite - Resolution of merge conflicts with the last second 4.14 HPT fixes - Fixes and cleanups s390: - Some initial preparation patches for exitless interrupts and crypto - New capability for AIS migration - Fixes x86: - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and after-reset state - Refined dependencies for VMX features - Fixes for nested SMI injection - A lot of cleanups -----BEGIN PGP SIGNATURE----- iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i 0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c 0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5 bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk= =593n -----END PGP SIGNATURE----- Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Radim Krčmář: "First batch of KVM changes for 4.15 Common: - Python 3 support in kvm_stat - Accounting of slabs to kmemcg ARM: - Optimized arch timer handling for KVM/ARM - Improvements to the VGIC ITS code and introduction of an ITS reset ioctl - Unification of the 32-bit fault injection logic - More exact external abort matching logic PPC: - Support for running hashed page table (HPT) MMU mode on a host that is using the radix MMU mode; single threaded mode on POWER 9 is added as a pre-requisite - Resolution of merge conflicts with the last second 4.14 HPT fixes - Fixes and cleanups s390: - Some initial preparation patches for exitless interrupts and crypto - New capability for AIS migration - Fixes x86: - Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and after-reset state - Refined dependencies for VMX features - Fixes for nested SMI injection - A lot of cleanups" * tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits) KVM: s390: provide a capability for AIS state migration KVM: s390: clear_io_irq() requests are not expected for adapter interrupts KVM: s390: abstract conversion between isc and enum irq_types KVM: s390: vsie: use common code functions for pinning KVM: s390: SIE considerations for AP Queue virtualization KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup KVM: PPC: Book3S HV: Cosmetic post-merge cleanups KVM: arm/arm64: fix the incompatible matching for external abort KVM: arm/arm64: Unify 32bit fault injection KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared KVM: arm/arm64: vgic-its: New helper functions to free the caches KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device arm/arm64: KVM: Load the timer state when enabling the timer KVM: arm/arm64: Rework kvm_timer_should_fire KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit KVM: arm/arm64: Move phys_timer_emulate function KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps ...
456 lines
12 KiB
C
456 lines
12 KiB
C
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/fpsimd.h>
|
|
|
|
static bool __hyp_text __fpsimd_enabled_nvhe(void)
|
|
{
|
|
return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
|
|
}
|
|
|
|
static bool __hyp_text __fpsimd_enabled_vhe(void)
|
|
{
|
|
return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
|
|
}
|
|
|
|
static hyp_alternate_select(__fpsimd_is_enabled,
|
|
__fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
|
|
ARM64_HAS_VIRT_HOST_EXTN);
|
|
|
|
bool __hyp_text __fpsimd_enabled(void)
|
|
{
|
|
return __fpsimd_is_enabled()();
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_vhe(void)
|
|
{
|
|
u64 val;
|
|
|
|
val = read_sysreg(cpacr_el1);
|
|
val |= CPACR_EL1_TTA;
|
|
val &= ~(CPACR_EL1_FPEN | CPACR_EL1_ZEN);
|
|
write_sysreg(val, cpacr_el1);
|
|
|
|
write_sysreg(__kvm_hyp_vector, vbar_el1);
|
|
}
|
|
|
|
static void __hyp_text __activate_traps_nvhe(void)
|
|
{
|
|
u64 val;
|
|
|
|
val = CPTR_EL2_DEFAULT;
|
|
val |= CPTR_EL2_TTA | CPTR_EL2_TFP | CPTR_EL2_TZ;
|
|
write_sysreg(val, cptr_el2);
|
|
}
|
|
|
|
static hyp_alternate_select(__activate_traps_arch,
|
|
__activate_traps_nvhe, __activate_traps_vhe,
|
|
ARM64_HAS_VIRT_HOST_EXTN);
|
|
|
|
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
/*
|
|
* We are about to set CPTR_EL2.TFP to trap all floating point
|
|
* register accesses to EL2, however, the ARM ARM clearly states that
|
|
* traps are only taken to EL2 if the operation would not otherwise
|
|
* trap to EL1. Therefore, always make sure that for 32-bit guests,
|
|
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
|
|
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
|
|
* it will cause an exception.
|
|
*/
|
|
val = vcpu->arch.hcr_el2;
|
|
|
|
if (!(val & HCR_RW) && system_supports_fpsimd()) {
|
|
write_sysreg(1 << 30, fpexc32_el2);
|
|
isb();
|
|
}
|
|
|
|
if (val & HCR_RW) /* for AArch64 only: */
|
|
val |= HCR_TID3; /* TID3: trap feature register accesses */
|
|
|
|
write_sysreg(val, hcr_el2);
|
|
|
|
/* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
|
|
write_sysreg(1 << 15, hstr_el2);
|
|
/*
|
|
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
|
|
* PMSELR_EL0 to make sure it never contains the cycle
|
|
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
|
|
* EL1 instead of being trapped to EL2.
|
|
*/
|
|
write_sysreg(0, pmselr_el0);
|
|
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
|
|
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
|
|
__activate_traps_arch()();
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps_vhe(void)
|
|
{
|
|
extern char vectors[]; /* kernel exception vectors */
|
|
u64 mdcr_el2 = read_sysreg(mdcr_el2);
|
|
|
|
mdcr_el2 &= MDCR_EL2_HPMN_MASK |
|
|
MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
|
|
MDCR_EL2_TPMS;
|
|
|
|
write_sysreg(mdcr_el2, mdcr_el2);
|
|
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
|
|
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
|
|
write_sysreg(vectors, vbar_el1);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_traps_nvhe(void)
|
|
{
|
|
u64 mdcr_el2 = read_sysreg(mdcr_el2);
|
|
|
|
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
|
|
mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
|
|
|
|
write_sysreg(mdcr_el2, mdcr_el2);
|
|
write_sysreg(HCR_RW, hcr_el2);
|
|
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
|
|
}
|
|
|
|
static hyp_alternate_select(__deactivate_traps_arch,
|
|
__deactivate_traps_nvhe, __deactivate_traps_vhe,
|
|
ARM64_HAS_VIRT_HOST_EXTN);
|
|
|
|
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* If we pended a virtual abort, preserve it until it gets
|
|
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
|
|
* the crucial bit is "On taking a vSError interrupt,
|
|
* HCR_EL2.VSE is cleared to 0."
|
|
*/
|
|
if (vcpu->arch.hcr_el2 & HCR_VSE)
|
|
vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
|
|
|
|
__deactivate_traps_arch()();
|
|
write_sysreg(0, hstr_el2);
|
|
write_sysreg(0, pmuserenr_el0);
|
|
}
|
|
|
|
static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = kern_hyp_va(vcpu->kvm);
|
|
write_sysreg(kvm->arch.vttbr, vttbr_el2);
|
|
}
|
|
|
|
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
|
|
{
|
|
write_sysreg(0, vttbr_el2);
|
|
}
|
|
|
|
static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
|
|
__vgic_v3_save_state(vcpu);
|
|
else
|
|
__vgic_v2_save_state(vcpu);
|
|
|
|
write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
|
|
}
|
|
|
|
static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
val = read_sysreg(hcr_el2);
|
|
val |= HCR_INT_OVERRIDE;
|
|
val |= vcpu->arch.irq_lines;
|
|
write_sysreg(val, hcr_el2);
|
|
|
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
|
|
__vgic_v3_restore_state(vcpu);
|
|
else
|
|
__vgic_v2_restore_state(vcpu);
|
|
}
|
|
|
|
static bool __hyp_text __true_value(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool __hyp_text __false_value(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static hyp_alternate_select(__check_arm_834220,
|
|
__false_value, __true_value,
|
|
ARM64_WORKAROUND_834220);
|
|
|
|
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
|
|
{
|
|
u64 par, tmp;
|
|
|
|
/*
|
|
* Resolve the IPA the hard way using the guest VA.
|
|
*
|
|
* Stage-1 translation already validated the memory access
|
|
* rights. As such, we can use the EL1 translation regime, and
|
|
* don't have to distinguish between EL0 and EL1 access.
|
|
*
|
|
* We do need to save/restore PAR_EL1 though, as we haven't
|
|
* saved the guest context yet, and we may return early...
|
|
*/
|
|
par = read_sysreg(par_el1);
|
|
asm volatile("at s1e1r, %0" : : "r" (far));
|
|
isb();
|
|
|
|
tmp = read_sysreg(par_el1);
|
|
write_sysreg(par, par_el1);
|
|
|
|
if (unlikely(tmp & 1))
|
|
return false; /* Translation failed, back to guest */
|
|
|
|
/* Convert PAR to HPFAR format */
|
|
*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
|
|
return true;
|
|
}
|
|
|
|
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = read_sysreg_el2(esr);
|
|
u8 ec = ESR_ELx_EC(esr);
|
|
u64 hpfar, far;
|
|
|
|
vcpu->arch.fault.esr_el2 = esr;
|
|
|
|
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
|
|
return true;
|
|
|
|
far = read_sysreg_el2(far);
|
|
|
|
/*
|
|
* The HPFAR can be invalid if the stage 2 fault did not
|
|
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
|
|
* bit is clear) and one of the two following cases are true:
|
|
* 1. The fault was due to a permission fault
|
|
* 2. The processor carries errata 834220
|
|
*
|
|
* Therefore, for all non S1PTW faults where we either have a
|
|
* permission fault or the errata workaround is enabled, we
|
|
* resolve the IPA using the AT instruction.
|
|
*/
|
|
if (!(esr & ESR_ELx_S1PTW) &&
|
|
(__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
|
|
if (!__translate_far_to_hpfar(far, &hpfar))
|
|
return false;
|
|
} else {
|
|
hpfar = read_sysreg(hpfar_el2);
|
|
}
|
|
|
|
vcpu->arch.fault.far_el2 = far;
|
|
vcpu->arch.fault.hpfar_el2 = hpfar;
|
|
return true;
|
|
}
|
|
|
|
static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
|
|
{
|
|
*vcpu_pc(vcpu) = read_sysreg_el2(elr);
|
|
|
|
if (vcpu_mode_is_32bit(vcpu)) {
|
|
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
|
|
kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
|
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
|
|
} else {
|
|
*vcpu_pc(vcpu) += 4;
|
|
}
|
|
|
|
write_sysreg_el2(*vcpu_pc(vcpu), elr);
|
|
}
|
|
|
|
int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_cpu_context *guest_ctxt;
|
|
bool fp_enabled;
|
|
u64 exit_code;
|
|
|
|
vcpu = kern_hyp_va(vcpu);
|
|
write_sysreg(vcpu, tpidr_el2);
|
|
|
|
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
|
|
guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
__sysreg_save_host_state(host_ctxt);
|
|
__debug_cond_save_host_state(vcpu);
|
|
|
|
__activate_traps(vcpu);
|
|
__activate_vm(vcpu);
|
|
|
|
__vgic_restore_state(vcpu);
|
|
__timer_enable_traps(vcpu);
|
|
|
|
/*
|
|
* We must restore the 32-bit state before the sysregs, thanks
|
|
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
|
|
*/
|
|
__sysreg32_restore_state(vcpu);
|
|
__sysreg_restore_guest_state(guest_ctxt);
|
|
__debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
|
|
|
|
/* Jump in the fire! */
|
|
again:
|
|
exit_code = __guest_enter(vcpu, host_ctxt);
|
|
/* And we're baaack! */
|
|
|
|
/*
|
|
* We're using the raw exception code in order to only process
|
|
* the trap if no SError is pending. We will come back to the
|
|
* same PC once the SError has been injected, and replay the
|
|
* trapping instruction.
|
|
*/
|
|
if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
|
|
goto again;
|
|
|
|
if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
|
|
exit_code == ARM_EXCEPTION_TRAP) {
|
|
bool valid;
|
|
|
|
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
|
|
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
|
|
kvm_vcpu_dabt_isvalid(vcpu) &&
|
|
!kvm_vcpu_dabt_isextabt(vcpu) &&
|
|
!kvm_vcpu_dabt_iss1tw(vcpu);
|
|
|
|
if (valid) {
|
|
int ret = __vgic_v2_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1) {
|
|
__skip_instr(vcpu);
|
|
goto again;
|
|
}
|
|
|
|
if (ret == -1) {
|
|
/* Promote an illegal access to an SError */
|
|
__skip_instr(vcpu);
|
|
exit_code = ARM_EXCEPTION_EL1_SERROR;
|
|
}
|
|
|
|
/* 0 falls through to be handler out of EL2 */
|
|
}
|
|
}
|
|
|
|
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
|
|
exit_code == ARM_EXCEPTION_TRAP &&
|
|
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
|
|
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
|
|
int ret = __vgic_v3_perform_cpuif_access(vcpu);
|
|
|
|
if (ret == 1) {
|
|
__skip_instr(vcpu);
|
|
goto again;
|
|
}
|
|
|
|
/* 0 falls through to be handled out of EL2 */
|
|
}
|
|
|
|
fp_enabled = __fpsimd_enabled();
|
|
|
|
__sysreg_save_guest_state(guest_ctxt);
|
|
__sysreg32_save_state(vcpu);
|
|
__timer_disable_traps(vcpu);
|
|
__vgic_save_state(vcpu);
|
|
|
|
__deactivate_traps(vcpu);
|
|
__deactivate_vm(vcpu);
|
|
|
|
__sysreg_restore_host_state(host_ctxt);
|
|
|
|
if (fp_enabled) {
|
|
__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
|
|
__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
|
|
}
|
|
|
|
__debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
|
|
/*
|
|
* This must come after restoring the host sysregs, since a non-VHE
|
|
* system may enable SPE here and make use of the TTBRs.
|
|
*/
|
|
__debug_cond_restore_host_state(vcpu);
|
|
|
|
return exit_code;
|
|
}
|
|
|
|
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
|
|
|
|
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
|
|
{
|
|
unsigned long str_va;
|
|
|
|
/*
|
|
* Force the panic string to be loaded from the literal pool,
|
|
* making sure it is a kernel address and not a PC-relative
|
|
* reference.
|
|
*/
|
|
asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
|
|
|
|
__hyp_do_panic(str_va,
|
|
spsr, elr,
|
|
read_sysreg(esr_el2), read_sysreg_el2(far),
|
|
read_sysreg(hpfar_el2), par,
|
|
(void *)read_sysreg(tpidr_el2));
|
|
}
|
|
|
|
static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
|
|
{
|
|
panic(__hyp_panic_string,
|
|
spsr, elr,
|
|
read_sysreg_el2(esr), read_sysreg_el2(far),
|
|
read_sysreg(hpfar_el2), par,
|
|
(void *)read_sysreg(tpidr_el2));
|
|
}
|
|
|
|
static hyp_alternate_select(__hyp_call_panic,
|
|
__hyp_call_panic_nvhe, __hyp_call_panic_vhe,
|
|
ARM64_HAS_VIRT_HOST_EXTN);
|
|
|
|
void __hyp_text __noreturn __hyp_panic(void)
|
|
{
|
|
u64 spsr = read_sysreg_el2(spsr);
|
|
u64 elr = read_sysreg_el2(elr);
|
|
u64 par = read_sysreg(par_el1);
|
|
|
|
if (read_sysreg(vttbr_el2)) {
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_cpu_context *host_ctxt;
|
|
|
|
vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
|
|
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
|
|
__timer_disable_traps(vcpu);
|
|
__deactivate_traps(vcpu);
|
|
__deactivate_vm(vcpu);
|
|
__sysreg_restore_host_state(host_ctxt);
|
|
}
|
|
|
|
/* Call panic for real */
|
|
__hyp_call_panic()(spsr, elr, par);
|
|
|
|
unreachable();
|
|
}
|