mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 14:55:04 +07:00
cd9d11607e
The function sa1100_irda_probe() return 0 for success and negative value for most of its internal tests failures. There is one exception that is error case going to err_mem_4:. For this error case, the function abort its success execution path, but returns non negative value, making it difficult for a caller function to notice the error. This patch fixes the error case that do not return negative value. This was found by Coccinelle, but the code change was made by hand. This patch is not robot generated. A simplified version of the semantic match that finds this problem is as follows: (http://coccinelle.lip6.fr/) // <smpl> ( if@p1 (\(ret < 0\|ret != 0\)) { ... return ret; } | ret@p1 = 0 ) ... when != ret = e1 when != &ret *if(...) { ... when != ret = e2 when forall return ret; } // </smpl> Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1152 lines
25 KiB
C
1152 lines
25 KiB
C
/*
|
|
* linux/drivers/net/irda/sa1100_ir.c
|
|
*
|
|
* Copyright (C) 2000-2001 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Infra-red driver for the StrongARM SA1100 embedded microprocessor
|
|
*
|
|
* Note that we don't have to worry about the SA1111's DMA bugs in here,
|
|
* so we use the straight forward dma_map_* functions with a null pointer.
|
|
*
|
|
* This driver takes one kernel command line parameter, sa1100ir=, with
|
|
* the following options:
|
|
* max_rate:baudrate - set the maximum baud rate
|
|
* power_level:level - set the transmitter power level
|
|
* tx_lpm:0|1 - set transmit low power mode
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/sa11x0-dma.h>
|
|
|
|
#include <net/irda/irda.h>
|
|
#include <net/irda/wrapper.h>
|
|
#include <net/irda/irda_device.h>
|
|
|
|
#include <mach/hardware.h>
|
|
#include <asm/mach/irda.h>
|
|
|
|
static int power_level = 3;
|
|
static int tx_lpm;
|
|
static int max_rate = 4000000;
|
|
|
|
struct sa1100_buf {
|
|
struct device *dev;
|
|
struct sk_buff *skb;
|
|
struct scatterlist sg;
|
|
struct dma_chan *chan;
|
|
dma_cookie_t cookie;
|
|
};
|
|
|
|
struct sa1100_irda {
|
|
unsigned char utcr4;
|
|
unsigned char power;
|
|
unsigned char open;
|
|
|
|
int speed;
|
|
int newspeed;
|
|
|
|
struct sa1100_buf dma_rx;
|
|
struct sa1100_buf dma_tx;
|
|
|
|
struct device *dev;
|
|
struct irda_platform_data *pdata;
|
|
struct irlap_cb *irlap;
|
|
struct qos_info qos;
|
|
|
|
iobuff_t tx_buff;
|
|
iobuff_t rx_buff;
|
|
|
|
int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *);
|
|
irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *);
|
|
};
|
|
|
|
static int sa1100_irda_set_speed(struct sa1100_irda *, int);
|
|
|
|
#define IS_FIR(si) ((si)->speed >= 4000000)
|
|
|
|
#define HPSIR_MAX_RXLEN 2047
|
|
|
|
static struct dma_slave_config sa1100_irda_sir_tx = {
|
|
.direction = DMA_TO_DEVICE,
|
|
.dst_addr = __PREG(Ser2UTDR),
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.dst_maxburst = 4,
|
|
};
|
|
|
|
static struct dma_slave_config sa1100_irda_fir_rx = {
|
|
.direction = DMA_FROM_DEVICE,
|
|
.src_addr = __PREG(Ser2HSDR),
|
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.src_maxburst = 8,
|
|
};
|
|
|
|
static struct dma_slave_config sa1100_irda_fir_tx = {
|
|
.direction = DMA_TO_DEVICE,
|
|
.dst_addr = __PREG(Ser2HSDR),
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.dst_maxburst = 8,
|
|
};
|
|
|
|
static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf)
|
|
{
|
|
struct dma_chan *chan = buf->chan;
|
|
struct dma_tx_state state;
|
|
enum dma_status status;
|
|
|
|
status = chan->device->device_tx_status(chan, buf->cookie, &state);
|
|
if (status != DMA_PAUSED)
|
|
return 0;
|
|
|
|
return sg_dma_len(&buf->sg) - state.residue;
|
|
}
|
|
|
|
static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf,
|
|
const char *name, struct dma_slave_config *cfg)
|
|
{
|
|
dma_cap_mask_t m;
|
|
int ret;
|
|
|
|
dma_cap_zero(m);
|
|
dma_cap_set(DMA_SLAVE, m);
|
|
|
|
buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name);
|
|
if (!buf->chan) {
|
|
dev_err(dev, "unable to request DMA channel for %s\n",
|
|
name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
ret = dmaengine_slave_config(buf->chan, cfg);
|
|
if (ret)
|
|
dev_warn(dev, "DMA slave_config for %s returned %d\n",
|
|
name, ret);
|
|
|
|
buf->dev = buf->chan->device->dev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sa1100_irda_dma_start(struct sa1100_buf *buf,
|
|
enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p)
|
|
{
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct dma_chan *chan = buf->chan;
|
|
|
|
desc = dmaengine_prep_slave_sg(chan, &buf->sg, 1, dir,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (desc) {
|
|
desc->callback = cb;
|
|
desc->callback_param = cb_p;
|
|
buf->cookie = dmaengine_submit(desc);
|
|
dma_async_issue_pending(chan);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and map the receive buffer, unless it is already allocated.
|
|
*/
|
|
static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
|
|
{
|
|
if (si->dma_rx.skb)
|
|
return 0;
|
|
|
|
si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
|
|
if (!si->dma_rx.skb) {
|
|
printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Align any IP headers that may be contained
|
|
* within the frame.
|
|
*/
|
|
skb_reserve(si->dma_rx.skb, 1);
|
|
|
|
sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN);
|
|
if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) {
|
|
dev_kfree_skb_any(si->dma_rx.skb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We want to get here as soon as possible, and get the receiver setup.
|
|
* We use the existing buffer.
|
|
*/
|
|
static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
|
|
{
|
|
if (!si->dma_rx.skb) {
|
|
printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* First empty receive FIFO
|
|
*/
|
|
Ser2HSCR0 = HSCR0_HSSP;
|
|
|
|
/*
|
|
* Enable the DMA, receiver and receive interrupt.
|
|
*/
|
|
dmaengine_terminate_all(si->dma_rx.chan);
|
|
sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL);
|
|
|
|
Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE;
|
|
}
|
|
|
|
static void sa1100_irda_check_speed(struct sa1100_irda *si)
|
|
{
|
|
if (si->newspeed) {
|
|
sa1100_irda_set_speed(si, si->newspeed);
|
|
si->newspeed = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* HP-SIR format support.
|
|
*/
|
|
static void sa1100_irda_sirtxdma_irq(void *id)
|
|
{
|
|
struct net_device *dev = id;
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
|
|
dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE);
|
|
dev_kfree_skb(si->dma_tx.skb);
|
|
si->dma_tx.skb = NULL;
|
|
|
|
dev->stats.tx_packets++;
|
|
dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg);
|
|
|
|
/* We need to ensure that the transmitter has finished. */
|
|
do
|
|
rmb();
|
|
while (Ser2UTSR1 & UTSR1_TBY);
|
|
|
|
/*
|
|
* Ok, we've finished transmitting. Now enable the receiver.
|
|
* Sometimes we get a receive IRQ immediately after a transmit...
|
|
*/
|
|
Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
|
|
Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
|
|
|
|
sa1100_irda_check_speed(si);
|
|
|
|
/* I'm hungry! */
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev,
|
|
struct sa1100_irda *si)
|
|
{
|
|
si->tx_buff.data = si->tx_buff.head;
|
|
si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
|
|
si->tx_buff.truesize);
|
|
|
|
si->dma_tx.skb = skb;
|
|
sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len);
|
|
if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
|
|
si->dma_tx.skb = NULL;
|
|
netif_wake_queue(dev);
|
|
dev->stats.tx_dropped++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev);
|
|
|
|
/*
|
|
* The mean turn-around time is enforced by XBOF padding,
|
|
* so we don't have to do anything special here.
|
|
*/
|
|
Ser2UTCR3 = UTCR3_TXE;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si)
|
|
{
|
|
int status;
|
|
|
|
status = Ser2UTSR0;
|
|
|
|
/*
|
|
* Deal with any receive errors first. The bytes in error may be
|
|
* the only bytes in the receive FIFO, so we do this first.
|
|
*/
|
|
while (status & UTSR0_EIF) {
|
|
int stat, data;
|
|
|
|
stat = Ser2UTSR1;
|
|
data = Ser2UTDR;
|
|
|
|
if (stat & (UTSR1_FRE | UTSR1_ROR)) {
|
|
dev->stats.rx_errors++;
|
|
if (stat & UTSR1_FRE)
|
|
dev->stats.rx_frame_errors++;
|
|
if (stat & UTSR1_ROR)
|
|
dev->stats.rx_fifo_errors++;
|
|
} else
|
|
async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
|
|
|
|
status = Ser2UTSR0;
|
|
}
|
|
|
|
/*
|
|
* We must clear certain bits.
|
|
*/
|
|
Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
|
|
|
|
if (status & UTSR0_RFS) {
|
|
/*
|
|
* There are at least 4 bytes in the FIFO. Read 3 bytes
|
|
* and leave the rest to the block below.
|
|
*/
|
|
async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
|
|
async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
|
|
async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
|
|
}
|
|
|
|
if (status & (UTSR0_RFS | UTSR0_RID)) {
|
|
/*
|
|
* Fifo contains more than 1 character.
|
|
*/
|
|
do {
|
|
async_unwrap_char(dev, &dev->stats, &si->rx_buff,
|
|
Ser2UTDR);
|
|
} while (Ser2UTSR1 & UTSR1_RNE);
|
|
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* FIR format support.
|
|
*/
|
|
static void sa1100_irda_firtxdma_irq(void *id)
|
|
{
|
|
struct net_device *dev = id;
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
struct sk_buff *skb;
|
|
|
|
/*
|
|
* Wait for the transmission to complete. Unfortunately,
|
|
* the hardware doesn't give us an interrupt to indicate
|
|
* "end of frame".
|
|
*/
|
|
do
|
|
rmb();
|
|
while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
|
|
|
|
/*
|
|
* Clear the transmit underrun bit.
|
|
*/
|
|
Ser2HSSR0 = HSSR0_TUR;
|
|
|
|
/*
|
|
* Do we need to change speed? Note that we're lazy
|
|
* here - we don't free the old dma_rx.skb. We don't need
|
|
* to allocate a buffer either.
|
|
*/
|
|
sa1100_irda_check_speed(si);
|
|
|
|
/*
|
|
* Start reception. This disables the transmitter for
|
|
* us. This will be using the existing RX buffer.
|
|
*/
|
|
sa1100_irda_rx_dma_start(si);
|
|
|
|
/* Account and free the packet. */
|
|
skb = si->dma_tx.skb;
|
|
if (skb) {
|
|
dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
|
|
DMA_TO_DEVICE);
|
|
dev->stats.tx_packets ++;
|
|
dev->stats.tx_bytes += skb->len;
|
|
dev_kfree_skb_irq(skb);
|
|
si->dma_tx.skb = NULL;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the TX queue is available for sending
|
|
* (for retries). TX has priority over RX at all times.
|
|
*/
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev,
|
|
struct sa1100_irda *si)
|
|
{
|
|
int mtt = irda_get_mtt(skb);
|
|
|
|
si->dma_tx.skb = skb;
|
|
sg_set_buf(&si->dma_tx.sg, skb->data, skb->len);
|
|
if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
|
|
si->dma_tx.skb = NULL;
|
|
netif_wake_queue(dev);
|
|
dev->stats.tx_dropped++;
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev);
|
|
|
|
/*
|
|
* If we have a mean turn-around time, impose the specified
|
|
* specified delay. We could shorten this by timing from
|
|
* the point we received the packet.
|
|
*/
|
|
if (mtt)
|
|
udelay(mtt);
|
|
|
|
Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
|
|
{
|
|
struct sk_buff *skb = si->dma_rx.skb;
|
|
unsigned int len, stat, data;
|
|
|
|
if (!skb) {
|
|
printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Get the current data position.
|
|
*/
|
|
len = sa1100_irda_dma_xferred(&si->dma_rx);
|
|
if (len > HPSIR_MAX_RXLEN)
|
|
len = HPSIR_MAX_RXLEN;
|
|
dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
|
|
|
|
do {
|
|
/*
|
|
* Read Status, and then Data.
|
|
*/
|
|
stat = Ser2HSSR1;
|
|
rmb();
|
|
data = Ser2HSDR;
|
|
|
|
if (stat & (HSSR1_CRE | HSSR1_ROR)) {
|
|
dev->stats.rx_errors++;
|
|
if (stat & HSSR1_CRE)
|
|
dev->stats.rx_crc_errors++;
|
|
if (stat & HSSR1_ROR)
|
|
dev->stats.rx_frame_errors++;
|
|
} else
|
|
skb->data[len++] = data;
|
|
|
|
/*
|
|
* If we hit the end of frame, there's
|
|
* no point in continuing.
|
|
*/
|
|
if (stat & HSSR1_EOF)
|
|
break;
|
|
} while (Ser2HSSR0 & HSSR0_EIF);
|
|
|
|
if (stat & HSSR1_EOF) {
|
|
si->dma_rx.skb = NULL;
|
|
|
|
skb_put(skb, len);
|
|
skb->dev = dev;
|
|
skb_reset_mac_header(skb);
|
|
skb->protocol = htons(ETH_P_IRDA);
|
|
dev->stats.rx_packets++;
|
|
dev->stats.rx_bytes += len;
|
|
|
|
/*
|
|
* Before we pass the buffer up, allocate a new one.
|
|
*/
|
|
sa1100_irda_rx_alloc(si);
|
|
|
|
netif_rx(skb);
|
|
} else {
|
|
/*
|
|
* Remap the buffer - it was previously mapped, and we
|
|
* hope that this succeeds.
|
|
*/
|
|
dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We only have to handle RX events here; transmit events go via the TX
|
|
* DMA handler. We disable RX, process, and the restart RX.
|
|
*/
|
|
static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si)
|
|
{
|
|
/*
|
|
* Stop RX DMA
|
|
*/
|
|
dmaengine_pause(si->dma_rx.chan);
|
|
|
|
/*
|
|
* Framing error - we throw away the packet completely.
|
|
* Clearing RXE flushes the error conditions and data
|
|
* from the fifo.
|
|
*/
|
|
if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
|
|
dev->stats.rx_errors++;
|
|
|
|
if (Ser2HSSR0 & HSSR0_FRE)
|
|
dev->stats.rx_frame_errors++;
|
|
|
|
/*
|
|
* Clear out the DMA...
|
|
*/
|
|
Ser2HSCR0 = HSCR0_HSSP;
|
|
|
|
/*
|
|
* Clear selected status bits now, so we
|
|
* don't miss them next time around.
|
|
*/
|
|
Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
|
|
}
|
|
|
|
/*
|
|
* Deal with any receive errors. The any of the lowest
|
|
* 8 bytes in the FIFO may contain an error. We must read
|
|
* them one by one. The "error" could even be the end of
|
|
* packet!
|
|
*/
|
|
if (Ser2HSSR0 & HSSR0_EIF)
|
|
sa1100_irda_fir_error(si, dev);
|
|
|
|
/*
|
|
* No matter what happens, we must restart reception.
|
|
*/
|
|
sa1100_irda_rx_dma_start(si);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Set the IrDA communications speed.
|
|
*/
|
|
static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
|
|
{
|
|
unsigned long flags;
|
|
int brd, ret = -EINVAL;
|
|
|
|
switch (speed) {
|
|
case 9600: case 19200: case 38400:
|
|
case 57600: case 115200:
|
|
brd = 3686400 / (16 * speed) - 1;
|
|
|
|
/* Stop the receive DMA, and configure transmit. */
|
|
if (IS_FIR(si)) {
|
|
dmaengine_terminate_all(si->dma_rx.chan);
|
|
dmaengine_slave_config(si->dma_tx.chan,
|
|
&sa1100_irda_sir_tx);
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
|
|
Ser2UTCR3 = 0;
|
|
Ser2HSCR0 = HSCR0_UART;
|
|
|
|
Ser2UTCR1 = brd >> 8;
|
|
Ser2UTCR2 = brd;
|
|
|
|
/*
|
|
* Clear status register
|
|
*/
|
|
Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
|
|
Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
|
|
|
|
if (si->pdata->set_speed)
|
|
si->pdata->set_speed(si->dev, speed);
|
|
|
|
si->speed = speed;
|
|
si->tx_start = sa1100_irda_sir_tx_start;
|
|
si->irq = sa1100_irda_sir_irq;
|
|
|
|
local_irq_restore(flags);
|
|
ret = 0;
|
|
break;
|
|
|
|
case 4000000:
|
|
if (!IS_FIR(si))
|
|
dmaengine_slave_config(si->dma_tx.chan,
|
|
&sa1100_irda_fir_tx);
|
|
|
|
local_irq_save(flags);
|
|
|
|
Ser2HSSR0 = 0xff;
|
|
Ser2HSCR0 = HSCR0_HSSP;
|
|
Ser2UTCR3 = 0;
|
|
|
|
si->speed = speed;
|
|
si->tx_start = sa1100_irda_fir_tx_start;
|
|
si->irq = sa1100_irda_fir_irq;
|
|
|
|
if (si->pdata->set_speed)
|
|
si->pdata->set_speed(si->dev, speed);
|
|
|
|
sa1100_irda_rx_alloc(si);
|
|
sa1100_irda_rx_dma_start(si);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Control the power state of the IrDA transmitter.
|
|
* State:
|
|
* 0 - off
|
|
* 1 - short range, lowest power
|
|
* 2 - medium range, medium power
|
|
* 3 - maximum range, high power
|
|
*
|
|
* Currently, only assabet is known to support this.
|
|
*/
|
|
static int
|
|
__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
|
|
{
|
|
int ret = 0;
|
|
if (si->pdata->set_power)
|
|
ret = si->pdata->set_power(si->dev, state);
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
sa1100_set_power(struct sa1100_irda *si, unsigned int state)
|
|
{
|
|
int ret;
|
|
|
|
ret = __sa1100_irda_set_power(si, state);
|
|
if (ret == 0)
|
|
si->power = state;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
|
|
return si->irq(dev, si);
|
|
}
|
|
|
|
static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
int speed = irda_get_next_speed(skb);
|
|
|
|
/*
|
|
* Does this packet contain a request to change the interface
|
|
* speed? If so, remember it until we complete the transmission
|
|
* of this frame.
|
|
*/
|
|
if (speed != si->speed && speed != -1)
|
|
si->newspeed = speed;
|
|
|
|
/* If this is an empty frame, we can bypass a lot. */
|
|
if (skb->len == 0) {
|
|
sa1100_irda_check_speed(si);
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
/* We must not already have a skb to transmit... */
|
|
BUG_ON(si->dma_tx.skb);
|
|
|
|
return si->tx_start(skb, dev, si);
|
|
}
|
|
|
|
static int
|
|
sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
|
|
{
|
|
struct if_irda_req *rq = (struct if_irda_req *)ifreq;
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
int ret = -EOPNOTSUPP;
|
|
|
|
switch (cmd) {
|
|
case SIOCSBANDWIDTH:
|
|
if (capable(CAP_NET_ADMIN)) {
|
|
/*
|
|
* We are unable to set the speed if the
|
|
* device is not running.
|
|
*/
|
|
if (si->open) {
|
|
ret = sa1100_irda_set_speed(si,
|
|
rq->ifr_baudrate);
|
|
} else {
|
|
printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
|
|
ret = 0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SIOCSMEDIABUSY:
|
|
ret = -EPERM;
|
|
if (capable(CAP_NET_ADMIN)) {
|
|
irda_device_set_media_busy(dev, TRUE);
|
|
ret = 0;
|
|
}
|
|
break;
|
|
|
|
case SIOCGRECEIVING:
|
|
rq->ifr_receiving = IS_FIR(si) ? 0
|
|
: si->rx_buff.state != OUTSIDE_FRAME;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sa1100_irda_startup(struct sa1100_irda *si)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Ensure that the ports for this device are setup correctly.
|
|
*/
|
|
if (si->pdata->startup) {
|
|
ret = si->pdata->startup(si->dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Configure PPC for IRDA - we want to drive TXD2 low.
|
|
* We also want to drive this pin low during sleep.
|
|
*/
|
|
PPSR &= ~PPC_TXD2;
|
|
PSDR &= ~PPC_TXD2;
|
|
PPDR |= PPC_TXD2;
|
|
|
|
/*
|
|
* Enable HP-SIR modulation, and ensure that the port is disabled.
|
|
*/
|
|
Ser2UTCR3 = 0;
|
|
Ser2HSCR0 = HSCR0_UART;
|
|
Ser2UTCR4 = si->utcr4;
|
|
Ser2UTCR0 = UTCR0_8BitData;
|
|
Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
|
|
|
|
/*
|
|
* Clear status register
|
|
*/
|
|
Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
|
|
|
|
ret = sa1100_irda_set_speed(si, si->speed = 9600);
|
|
if (ret) {
|
|
Ser2UTCR3 = 0;
|
|
Ser2HSCR0 = 0;
|
|
|
|
if (si->pdata->shutdown)
|
|
si->pdata->shutdown(si->dev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sa1100_irda_shutdown(struct sa1100_irda *si)
|
|
{
|
|
/*
|
|
* Stop all DMA activity.
|
|
*/
|
|
dmaengine_terminate_all(si->dma_rx.chan);
|
|
dmaengine_terminate_all(si->dma_tx.chan);
|
|
|
|
/* Disable the port. */
|
|
Ser2UTCR3 = 0;
|
|
Ser2HSCR0 = 0;
|
|
|
|
if (si->pdata->shutdown)
|
|
si->pdata->shutdown(si->dev);
|
|
}
|
|
|
|
static int sa1100_irda_start(struct net_device *dev)
|
|
{
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
int err;
|
|
|
|
si->speed = 9600;
|
|
|
|
err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc",
|
|
&sa1100_irda_fir_rx);
|
|
if (err)
|
|
goto err_rx_dma;
|
|
|
|
err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr",
|
|
&sa1100_irda_sir_tx);
|
|
if (err)
|
|
goto err_tx_dma;
|
|
|
|
/*
|
|
* Setup the serial port for the specified speed.
|
|
*/
|
|
err = sa1100_irda_startup(si);
|
|
if (err)
|
|
goto err_startup;
|
|
|
|
/*
|
|
* Open a new IrLAP layer instance.
|
|
*/
|
|
si->irlap = irlap_open(dev, &si->qos, "sa1100");
|
|
err = -ENOMEM;
|
|
if (!si->irlap)
|
|
goto err_irlap;
|
|
|
|
err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
|
|
if (err)
|
|
goto err_irq;
|
|
|
|
/*
|
|
* Now enable the interrupt and start the queue
|
|
*/
|
|
si->open = 1;
|
|
sa1100_set_power(si, power_level); /* low power mode */
|
|
|
|
netif_start_queue(dev);
|
|
return 0;
|
|
|
|
err_irq:
|
|
irlap_close(si->irlap);
|
|
err_irlap:
|
|
si->open = 0;
|
|
sa1100_irda_shutdown(si);
|
|
err_startup:
|
|
dma_release_channel(si->dma_tx.chan);
|
|
err_tx_dma:
|
|
dma_release_channel(si->dma_rx.chan);
|
|
err_rx_dma:
|
|
return err;
|
|
}
|
|
|
|
static int sa1100_irda_stop(struct net_device *dev)
|
|
{
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
struct sk_buff *skb;
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
si->open = 0;
|
|
sa1100_irda_shutdown(si);
|
|
|
|
/*
|
|
* If we have been doing any DMA activity, make sure we
|
|
* tidy that up cleanly.
|
|
*/
|
|
skb = si->dma_rx.skb;
|
|
if (skb) {
|
|
dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1,
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
si->dma_rx.skb = NULL;
|
|
}
|
|
|
|
skb = si->dma_tx.skb;
|
|
if (skb) {
|
|
dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
|
|
DMA_TO_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
si->dma_tx.skb = NULL;
|
|
}
|
|
|
|
/* Stop IrLAP */
|
|
if (si->irlap) {
|
|
irlap_close(si->irlap);
|
|
si->irlap = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free resources
|
|
*/
|
|
dma_release_channel(si->dma_tx.chan);
|
|
dma_release_channel(si->dma_rx.chan);
|
|
free_irq(dev->irq, dev);
|
|
|
|
sa1100_set_power(si, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
|
|
{
|
|
io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
|
|
if (io->head != NULL) {
|
|
io->truesize = size;
|
|
io->in_frame = FALSE;
|
|
io->state = OUTSIDE_FRAME;
|
|
io->data = io->head;
|
|
}
|
|
return io->head ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static const struct net_device_ops sa1100_irda_netdev_ops = {
|
|
.ndo_open = sa1100_irda_start,
|
|
.ndo_stop = sa1100_irda_stop,
|
|
.ndo_start_xmit = sa1100_irda_hard_xmit,
|
|
.ndo_do_ioctl = sa1100_irda_ioctl,
|
|
};
|
|
|
|
static int sa1100_irda_probe(struct platform_device *pdev)
|
|
{
|
|
struct net_device *dev;
|
|
struct sa1100_irda *si;
|
|
unsigned int baudrate_mask;
|
|
int err, irq;
|
|
|
|
if (!pdev->dev.platform_data)
|
|
return -EINVAL;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq <= 0)
|
|
return irq < 0 ? irq : -ENXIO;
|
|
|
|
err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
|
|
if (err)
|
|
goto err_mem_1;
|
|
err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
|
|
if (err)
|
|
goto err_mem_2;
|
|
err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
|
|
if (err)
|
|
goto err_mem_3;
|
|
|
|
dev = alloc_irdadev(sizeof(struct sa1100_irda));
|
|
if (!dev) {
|
|
err = -ENOMEM;
|
|
goto err_mem_4;
|
|
}
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
si = netdev_priv(dev);
|
|
si->dev = &pdev->dev;
|
|
si->pdata = pdev->dev.platform_data;
|
|
|
|
sg_init_table(&si->dma_rx.sg, 1);
|
|
sg_init_table(&si->dma_tx.sg, 1);
|
|
|
|
/*
|
|
* Initialise the HP-SIR buffers
|
|
*/
|
|
err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
|
|
if (err)
|
|
goto err_mem_5;
|
|
err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME);
|
|
if (err)
|
|
goto err_mem_5;
|
|
|
|
dev->netdev_ops = &sa1100_irda_netdev_ops;
|
|
dev->irq = irq;
|
|
|
|
irda_init_max_qos_capabilies(&si->qos);
|
|
|
|
/*
|
|
* We support original IRDA up to 115k2. (we don't currently
|
|
* support 4Mbps). Min Turn Time set to 1ms or greater.
|
|
*/
|
|
baudrate_mask = IR_9600;
|
|
|
|
switch (max_rate) {
|
|
case 4000000: baudrate_mask |= IR_4000000 << 8;
|
|
case 115200: baudrate_mask |= IR_115200;
|
|
case 57600: baudrate_mask |= IR_57600;
|
|
case 38400: baudrate_mask |= IR_38400;
|
|
case 19200: baudrate_mask |= IR_19200;
|
|
}
|
|
|
|
si->qos.baud_rate.bits &= baudrate_mask;
|
|
si->qos.min_turn_time.bits = 7;
|
|
|
|
irda_qos_bits_to_value(&si->qos);
|
|
|
|
si->utcr4 = UTCR4_HPSIR;
|
|
if (tx_lpm)
|
|
si->utcr4 |= UTCR4_Z1_6us;
|
|
|
|
/*
|
|
* Initially enable HP-SIR modulation, and ensure that the port
|
|
* is disabled.
|
|
*/
|
|
Ser2UTCR3 = 0;
|
|
Ser2UTCR4 = si->utcr4;
|
|
Ser2HSCR0 = HSCR0_UART;
|
|
|
|
err = register_netdev(dev);
|
|
if (err == 0)
|
|
platform_set_drvdata(pdev, dev);
|
|
|
|
if (err) {
|
|
err_mem_5:
|
|
kfree(si->tx_buff.head);
|
|
kfree(si->rx_buff.head);
|
|
free_netdev(dev);
|
|
err_mem_4:
|
|
release_mem_region(__PREG(Ser2HSCR2), 0x04);
|
|
err_mem_3:
|
|
release_mem_region(__PREG(Ser2HSCR0), 0x1c);
|
|
err_mem_2:
|
|
release_mem_region(__PREG(Ser2UTCR0), 0x24);
|
|
}
|
|
err_mem_1:
|
|
return err;
|
|
}
|
|
|
|
static int sa1100_irda_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *dev = platform_get_drvdata(pdev);
|
|
|
|
if (dev) {
|
|
struct sa1100_irda *si = netdev_priv(dev);
|
|
unregister_netdev(dev);
|
|
kfree(si->tx_buff.head);
|
|
kfree(si->rx_buff.head);
|
|
free_netdev(dev);
|
|
}
|
|
|
|
release_mem_region(__PREG(Ser2HSCR2), 0x04);
|
|
release_mem_region(__PREG(Ser2HSCR0), 0x1c);
|
|
release_mem_region(__PREG(Ser2UTCR0), 0x24);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* Suspend the IrDA interface.
|
|
*/
|
|
static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = platform_get_drvdata(pdev);
|
|
struct sa1100_irda *si;
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
si = netdev_priv(dev);
|
|
if (si->open) {
|
|
/*
|
|
* Stop the transmit queue
|
|
*/
|
|
netif_device_detach(dev);
|
|
disable_irq(dev->irq);
|
|
sa1100_irda_shutdown(si);
|
|
__sa1100_irda_set_power(si, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Resume the IrDA interface.
|
|
*/
|
|
static int sa1100_irda_resume(struct platform_device *pdev)
|
|
{
|
|
struct net_device *dev = platform_get_drvdata(pdev);
|
|
struct sa1100_irda *si;
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
si = netdev_priv(dev);
|
|
if (si->open) {
|
|
/*
|
|
* If we missed a speed change, initialise at the new speed
|
|
* directly. It is debatable whether this is actually
|
|
* required, but in the interests of continuing from where
|
|
* we left off it is desirable. The converse argument is
|
|
* that we should re-negotiate at 9600 baud again.
|
|
*/
|
|
if (si->newspeed) {
|
|
si->speed = si->newspeed;
|
|
si->newspeed = 0;
|
|
}
|
|
|
|
sa1100_irda_startup(si);
|
|
__sa1100_irda_set_power(si, si->power);
|
|
enable_irq(dev->irq);
|
|
|
|
/*
|
|
* This automatically wakes up the queue
|
|
*/
|
|
netif_device_attach(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define sa1100_irda_suspend NULL
|
|
#define sa1100_irda_resume NULL
|
|
#endif
|
|
|
|
static struct platform_driver sa1100ir_driver = {
|
|
.probe = sa1100_irda_probe,
|
|
.remove = sa1100_irda_remove,
|
|
.suspend = sa1100_irda_suspend,
|
|
.resume = sa1100_irda_resume,
|
|
.driver = {
|
|
.name = "sa11x0-ir",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init sa1100_irda_init(void)
|
|
{
|
|
/*
|
|
* Limit power level a sensible range.
|
|
*/
|
|
if (power_level < 1)
|
|
power_level = 1;
|
|
if (power_level > 3)
|
|
power_level = 3;
|
|
|
|
return platform_driver_register(&sa1100ir_driver);
|
|
}
|
|
|
|
static void __exit sa1100_irda_exit(void)
|
|
{
|
|
platform_driver_unregister(&sa1100ir_driver);
|
|
}
|
|
|
|
module_init(sa1100_irda_init);
|
|
module_exit(sa1100_irda_exit);
|
|
module_param(power_level, int, 0);
|
|
module_param(tx_lpm, int, 0);
|
|
module_param(max_rate, int, 0);
|
|
|
|
MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
|
|
MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
|
|
MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
|
|
MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
|
|
MODULE_ALIAS("platform:sa11x0-ir");
|