linux_dsm_epyc7002/drivers/misc/mei/hw-txe.c
Alexander Usyskin edca5ea3ff mei: read and print all six FW status registers
ME devices prior to PCH8 (Lynx Point) have two FW status registers,
on PCH8 and newer excluding txe there are six FW status registers.

Signed-off-by: Alexander Usyskin <alexander.usyskin@intel.com>
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-26 19:06:41 -08:00

1230 lines
30 KiB
C

/*
*
* Intel Management Engine Interface (Intel MEI) Linux driver
* Copyright (c) 2013-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/irqreturn.h>
#include <linux/mei.h>
#include "mei_dev.h"
#include "hw-txe.h"
#include "client.h"
#include "hbm.h"
/**
* mei_txe_reg_read - Reads 32bit data from the txe device
*
* @base_addr: registers base address
* @offset: register offset
*
* Return: register value
*/
static inline u32 mei_txe_reg_read(void __iomem *base_addr,
unsigned long offset)
{
return ioread32(base_addr + offset);
}
/**
* mei_txe_reg_write - Writes 32bit data to the txe device
*
* @base_addr: registers base address
* @offset: register offset
* @value: the value to write
*/
static inline void mei_txe_reg_write(void __iomem *base_addr,
unsigned long offset, u32 value)
{
iowrite32(value, base_addr + offset);
}
/**
* mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
*
* @hw: the txe hardware structure
* @offset: register offset
*
* Doesn't check for aliveness while Reads 32bit data from the SeC BAR
*
* Return: register value
*/
static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
unsigned long offset)
{
return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
}
/**
* mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
*
* @hw: the txe hardware structure
* @offset: register offset
*
* Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
*
* Return: register value
*/
static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
unsigned long offset)
{
WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
return mei_txe_sec_reg_read_silent(hw, offset);
}
/**
* mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
* doesn't check for aliveness
*
* @hw: the txe hardware structure
* @offset: register offset
* @value: value to write
*
* Doesn't check for aliveness while writes 32bit data from to the SeC BAR
*/
static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
unsigned long offset, u32 value)
{
mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
}
/**
* mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
*
* @hw: the txe hardware structure
* @offset: register offset
* @value: value to write
*
* Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
*/
static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
unsigned long offset, u32 value)
{
WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
mei_txe_sec_reg_write_silent(hw, offset, value);
}
/**
* mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
*
* @hw: the txe hardware structure
* @offset: offset from which to read the data
*
* Return: the byte read.
*/
static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
unsigned long offset)
{
return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
}
/**
* mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
*
* @hw: the txe hardware structure
* @offset: offset from which to write the data
* @value: the byte to write
*/
static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
unsigned long offset, u32 value)
{
mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
}
/**
* mei_txe_aliveness_set - request for aliveness change
*
* @dev: the device structure
* @req: requested aliveness value
*
* Request for aliveness change and returns true if the change is
* really needed and false if aliveness is already
* in the requested state
*
* Locking: called under "dev->device_lock" lock
*
* Return: true if request was send
*/
static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
bool do_req = hw->aliveness != req;
dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
hw->aliveness, req);
if (do_req) {
dev->pg_event = MEI_PG_EVENT_WAIT;
mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
}
return do_req;
}
/**
* mei_txe_aliveness_req_get - get aliveness requested register value
*
* @dev: the device structure
*
* Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
* from HICR_HOST_ALIVENESS_REQ register value
*
* Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
*/
static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 reg;
reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
}
/**
* mei_txe_aliveness_get - get aliveness response register value
*
* @dev: the device structure
*
* Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
* register
*/
static u32 mei_txe_aliveness_get(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 reg;
reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
return reg & HICR_HOST_ALIVENESS_RESP_ACK;
}
/**
* mei_txe_aliveness_poll - waits for aliveness to settle
*
* @dev: the device structure
* @expected: expected aliveness value
*
* Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
*
* Return: > 0 if the expected value was received, -ETIME otherwise
*/
static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
int t = 0;
do {
hw->aliveness = mei_txe_aliveness_get(dev);
if (hw->aliveness == expected) {
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_dbg(dev->dev,
"aliveness settled after %d msecs\n", t);
return t;
}
mutex_unlock(&dev->device_lock);
msleep(MSEC_PER_SEC / 5);
mutex_lock(&dev->device_lock);
t += MSEC_PER_SEC / 5;
} while (t < SEC_ALIVENESS_WAIT_TIMEOUT);
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_err(dev->dev, "aliveness timed out\n");
return -ETIME;
}
/**
* mei_txe_aliveness_wait - waits for aliveness to settle
*
* @dev: the device structure
* @expected: expected aliveness value
*
* Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
*
* Return: 0 on success and < 0 otherwise
*/
static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
const unsigned long timeout =
msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
long err;
int ret;
hw->aliveness = mei_txe_aliveness_get(dev);
if (hw->aliveness == expected)
return 0;
mutex_unlock(&dev->device_lock);
err = wait_event_timeout(hw->wait_aliveness_resp,
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
hw->aliveness = mei_txe_aliveness_get(dev);
ret = hw->aliveness == expected ? 0 : -ETIME;
if (ret)
dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
err, hw->aliveness, dev->pg_event);
else
dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
jiffies_to_msecs(timeout - err),
hw->aliveness, dev->pg_event);
dev->pg_event = MEI_PG_EVENT_IDLE;
return ret;
}
/**
* mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
*
* @dev: the device structure
* @req: requested aliveness value
*
* Return: 0 on success and < 0 otherwise
*/
int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
{
if (mei_txe_aliveness_set(dev, req))
return mei_txe_aliveness_wait(dev, req);
return 0;
}
/**
* mei_txe_pg_is_enabled - detect if PG is supported by HW
*
* @dev: the device structure
*
* Return: true is pg supported, false otherwise
*/
static bool mei_txe_pg_is_enabled(struct mei_device *dev)
{
return true;
}
/**
* mei_txe_pg_state - translate aliveness register value
* to the mei power gating state
*
* @dev: the device structure
*
* Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
*/
static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
}
/**
* mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
*
* @dev: the device structure
*/
static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 hintmsk;
/* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
}
/**
* mei_txe_input_doorbell_set - sets bit 0 in
* SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
*
* @hw: the txe hardware structure
*/
static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
{
/* Clear the interrupt cause */
clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
}
/**
* mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
*
* @hw: the txe hardware structure
*/
static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
{
mei_txe_br_reg_write(hw,
SICR_SEC_IPC_OUTPUT_STATUS_REG,
SEC_IPC_OUTPUT_STATUS_RDY);
}
/**
* mei_txe_is_input_ready - check if TXE is ready for receiving data
*
* @dev: the device structure
*
* Return: true if INPUT STATUS READY bit is set
*/
static bool mei_txe_is_input_ready(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 status;
status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
return !!(SEC_IPC_INPUT_STATUS_RDY & status);
}
/**
* mei_txe_intr_clear - clear all interrupts
*
* @dev: the device structure
*/
static inline void mei_txe_intr_clear(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
SEC_IPC_HOST_INT_STATUS_PENDING);
mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
}
/**
* mei_txe_intr_disable - disable all interrupts
*
* @dev: the device structure
*/
static void mei_txe_intr_disable(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw, HHIER_REG, 0);
mei_txe_br_reg_write(hw, HIER_REG, 0);
}
/**
* mei_txe_intr_disable - enable all interrupts
*
* @dev: the device structure
*/
static void mei_txe_intr_enable(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
}
/**
* mei_txe_pending_interrupts - check if there are pending interrupts
* only Aliveness, Input ready, and output doorbell are of relevance
*
* @dev: the device structure
*
* Checks if there are pending interrupts
* only Aliveness, Readiness, Input ready, and Output doorbell are relevant
*
* Return: true if there are pending interrupts
*/
static bool mei_txe_pending_interrupts(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
TXE_INTR_ALIVENESS |
TXE_INTR_IN_READY |
TXE_INTR_OUT_DB));
if (ret) {
dev_dbg(dev->dev,
"Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
!!(hw->intr_cause & TXE_INTR_IN_READY),
!!(hw->intr_cause & TXE_INTR_READINESS),
!!(hw->intr_cause & TXE_INTR_ALIVENESS),
!!(hw->intr_cause & TXE_INTR_OUT_DB));
}
return ret;
}
/**
* mei_txe_input_payload_write - write a dword to the host buffer
* at offset idx
*
* @dev: the device structure
* @idx: index in the host buffer
* @value: value
*/
static void mei_txe_input_payload_write(struct mei_device *dev,
unsigned long idx, u32 value)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
(idx * sizeof(u32)), value);
}
/**
* mei_txe_out_data_read - read dword from the device buffer
* at offset idx
*
* @dev: the device structure
* @idx: index in the device buffer
*
* Return: register value at index
*/
static u32 mei_txe_out_data_read(const struct mei_device *dev,
unsigned long idx)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return mei_txe_br_reg_read(hw,
BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
}
/* Readiness */
/**
* mei_txe_readiness_set_host_rdy - set host readiness bit
*
* @dev: the device structure
*/
static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw,
SICR_HOST_IPC_READINESS_REQ_REG,
SICR_HOST_IPC_READINESS_HOST_RDY);
}
/**
* mei_txe_readiness_clear - clear host readiness bit
*
* @dev: the device structure
*/
static void mei_txe_readiness_clear(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
SICR_HOST_IPC_READINESS_RDY_CLR);
}
/**
* mei_txe_readiness_get - Reads and returns
* the HICR_SEC_IPC_READINESS register value
*
* @dev: the device structure
*
* Return: the HICR_SEC_IPC_READINESS register value
*/
static u32 mei_txe_readiness_get(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
}
/**
* mei_txe_readiness_is_sec_rdy - check readiness
* for HICR_SEC_IPC_READINESS_SEC_RDY
*
* @readiness: cached readiness state
*
* Return: true if readiness bit is set
*/
static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
{
return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
}
/**
* mei_txe_hw_is_ready - check if the hw is ready
*
* @dev: the device structure
*
* Return: true if sec is ready
*/
static bool mei_txe_hw_is_ready(struct mei_device *dev)
{
u32 readiness = mei_txe_readiness_get(dev);
return mei_txe_readiness_is_sec_rdy(readiness);
}
/**
* mei_txe_host_is_ready - check if the host is ready
*
* @dev: the device structure
*
* Return: true if host is ready
*/
static inline bool mei_txe_host_is_ready(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
}
/**
* mei_txe_readiness_wait - wait till readiness settles
*
* @dev: the device structure
*
* Return: 0 on success and -ETIME on timeout
*/
static int mei_txe_readiness_wait(struct mei_device *dev)
{
if (mei_txe_hw_is_ready(dev))
return 0;
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
mutex_lock(&dev->device_lock);
if (!dev->recvd_hw_ready) {
dev_err(dev->dev, "wait for readiness failed\n");
return -ETIME;
}
dev->recvd_hw_ready = false;
return 0;
}
static const struct mei_fw_status mei_txe_fw_sts = {
.count = 2,
.status[0] = PCI_CFG_TXE_FW_STS0,
.status[1] = PCI_CFG_TXE_FW_STS1
};
/**
* mei_txe_fw_status - read fw status register from pci config space
*
* @dev: mei device
* @fw_status: fw status register values
*
* Return: 0 on success, error otherwise
*/
static int mei_txe_fw_status(struct mei_device *dev,
struct mei_fw_status *fw_status)
{
const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
struct pci_dev *pdev = to_pci_dev(dev->dev);
int ret;
int i;
if (!fw_status)
return -EINVAL;
fw_status->count = fw_src->count;
for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
ret = pci_read_config_dword(pdev,
fw_src->status[i], &fw_status->status[i]);
if (ret)
return ret;
}
return 0;
}
/**
* mei_txe_hw_config - configure hardware at the start of the devices
*
* @dev: the device structure
*
* Configure hardware at the start of the device should be done only
* once at the device probe time
*/
static void mei_txe_hw_config(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
/* Doesn't change in runtime */
dev->hbuf_depth = PAYLOAD_SIZE / 4;
hw->aliveness = mei_txe_aliveness_get(dev);
hw->readiness = mei_txe_readiness_get(dev);
dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
hw->aliveness, hw->readiness);
}
/**
* mei_txe_write - writes a message to device.
*
* @dev: the device structure
* @header: header of message
* @buf: message buffer will be written
*
* Return: 0 if success, <0 - otherwise.
*/
static int mei_txe_write(struct mei_device *dev,
struct mei_msg_hdr *header, unsigned char *buf)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
unsigned long rem;
unsigned long length;
int slots = dev->hbuf_depth;
u32 *reg_buf = (u32 *)buf;
u32 dw_cnt;
int i;
if (WARN_ON(!header || !buf))
return -EINVAL;
length = header->length;
dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
dw_cnt = mei_data2slots(length);
if (dw_cnt > slots)
return -EMSGSIZE;
if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
return -EAGAIN;
/* Enable Input Ready Interrupt. */
mei_txe_input_ready_interrupt_enable(dev);
if (!mei_txe_is_input_ready(dev)) {
char fw_sts_str[MEI_FW_STATUS_STR_SZ];
mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
return -EAGAIN;
}
mei_txe_input_payload_write(dev, 0, *((u32 *)header));
for (i = 0; i < length / 4; i++)
mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
rem = length & 0x3;
if (rem > 0) {
u32 reg = 0;
memcpy(&reg, &buf[length - rem], rem);
mei_txe_input_payload_write(dev, i + 1, reg);
}
/* after each write the whole buffer is consumed */
hw->slots = 0;
/* Set Input-Doorbell */
mei_txe_input_doorbell_set(hw);
return 0;
}
/**
* mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
*
* @dev: the device structure
*
* Return: the PAYLOAD_SIZE - 4
*/
static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
{
return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
}
/**
* mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
*
* @dev: the device structure
*
* Return: always hbuf_depth
*/
static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
return hw->slots;
}
/**
* mei_txe_count_full_read_slots - mimics the me device circular buffer
*
* @dev: the device structure
*
* Return: always buffer size in dwords count
*/
static int mei_txe_count_full_read_slots(struct mei_device *dev)
{
/* read buffers has static size */
return PAYLOAD_SIZE / 4;
}
/**
* mei_txe_read_hdr - read message header which is always in 4 first bytes
*
* @dev: the device structure
*
* Return: mei message header
*/
static u32 mei_txe_read_hdr(const struct mei_device *dev)
{
return mei_txe_out_data_read(dev, 0);
}
/**
* mei_txe_read - reads a message from the txe device.
*
* @dev: the device structure
* @buf: message buffer will be written
* @len: message size will be read
*
* Return: -EINVAL on error wrong argument and 0 on success
*/
static int mei_txe_read(struct mei_device *dev,
unsigned char *buf, unsigned long len)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 *reg_buf, reg;
u32 rem;
u32 i;
if (WARN_ON(!buf || !len))
return -EINVAL;
reg_buf = (u32 *)buf;
rem = len & 0x3;
dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
len, mei_txe_out_data_read(dev, 0));
for (i = 0; i < len / 4; i++) {
/* skip header: index starts from 1 */
reg = mei_txe_out_data_read(dev, i + 1);
dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
*reg_buf++ = reg;
}
if (rem) {
reg = mei_txe_out_data_read(dev, i + 1);
memcpy(reg_buf, &reg, rem);
}
mei_txe_output_ready_set(hw);
return 0;
}
/**
* mei_txe_hw_reset - resets host and fw.
*
* @dev: the device structure
* @intr_enable: if interrupt should be enabled after reset.
*
* Return: 0 on success and < 0 in case of error
*/
static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 aliveness_req;
/*
* read input doorbell to ensure consistency between Bridge and SeC
* return value might be garbage return
*/
(void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
aliveness_req = mei_txe_aliveness_req_get(dev);
hw->aliveness = mei_txe_aliveness_get(dev);
/* Disable interrupts in this stage we will poll */
mei_txe_intr_disable(dev);
/*
* If Aliveness Request and Aliveness Response are not equal then
* wait for them to be equal
* Since we might have interrupts disabled - poll for it
*/
if (aliveness_req != hw->aliveness)
if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
return -EIO;
}
/*
* If Aliveness Request and Aliveness Response are set then clear them
*/
if (aliveness_req) {
mei_txe_aliveness_set(dev, 0);
if (mei_txe_aliveness_poll(dev, 0) < 0) {
dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
return -EIO;
}
}
/*
* Set readiness RDY_CLR bit
*/
mei_txe_readiness_clear(dev);
return 0;
}
/**
* mei_txe_hw_start - start the hardware after reset
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_txe_hw_start(struct mei_device *dev)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
int ret;
u32 hisr;
/* bring back interrupts */
mei_txe_intr_enable(dev);
ret = mei_txe_readiness_wait(dev);
if (ret < 0) {
dev_err(dev->dev, "waiting for readiness failed\n");
return ret;
}
/*
* If HISR.INT2_STS interrupt status bit is set then clear it.
*/
hisr = mei_txe_br_reg_read(hw, HISR_REG);
if (hisr & HISR_INT_2_STS)
mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
/* Clear the interrupt cause of OutputDoorbell */
clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
ret = mei_txe_aliveness_set_sync(dev, 1);
if (ret < 0) {
dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
return ret;
}
/* enable input ready interrupts:
* SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
*/
mei_txe_input_ready_interrupt_enable(dev);
/* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
mei_txe_output_ready_set(hw);
/* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
*/
mei_txe_readiness_set_host_rdy(dev);
return 0;
}
/**
* mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
* single bit mask and acknowledge the interrupts
*
* @dev: the device structure
* @do_ack: acknowledge interrupts
*
* Return: true if found interrupts to process.
*/
static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 hisr;
u32 hhisr;
u32 ipc_isr;
u32 aliveness;
bool generated;
/* read interrupt registers */
hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
generated = (hhisr & IPC_HHIER_MSK);
if (!generated)
goto out;
hisr = mei_txe_br_reg_read(hw, HISR_REG);
aliveness = mei_txe_aliveness_get(dev);
if (hhisr & IPC_HHIER_SEC && aliveness)
ipc_isr = mei_txe_sec_reg_read_silent(hw,
SEC_IPC_HOST_INT_STATUS_REG);
else
ipc_isr = 0;
generated = generated ||
(hisr & HISR_INT_STS_MSK) ||
(ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
if (generated && do_ack) {
/* Save the interrupt causes */
hw->intr_cause |= hisr & HISR_INT_STS_MSK;
if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
hw->intr_cause |= TXE_INTR_IN_READY;
mei_txe_intr_disable(dev);
/* Clear the interrupts in hierarchy:
* IPC and Bridge, than the High Level */
mei_txe_sec_reg_write_silent(hw,
SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
mei_txe_br_reg_write(hw, HISR_REG, hisr);
mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
}
out:
return generated;
}
/**
* mei_txe_irq_quick_handler - The ISR of the MEI device
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: IRQ_WAKE_THREAD if interrupt is designed for the device
* IRQ_NONE otherwise
*/
irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
{
struct mei_device *dev = dev_id;
if (mei_txe_check_and_ack_intrs(dev, true))
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
/**
* mei_txe_irq_thread_handler - txe interrupt thread
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: IRQ_HANDLED
*/
irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *) dev_id;
struct mei_txe_hw *hw = to_txe_hw(dev);
struct mei_cl_cb complete_list;
s32 slots;
int rets = 0;
dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
mei_txe_br_reg_read(hw, HHISR_REG),
mei_txe_br_reg_read(hw, HISR_REG),
mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
/* initialize our complete list */
mutex_lock(&dev->device_lock);
mei_io_list_init(&complete_list);
if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
mei_txe_check_and_ack_intrs(dev, true);
/* show irq events */
mei_txe_pending_interrupts(dev);
hw->aliveness = mei_txe_aliveness_get(dev);
hw->readiness = mei_txe_readiness_get(dev);
/* Readiness:
* Detection of TXE driver going through reset
* or TXE driver resetting the HECI interface.
*/
if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
/* Check if SeC is going through reset */
if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
dev_dbg(dev->dev, "we need to start the dev.\n");
dev->recvd_hw_ready = true;
} else {
dev->recvd_hw_ready = false;
if (dev->dev_state != MEI_DEV_RESETTING) {
dev_warn(dev->dev, "FW not ready: resetting.\n");
schedule_work(&dev->reset_work);
goto end;
}
}
wake_up(&dev->wait_hw_ready);
}
/************************************************************/
/* Check interrupt cause:
* Aliveness: Detection of SeC acknowledge of host request that
* it remain alive or host cancellation of that request.
*/
if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
/* Clear the interrupt cause */
dev_dbg(dev->dev,
"Aliveness Interrupt: Status: %d\n", hw->aliveness);
dev->pg_event = MEI_PG_EVENT_RECEIVED;
if (waitqueue_active(&hw->wait_aliveness_resp))
wake_up(&hw->wait_aliveness_resp);
}
/* Output Doorbell:
* Detection of SeC having sent output to host
*/
slots = mei_count_full_read_slots(dev);
if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
/* Read from TXE */
rets = mei_irq_read_handler(dev, &complete_list, &slots);
if (rets && dev->dev_state != MEI_DEV_RESETTING) {
dev_err(dev->dev,
"mei_irq_read_handler ret = %d.\n", rets);
schedule_work(&dev->reset_work);
goto end;
}
}
/* Input Ready: Detection if host can write to SeC */
if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
dev->hbuf_is_ready = true;
hw->slots = dev->hbuf_depth;
}
if (hw->aliveness && dev->hbuf_is_ready) {
/* get the real register value */
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
rets = mei_irq_write_handler(dev, &complete_list);
if (rets && rets != -EMSGSIZE)
dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
rets);
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
}
mei_irq_compl_handler(dev, &complete_list);
end:
dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
mutex_unlock(&dev->device_lock);
mei_enable_interrupts(dev);
return IRQ_HANDLED;
}
static const struct mei_hw_ops mei_txe_hw_ops = {
.host_is_ready = mei_txe_host_is_ready,
.fw_status = mei_txe_fw_status,
.pg_state = mei_txe_pg_state,
.hw_is_ready = mei_txe_hw_is_ready,
.hw_reset = mei_txe_hw_reset,
.hw_config = mei_txe_hw_config,
.hw_start = mei_txe_hw_start,
.pg_is_enabled = mei_txe_pg_is_enabled,
.intr_clear = mei_txe_intr_clear,
.intr_enable = mei_txe_intr_enable,
.intr_disable = mei_txe_intr_disable,
.hbuf_free_slots = mei_txe_hbuf_empty_slots,
.hbuf_is_ready = mei_txe_is_input_ready,
.hbuf_max_len = mei_txe_hbuf_max_len,
.write = mei_txe_write,
.rdbuf_full_slots = mei_txe_count_full_read_slots,
.read_hdr = mei_txe_read_hdr,
.read = mei_txe_read,
};
/**
* mei_txe_dev_init - allocates and initializes txe hardware specific structure
*
* @pdev: pci device
*
* Return: struct mei_device * on success or NULL
*/
struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
{
struct mei_device *dev;
struct mei_txe_hw *hw;
dev = kzalloc(sizeof(struct mei_device) +
sizeof(struct mei_txe_hw), GFP_KERNEL);
if (!dev)
return NULL;
mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
hw = to_txe_hw(dev);
init_waitqueue_head(&hw->wait_aliveness_resp);
return dev;
}
/**
* mei_txe_setup_satt2 - SATT2 configuration for DMA support.
*
* @dev: the device structure
* @addr: physical address start of the range
* @range: physical range size
*
* Return: 0 on success an error code otherwise
*/
int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
{
struct mei_txe_hw *hw = to_txe_hw(dev);
u32 lo32 = lower_32_bits(addr);
u32 hi32 = upper_32_bits(addr);
u32 ctrl;
/* SATT is limited to 36 Bits */
if (hi32 & ~0xF)
return -EINVAL;
/* SATT has to be 16Byte aligned */
if (lo32 & 0xF)
return -EINVAL;
/* SATT range has to be 4Bytes aligned */
if (range & 0x4)
return -EINVAL;
/* SATT is limited to 32 MB range*/
if (range > SATT_RANGE_MAX)
return -EINVAL;
ctrl = SATT2_CTRL_VALID_MSK;
ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
range, lo32, ctrl);
return 0;
}