linux_dsm_epyc7002/drivers/net/ethernet/cadence/macb_main.c
Claudiu Beznea 33fdef24c9 net: macb: free resources on failure path of at91ether_open()
DMA buffers were not freed on failure path of at91ether_open().
Along with changes for freeing the DMA buffers the enable/disable
interrupt instructions were moved to at91ether_start()/at91ether_stop()
functions and the operations on at91ether_stop() were done in
their reverse order (compared with how is done in at91ether_start()):
before this patch the operation order on interface open path
was as follows:
1/ alloc DMA buffers
2/ enable tx, rx
3/ enable interrupts
and the order on interface close path was as follows:
1/ disable tx, rx
2/ disable interrupts
3/ free dma buffers.

Fixes: 7897b071ac ("net: macb: convert to phylink")
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-25 15:59:23 -07:00

4705 lines
119 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Cadence MACB/GEM Ethernet Controller driver
*
* Copyright (C) 2004-2006 Atmel Corporation
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/crc32.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/circ_buf.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/dma-mapping.h>
#include <linux/platform_data/macb.h>
#include <linux/platform_device.h>
#include <linux/phylink.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/iopoll.h>
#include <linux/pm_runtime.h>
#include "macb.h"
/* This structure is only used for MACB on SiFive FU540 devices */
struct sifive_fu540_macb_mgmt {
void __iomem *reg;
unsigned long rate;
struct clk_hw hw;
};
#define MACB_RX_BUFFER_SIZE 128
#define RX_BUFFER_MULTIPLE 64 /* bytes */
#define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */
#define MIN_RX_RING_SIZE 64
#define MAX_RX_RING_SIZE 8192
#define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \
* (bp)->rx_ring_size)
#define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */
#define MIN_TX_RING_SIZE 64
#define MAX_TX_RING_SIZE 4096
#define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \
* (bp)->tx_ring_size)
/* level of occupied TX descriptors under which we wake up TX process */
#define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4)
#define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
#define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \
| MACB_BIT(ISR_RLE) \
| MACB_BIT(TXERR))
#define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \
| MACB_BIT(TXUBR))
/* Max length of transmit frame must be a multiple of 8 bytes */
#define MACB_TX_LEN_ALIGN 8
#define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
/* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
* false amba_error in TX path from the DMA assuming there is not enough
* space in the SRAM (16KB) even when there is.
*/
#define GEM_MAX_TX_LEN (unsigned int)(0x3FC0)
#define GEM_MTU_MIN_SIZE ETH_MIN_MTU
#define MACB_NETIF_LSO NETIF_F_TSO
#define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0)
#define MACB_WOL_ENABLED (0x1 << 1)
/* Graceful stop timeouts in us. We should allow up to
* 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
*/
#define MACB_HALT_TIMEOUT 1230
#define MACB_PM_TIMEOUT 100 /* ms */
#define MACB_MDIO_TIMEOUT 1000000 /* in usecs */
/* DMA buffer descriptor might be different size
* depends on hardware configuration:
*
* 1. dma address width 32 bits:
* word 1: 32 bit address of Data Buffer
* word 2: control
*
* 2. dma address width 64 bits:
* word 1: 32 bit address of Data Buffer
* word 2: control
* word 3: upper 32 bit address of Data Buffer
* word 4: unused
*
* 3. dma address width 32 bits with hardware timestamping:
* word 1: 32 bit address of Data Buffer
* word 2: control
* word 3: timestamp word 1
* word 4: timestamp word 2
*
* 4. dma address width 64 bits with hardware timestamping:
* word 1: 32 bit address of Data Buffer
* word 2: control
* word 3: upper 32 bit address of Data Buffer
* word 4: unused
* word 5: timestamp word 1
* word 6: timestamp word 2
*/
static unsigned int macb_dma_desc_get_size(struct macb *bp)
{
#ifdef MACB_EXT_DESC
unsigned int desc_size;
switch (bp->hw_dma_cap) {
case HW_DMA_CAP_64B:
desc_size = sizeof(struct macb_dma_desc)
+ sizeof(struct macb_dma_desc_64);
break;
case HW_DMA_CAP_PTP:
desc_size = sizeof(struct macb_dma_desc)
+ sizeof(struct macb_dma_desc_ptp);
break;
case HW_DMA_CAP_64B_PTP:
desc_size = sizeof(struct macb_dma_desc)
+ sizeof(struct macb_dma_desc_64)
+ sizeof(struct macb_dma_desc_ptp);
break;
default:
desc_size = sizeof(struct macb_dma_desc);
}
return desc_size;
#endif
return sizeof(struct macb_dma_desc);
}
static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
{
#ifdef MACB_EXT_DESC
switch (bp->hw_dma_cap) {
case HW_DMA_CAP_64B:
case HW_DMA_CAP_PTP:
desc_idx <<= 1;
break;
case HW_DMA_CAP_64B_PTP:
desc_idx *= 3;
break;
default:
break;
}
#endif
return desc_idx;
}
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
{
return (struct macb_dma_desc_64 *)((void *)desc
+ sizeof(struct macb_dma_desc));
}
#endif
/* Ring buffer accessors */
static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
{
return index & (bp->tx_ring_size - 1);
}
static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
unsigned int index)
{
index = macb_tx_ring_wrap(queue->bp, index);
index = macb_adj_dma_desc_idx(queue->bp, index);
return &queue->tx_ring[index];
}
static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
unsigned int index)
{
return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
}
static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
{
dma_addr_t offset;
offset = macb_tx_ring_wrap(queue->bp, index) *
macb_dma_desc_get_size(queue->bp);
return queue->tx_ring_dma + offset;
}
static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
{
return index & (bp->rx_ring_size - 1);
}
static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
{
index = macb_rx_ring_wrap(queue->bp, index);
index = macb_adj_dma_desc_idx(queue->bp, index);
return &queue->rx_ring[index];
}
static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
{
return queue->rx_buffers + queue->bp->rx_buffer_size *
macb_rx_ring_wrap(queue->bp, index);
}
/* I/O accessors */
static u32 hw_readl_native(struct macb *bp, int offset)
{
return __raw_readl(bp->regs + offset);
}
static void hw_writel_native(struct macb *bp, int offset, u32 value)
{
__raw_writel(value, bp->regs + offset);
}
static u32 hw_readl(struct macb *bp, int offset)
{
return readl_relaxed(bp->regs + offset);
}
static void hw_writel(struct macb *bp, int offset, u32 value)
{
writel_relaxed(value, bp->regs + offset);
}
/* Find the CPU endianness by using the loopback bit of NCR register. When the
* CPU is in big endian we need to program swapped mode for management
* descriptor access.
*/
static bool hw_is_native_io(void __iomem *addr)
{
u32 value = MACB_BIT(LLB);
__raw_writel(value, addr + MACB_NCR);
value = __raw_readl(addr + MACB_NCR);
/* Write 0 back to disable everything */
__raw_writel(0, addr + MACB_NCR);
return value == MACB_BIT(LLB);
}
static bool hw_is_gem(void __iomem *addr, bool native_io)
{
u32 id;
if (native_io)
id = __raw_readl(addr + MACB_MID);
else
id = readl_relaxed(addr + MACB_MID);
return MACB_BFEXT(IDNUM, id) >= 0x2;
}
static void macb_set_hwaddr(struct macb *bp)
{
u32 bottom;
u16 top;
bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
macb_or_gem_writel(bp, SA1B, bottom);
top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
macb_or_gem_writel(bp, SA1T, top);
/* Clear unused address register sets */
macb_or_gem_writel(bp, SA2B, 0);
macb_or_gem_writel(bp, SA2T, 0);
macb_or_gem_writel(bp, SA3B, 0);
macb_or_gem_writel(bp, SA3T, 0);
macb_or_gem_writel(bp, SA4B, 0);
macb_or_gem_writel(bp, SA4T, 0);
}
static void macb_get_hwaddr(struct macb *bp)
{
u32 bottom;
u16 top;
u8 addr[6];
int i;
/* Check all 4 address register for valid address */
for (i = 0; i < 4; i++) {
bottom = macb_or_gem_readl(bp, SA1B + i * 8);
top = macb_or_gem_readl(bp, SA1T + i * 8);
addr[0] = bottom & 0xff;
addr[1] = (bottom >> 8) & 0xff;
addr[2] = (bottom >> 16) & 0xff;
addr[3] = (bottom >> 24) & 0xff;
addr[4] = top & 0xff;
addr[5] = (top >> 8) & 0xff;
if (is_valid_ether_addr(addr)) {
memcpy(bp->dev->dev_addr, addr, sizeof(addr));
return;
}
}
dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
eth_hw_addr_random(bp->dev);
}
static int macb_mdio_wait_for_idle(struct macb *bp)
{
u32 val;
return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
1, MACB_MDIO_TIMEOUT);
}
static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct macb *bp = bus->priv;
int status;
status = pm_runtime_get_sync(&bp->pdev->dev);
if (status < 0) {
pm_runtime_put_noidle(&bp->pdev->dev);
goto mdio_pm_exit;
}
status = macb_mdio_wait_for_idle(bp);
if (status < 0)
goto mdio_read_exit;
if (regnum & MII_ADDR_C45) {
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
| MACB_BF(RW, MACB_MAN_C45_ADDR)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, (regnum >> 16) & 0x1F)
| MACB_BF(DATA, regnum & 0xFFFF)
| MACB_BF(CODE, MACB_MAN_C45_CODE)));
status = macb_mdio_wait_for_idle(bp);
if (status < 0)
goto mdio_read_exit;
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
| MACB_BF(RW, MACB_MAN_C45_READ)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, (regnum >> 16) & 0x1F)
| MACB_BF(CODE, MACB_MAN_C45_CODE)));
} else {
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
| MACB_BF(RW, MACB_MAN_C22_READ)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, regnum)
| MACB_BF(CODE, MACB_MAN_C22_CODE)));
}
status = macb_mdio_wait_for_idle(bp);
if (status < 0)
goto mdio_read_exit;
status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
mdio_read_exit:
pm_runtime_mark_last_busy(&bp->pdev->dev);
pm_runtime_put_autosuspend(&bp->pdev->dev);
mdio_pm_exit:
return status;
}
static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
u16 value)
{
struct macb *bp = bus->priv;
int status;
status = pm_runtime_get_sync(&bp->pdev->dev);
if (status < 0) {
pm_runtime_put_noidle(&bp->pdev->dev);
goto mdio_pm_exit;
}
status = macb_mdio_wait_for_idle(bp);
if (status < 0)
goto mdio_write_exit;
if (regnum & MII_ADDR_C45) {
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
| MACB_BF(RW, MACB_MAN_C45_ADDR)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, (regnum >> 16) & 0x1F)
| MACB_BF(DATA, regnum & 0xFFFF)
| MACB_BF(CODE, MACB_MAN_C45_CODE)));
status = macb_mdio_wait_for_idle(bp);
if (status < 0)
goto mdio_write_exit;
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
| MACB_BF(RW, MACB_MAN_C45_WRITE)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, (regnum >> 16) & 0x1F)
| MACB_BF(CODE, MACB_MAN_C45_CODE)
| MACB_BF(DATA, value)));
} else {
macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
| MACB_BF(RW, MACB_MAN_C22_WRITE)
| MACB_BF(PHYA, mii_id)
| MACB_BF(REGA, regnum)
| MACB_BF(CODE, MACB_MAN_C22_CODE)
| MACB_BF(DATA, value)));
}
status = macb_mdio_wait_for_idle(bp);
if (status < 0)
goto mdio_write_exit;
mdio_write_exit:
pm_runtime_mark_last_busy(&bp->pdev->dev);
pm_runtime_put_autosuspend(&bp->pdev->dev);
mdio_pm_exit:
return status;
}
static void macb_init_buffers(struct macb *bp)
{
struct macb_queue *queue;
unsigned int q;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (bp->hw_dma_cap & HW_DMA_CAP_64B)
queue_writel(queue, RBQPH,
upper_32_bits(queue->rx_ring_dma));
#endif
queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (bp->hw_dma_cap & HW_DMA_CAP_64B)
queue_writel(queue, TBQPH,
upper_32_bits(queue->tx_ring_dma));
#endif
}
}
/**
* macb_set_tx_clk() - Set a clock to a new frequency
* @clk Pointer to the clock to change
* @rate New frequency in Hz
* @dev Pointer to the struct net_device
*/
static void macb_set_tx_clk(struct clk *clk, int speed, struct net_device *dev)
{
long ferr, rate, rate_rounded;
if (!clk)
return;
switch (speed) {
case SPEED_10:
rate = 2500000;
break;
case SPEED_100:
rate = 25000000;
break;
case SPEED_1000:
rate = 125000000;
break;
default:
return;
}
rate_rounded = clk_round_rate(clk, rate);
if (rate_rounded < 0)
return;
/* RGMII allows 50 ppm frequency error. Test and warn if this limit
* is not satisfied.
*/
ferr = abs(rate_rounded - rate);
ferr = DIV_ROUND_UP(ferr, rate / 100000);
if (ferr > 5)
netdev_warn(dev, "unable to generate target frequency: %ld Hz\n",
rate);
if (clk_set_rate(clk, rate_rounded))
netdev_err(dev, "adjusting tx_clk failed.\n");
}
static void macb_validate(struct phylink_config *config,
unsigned long *supported,
struct phylink_link_state *state)
{
struct net_device *ndev = to_net_dev(config->dev);
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
struct macb *bp = netdev_priv(ndev);
/* We only support MII, RMII, GMII, RGMII & SGMII. */
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_RMII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
state->interface != PHY_INTERFACE_MODE_SGMII &&
!phy_interface_mode_is_rgmii(state->interface)) {
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
return;
}
if (!macb_is_gem(bp) &&
(state->interface == PHY_INTERFACE_MODE_GMII ||
phy_interface_mode_is_rgmii(state->interface))) {
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
return;
}
phylink_set_port_modes(mask);
phylink_set(mask, Autoneg);
phylink_set(mask, Asym_Pause);
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
if (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE &&
(state->interface == PHY_INTERFACE_MODE_NA ||
state->interface == PHY_INTERFACE_MODE_GMII ||
state->interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_rgmii(state->interface))) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
phylink_set(mask, 1000baseT_Half);
}
bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
bitmap_and(state->advertising, state->advertising, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
}
static void macb_mac_pcs_get_state(struct phylink_config *config,
struct phylink_link_state *state)
{
state->link = 0;
}
static void macb_mac_an_restart(struct phylink_config *config)
{
/* Not supported */
}
static void macb_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct net_device *ndev = to_net_dev(config->dev);
struct macb *bp = netdev_priv(ndev);
unsigned long flags;
u32 old_ctrl, ctrl;
spin_lock_irqsave(&bp->lock, flags);
old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
if (state->interface == PHY_INTERFACE_MODE_RMII)
ctrl |= MACB_BIT(RM9200_RMII);
} else {
ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
if (state->interface == PHY_INTERFACE_MODE_SGMII)
ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
}
/* Apply the new configuration, if any */
if (old_ctrl ^ ctrl)
macb_or_gem_writel(bp, NCFGR, ctrl);
spin_unlock_irqrestore(&bp->lock, flags);
}
static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct net_device *ndev = to_net_dev(config->dev);
struct macb *bp = netdev_priv(ndev);
struct macb_queue *queue;
unsigned int q;
u32 ctrl;
if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
queue_writel(queue, IDR,
bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
/* Disable Rx and Tx */
ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
macb_writel(bp, NCR, ctrl);
netif_tx_stop_all_queues(ndev);
}
static void macb_mac_link_up(struct phylink_config *config,
struct phy_device *phy,
unsigned int mode, phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct net_device *ndev = to_net_dev(config->dev);
struct macb *bp = netdev_priv(ndev);
struct macb_queue *queue;
unsigned long flags;
unsigned int q;
u32 ctrl;
spin_lock_irqsave(&bp->lock, flags);
ctrl = macb_or_gem_readl(bp, NCFGR);
ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
if (speed == SPEED_100)
ctrl |= MACB_BIT(SPD);
if (duplex)
ctrl |= MACB_BIT(FD);
if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
ctrl &= ~(GEM_BIT(GBE) | MACB_BIT(PAE));
if (speed == SPEED_1000)
ctrl |= GEM_BIT(GBE);
/* We do not support MLO_PAUSE_RX yet */
if (tx_pause)
ctrl |= MACB_BIT(PAE);
macb_set_tx_clk(bp->tx_clk, speed, ndev);
/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
* cleared the pipeline and control registers.
*/
bp->macbgem_ops.mog_init_rings(bp);
macb_init_buffers(bp);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
queue_writel(queue, IER,
bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
}
macb_or_gem_writel(bp, NCFGR, ctrl);
spin_unlock_irqrestore(&bp->lock, flags);
/* Enable Rx and Tx */
macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE));
netif_tx_wake_all_queues(ndev);
}
static const struct phylink_mac_ops macb_phylink_ops = {
.validate = macb_validate,
.mac_pcs_get_state = macb_mac_pcs_get_state,
.mac_an_restart = macb_mac_an_restart,
.mac_config = macb_mac_config,
.mac_link_down = macb_mac_link_down,
.mac_link_up = macb_mac_link_up,
};
static bool macb_phy_handle_exists(struct device_node *dn)
{
dn = of_parse_phandle(dn, "phy-handle", 0);
of_node_put(dn);
return dn != NULL;
}
static int macb_phylink_connect(struct macb *bp)
{
struct device_node *dn = bp->pdev->dev.of_node;
struct net_device *dev = bp->dev;
struct phy_device *phydev;
int ret;
if (dn)
ret = phylink_of_phy_connect(bp->phylink, dn, 0);
if (!dn || (ret && !macb_phy_handle_exists(dn))) {
phydev = phy_find_first(bp->mii_bus);
if (!phydev) {
netdev_err(dev, "no PHY found\n");
return -ENXIO;
}
/* attach the mac to the phy */
ret = phylink_connect_phy(bp->phylink, phydev);
}
if (ret) {
netdev_err(dev, "Could not attach PHY (%d)\n", ret);
return ret;
}
phylink_start(bp->phylink);
return 0;
}
/* based on au1000_eth. c*/
static int macb_mii_probe(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
bp->phylink_config.dev = &dev->dev;
bp->phylink_config.type = PHYLINK_NETDEV;
bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
bp->phy_interface, &macb_phylink_ops);
if (IS_ERR(bp->phylink)) {
netdev_err(dev, "Could not create a phylink instance (%ld)\n",
PTR_ERR(bp->phylink));
return PTR_ERR(bp->phylink);
}
return 0;
}
static int macb_mdiobus_register(struct macb *bp)
{
struct device_node *child, *np = bp->pdev->dev.of_node;
if (of_phy_is_fixed_link(np))
return mdiobus_register(bp->mii_bus);
/* Only create the PHY from the device tree if at least one PHY is
* described. Otherwise scan the entire MDIO bus. We do this to support
* old device tree that did not follow the best practices and did not
* describe their network PHYs.
*/
for_each_available_child_of_node(np, child)
if (of_mdiobus_child_is_phy(child)) {
/* The loop increments the child refcount,
* decrement it before returning.
*/
of_node_put(child);
return of_mdiobus_register(bp->mii_bus, np);
}
return mdiobus_register(bp->mii_bus);
}
static int macb_mii_init(struct macb *bp)
{
int err = -ENXIO;
/* Enable management port */
macb_writel(bp, NCR, MACB_BIT(MPE));
bp->mii_bus = mdiobus_alloc();
if (!bp->mii_bus) {
err = -ENOMEM;
goto err_out;
}
bp->mii_bus->name = "MACB_mii_bus";
bp->mii_bus->read = &macb_mdio_read;
bp->mii_bus->write = &macb_mdio_write;
snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
bp->pdev->name, bp->pdev->id);
bp->mii_bus->priv = bp;
bp->mii_bus->parent = &bp->pdev->dev;
dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
err = macb_mdiobus_register(bp);
if (err)
goto err_out_free_mdiobus;
err = macb_mii_probe(bp->dev);
if (err)
goto err_out_unregister_bus;
return 0;
err_out_unregister_bus:
mdiobus_unregister(bp->mii_bus);
err_out_free_mdiobus:
mdiobus_free(bp->mii_bus);
err_out:
return err;
}
static void macb_update_stats(struct macb *bp)
{
u32 *p = &bp->hw_stats.macb.rx_pause_frames;
u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
int offset = MACB_PFR;
WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
for (; p < end; p++, offset += 4)
*p += bp->macb_reg_readl(bp, offset);
}
static int macb_halt_tx(struct macb *bp)
{
unsigned long halt_time, timeout;
u32 status;
macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
do {
halt_time = jiffies;
status = macb_readl(bp, TSR);
if (!(status & MACB_BIT(TGO)))
return 0;
udelay(250);
} while (time_before(halt_time, timeout));
return -ETIMEDOUT;
}
static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb)
{
if (tx_skb->mapping) {
if (tx_skb->mapped_as_page)
dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
tx_skb->size, DMA_TO_DEVICE);
else
dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
tx_skb->size, DMA_TO_DEVICE);
tx_skb->mapping = 0;
}
if (tx_skb->skb) {
dev_kfree_skb_any(tx_skb->skb);
tx_skb->skb = NULL;
}
}
static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
{
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
struct macb_dma_desc_64 *desc_64;
if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
desc_64 = macb_64b_desc(bp, desc);
desc_64->addrh = upper_32_bits(addr);
/* The low bits of RX address contain the RX_USED bit, clearing
* of which allows packet RX. Make sure the high bits are also
* visible to HW at that point.
*/
dma_wmb();
}
#endif
desc->addr = lower_32_bits(addr);
}
static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
{
dma_addr_t addr = 0;
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
struct macb_dma_desc_64 *desc_64;
if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
desc_64 = macb_64b_desc(bp, desc);
addr = ((u64)(desc_64->addrh) << 32);
}
#endif
addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
return addr;
}
static void macb_tx_error_task(struct work_struct *work)
{
struct macb_queue *queue = container_of(work, struct macb_queue,
tx_error_task);
struct macb *bp = queue->bp;
struct macb_tx_skb *tx_skb;
struct macb_dma_desc *desc;
struct sk_buff *skb;
unsigned int tail;
unsigned long flags;
netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
(unsigned int)(queue - bp->queues),
queue->tx_tail, queue->tx_head);
/* Prevent the queue IRQ handlers from running: each of them may call
* macb_tx_interrupt(), which in turn may call netif_wake_subqueue().
* As explained below, we have to halt the transmission before updating
* TBQP registers so we call netif_tx_stop_all_queues() to notify the
* network engine about the macb/gem being halted.
*/
spin_lock_irqsave(&bp->lock, flags);
/* Make sure nobody is trying to queue up new packets */
netif_tx_stop_all_queues(bp->dev);
/* Stop transmission now
* (in case we have just queued new packets)
* macb/gem must be halted to write TBQP register
*/
if (macb_halt_tx(bp))
/* Just complain for now, reinitializing TX path can be good */
netdev_err(bp->dev, "BUG: halt tx timed out\n");
/* Treat frames in TX queue including the ones that caused the error.
* Free transmit buffers in upper layer.
*/
for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
u32 ctrl;
desc = macb_tx_desc(queue, tail);
ctrl = desc->ctrl;
tx_skb = macb_tx_skb(queue, tail);
skb = tx_skb->skb;
if (ctrl & MACB_BIT(TX_USED)) {
/* skb is set for the last buffer of the frame */
while (!skb) {
macb_tx_unmap(bp, tx_skb);
tail++;
tx_skb = macb_tx_skb(queue, tail);
skb = tx_skb->skb;
}
/* ctrl still refers to the first buffer descriptor
* since it's the only one written back by the hardware
*/
if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
macb_tx_ring_wrap(bp, tail),
skb->data);
bp->dev->stats.tx_packets++;
queue->stats.tx_packets++;
bp->dev->stats.tx_bytes += skb->len;
queue->stats.tx_bytes += skb->len;
}
} else {
/* "Buffers exhausted mid-frame" errors may only happen
* if the driver is buggy, so complain loudly about
* those. Statistics are updated by hardware.
*/
if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
netdev_err(bp->dev,
"BUG: TX buffers exhausted mid-frame\n");
desc->ctrl = ctrl | MACB_BIT(TX_USED);
}
macb_tx_unmap(bp, tx_skb);
}
/* Set end of TX queue */
desc = macb_tx_desc(queue, 0);
macb_set_addr(bp, desc, 0);
desc->ctrl = MACB_BIT(TX_USED);
/* Make descriptor updates visible to hardware */
wmb();
/* Reinitialize the TX desc queue */
queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (bp->hw_dma_cap & HW_DMA_CAP_64B)
queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
#endif
/* Make TX ring reflect state of hardware */
queue->tx_head = 0;
queue->tx_tail = 0;
/* Housework before enabling TX IRQ */
macb_writel(bp, TSR, macb_readl(bp, TSR));
queue_writel(queue, IER, MACB_TX_INT_FLAGS);
/* Now we are ready to start transmission again */
netif_tx_start_all_queues(bp->dev);
macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
spin_unlock_irqrestore(&bp->lock, flags);
}
static void macb_tx_interrupt(struct macb_queue *queue)
{
unsigned int tail;
unsigned int head;
u32 status;
struct macb *bp = queue->bp;
u16 queue_index = queue - bp->queues;
status = macb_readl(bp, TSR);
macb_writel(bp, TSR, status);
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(TCOMP));
netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n",
(unsigned long)status);
head = queue->tx_head;
for (tail = queue->tx_tail; tail != head; tail++) {
struct macb_tx_skb *tx_skb;
struct sk_buff *skb;
struct macb_dma_desc *desc;
u32 ctrl;
desc = macb_tx_desc(queue, tail);
/* Make hw descriptor updates visible to CPU */
rmb();
ctrl = desc->ctrl;
/* TX_USED bit is only set by hardware on the very first buffer
* descriptor of the transmitted frame.
*/
if (!(ctrl & MACB_BIT(TX_USED)))
break;
/* Process all buffers of the current transmitted frame */
for (;; tail++) {
tx_skb = macb_tx_skb(queue, tail);
skb = tx_skb->skb;
/* First, update TX stats if needed */
if (skb) {
if (unlikely(skb_shinfo(skb)->tx_flags &
SKBTX_HW_TSTAMP) &&
gem_ptp_do_txstamp(queue, skb, desc) == 0) {
/* skb now belongs to timestamp buffer
* and will be removed later
*/
tx_skb->skb = NULL;
}
netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
macb_tx_ring_wrap(bp, tail),
skb->data);
bp->dev->stats.tx_packets++;
queue->stats.tx_packets++;
bp->dev->stats.tx_bytes += skb->len;
queue->stats.tx_bytes += skb->len;
}
/* Now we can safely release resources */
macb_tx_unmap(bp, tx_skb);
/* skb is set only for the last buffer of the frame.
* WARNING: at this point skb has been freed by
* macb_tx_unmap().
*/
if (skb)
break;
}
}
queue->tx_tail = tail;
if (__netif_subqueue_stopped(bp->dev, queue_index) &&
CIRC_CNT(queue->tx_head, queue->tx_tail,
bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
netif_wake_subqueue(bp->dev, queue_index);
}
static void gem_rx_refill(struct macb_queue *queue)
{
unsigned int entry;
struct sk_buff *skb;
dma_addr_t paddr;
struct macb *bp = queue->bp;
struct macb_dma_desc *desc;
while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
bp->rx_ring_size) > 0) {
entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
/* Make hw descriptor updates visible to CPU */
rmb();
queue->rx_prepared_head++;
desc = macb_rx_desc(queue, entry);
if (!queue->rx_skbuff[entry]) {
/* allocate sk_buff for this free entry in ring */
skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
if (unlikely(!skb)) {
netdev_err(bp->dev,
"Unable to allocate sk_buff\n");
break;
}
/* now fill corresponding descriptor entry */
paddr = dma_map_single(&bp->pdev->dev, skb->data,
bp->rx_buffer_size,
DMA_FROM_DEVICE);
if (dma_mapping_error(&bp->pdev->dev, paddr)) {
dev_kfree_skb(skb);
break;
}
queue->rx_skbuff[entry] = skb;
if (entry == bp->rx_ring_size - 1)
paddr |= MACB_BIT(RX_WRAP);
desc->ctrl = 0;
/* Setting addr clears RX_USED and allows reception,
* make sure ctrl is cleared first to avoid a race.
*/
dma_wmb();
macb_set_addr(bp, desc, paddr);
/* properly align Ethernet header */
skb_reserve(skb, NET_IP_ALIGN);
} else {
desc->ctrl = 0;
dma_wmb();
desc->addr &= ~MACB_BIT(RX_USED);
}
}
/* Make descriptor updates visible to hardware */
wmb();
netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
queue, queue->rx_prepared_head, queue->rx_tail);
}
/* Mark DMA descriptors from begin up to and not including end as unused */
static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
unsigned int end)
{
unsigned int frag;
for (frag = begin; frag != end; frag++) {
struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
desc->addr &= ~MACB_BIT(RX_USED);
}
/* Make descriptor updates visible to hardware */
wmb();
/* When this happens, the hardware stats registers for
* whatever caused this is updated, so we don't have to record
* anything.
*/
}
static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
int budget)
{
struct macb *bp = queue->bp;
unsigned int len;
unsigned int entry;
struct sk_buff *skb;
struct macb_dma_desc *desc;
int count = 0;
while (count < budget) {
u32 ctrl;
dma_addr_t addr;
bool rxused;
entry = macb_rx_ring_wrap(bp, queue->rx_tail);
desc = macb_rx_desc(queue, entry);
/* Make hw descriptor updates visible to CPU */
rmb();
rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
addr = macb_get_addr(bp, desc);
if (!rxused)
break;
/* Ensure ctrl is at least as up-to-date as rxused */
dma_rmb();
ctrl = desc->ctrl;
queue->rx_tail++;
count++;
if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
netdev_err(bp->dev,
"not whole frame pointed by descriptor\n");
bp->dev->stats.rx_dropped++;
queue->stats.rx_dropped++;
break;
}
skb = queue->rx_skbuff[entry];
if (unlikely(!skb)) {
netdev_err(bp->dev,
"inconsistent Rx descriptor chain\n");
bp->dev->stats.rx_dropped++;
queue->stats.rx_dropped++;
break;
}
/* now everything is ready for receiving packet */
queue->rx_skbuff[entry] = NULL;
len = ctrl & bp->rx_frm_len_mask;
netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
skb_put(skb, len);
dma_unmap_single(&bp->pdev->dev, addr,
bp->rx_buffer_size, DMA_FROM_DEVICE);
skb->protocol = eth_type_trans(skb, bp->dev);
skb_checksum_none_assert(skb);
if (bp->dev->features & NETIF_F_RXCSUM &&
!(bp->dev->flags & IFF_PROMISC) &&
GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
skb->ip_summed = CHECKSUM_UNNECESSARY;
bp->dev->stats.rx_packets++;
queue->stats.rx_packets++;
bp->dev->stats.rx_bytes += skb->len;
queue->stats.rx_bytes += skb->len;
gem_ptp_do_rxstamp(bp, skb, desc);
#if defined(DEBUG) && defined(VERBOSE_DEBUG)
netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
skb->len, skb->csum);
print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
skb_mac_header(skb), 16, true);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
skb->data, 32, true);
#endif
napi_gro_receive(napi, skb);
}
gem_rx_refill(queue);
return count;
}
static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
unsigned int first_frag, unsigned int last_frag)
{
unsigned int len;
unsigned int frag;
unsigned int offset;
struct sk_buff *skb;
struct macb_dma_desc *desc;
struct macb *bp = queue->bp;
desc = macb_rx_desc(queue, last_frag);
len = desc->ctrl & bp->rx_frm_len_mask;
netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
macb_rx_ring_wrap(bp, first_frag),
macb_rx_ring_wrap(bp, last_frag), len);
/* The ethernet header starts NET_IP_ALIGN bytes into the
* first buffer. Since the header is 14 bytes, this makes the
* payload word-aligned.
*
* Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
* the two padding bytes into the skb so that we avoid hitting
* the slowpath in memcpy(), and pull them off afterwards.
*/
skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
if (!skb) {
bp->dev->stats.rx_dropped++;
for (frag = first_frag; ; frag++) {
desc = macb_rx_desc(queue, frag);
desc->addr &= ~MACB_BIT(RX_USED);
if (frag == last_frag)
break;
}
/* Make descriptor updates visible to hardware */
wmb();
return 1;
}
offset = 0;
len += NET_IP_ALIGN;
skb_checksum_none_assert(skb);
skb_put(skb, len);
for (frag = first_frag; ; frag++) {
unsigned int frag_len = bp->rx_buffer_size;
if (offset + frag_len > len) {
if (unlikely(frag != last_frag)) {
dev_kfree_skb_any(skb);
return -1;
}
frag_len = len - offset;
}
skb_copy_to_linear_data_offset(skb, offset,
macb_rx_buffer(queue, frag),
frag_len);
offset += bp->rx_buffer_size;
desc = macb_rx_desc(queue, frag);
desc->addr &= ~MACB_BIT(RX_USED);
if (frag == last_frag)
break;
}
/* Make descriptor updates visible to hardware */
wmb();
__skb_pull(skb, NET_IP_ALIGN);
skb->protocol = eth_type_trans(skb, bp->dev);
bp->dev->stats.rx_packets++;
bp->dev->stats.rx_bytes += skb->len;
netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
skb->len, skb->csum);
napi_gro_receive(napi, skb);
return 0;
}
static inline void macb_init_rx_ring(struct macb_queue *queue)
{
struct macb *bp = queue->bp;
dma_addr_t addr;
struct macb_dma_desc *desc = NULL;
int i;
addr = queue->rx_buffers_dma;
for (i = 0; i < bp->rx_ring_size; i++) {
desc = macb_rx_desc(queue, i);
macb_set_addr(bp, desc, addr);
desc->ctrl = 0;
addr += bp->rx_buffer_size;
}
desc->addr |= MACB_BIT(RX_WRAP);
queue->rx_tail = 0;
}
static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
int budget)
{
struct macb *bp = queue->bp;
bool reset_rx_queue = false;
int received = 0;
unsigned int tail;
int first_frag = -1;
for (tail = queue->rx_tail; budget > 0; tail++) {
struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
u32 ctrl;
/* Make hw descriptor updates visible to CPU */
rmb();
if (!(desc->addr & MACB_BIT(RX_USED)))
break;
/* Ensure ctrl is at least as up-to-date as addr */
dma_rmb();
ctrl = desc->ctrl;
if (ctrl & MACB_BIT(RX_SOF)) {
if (first_frag != -1)
discard_partial_frame(queue, first_frag, tail);
first_frag = tail;
}
if (ctrl & MACB_BIT(RX_EOF)) {
int dropped;
if (unlikely(first_frag == -1)) {
reset_rx_queue = true;
continue;
}
dropped = macb_rx_frame(queue, napi, first_frag, tail);
first_frag = -1;
if (unlikely(dropped < 0)) {
reset_rx_queue = true;
continue;
}
if (!dropped) {
received++;
budget--;
}
}
}
if (unlikely(reset_rx_queue)) {
unsigned long flags;
u32 ctrl;
netdev_err(bp->dev, "RX queue corruption: reset it\n");
spin_lock_irqsave(&bp->lock, flags);
ctrl = macb_readl(bp, NCR);
macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
macb_init_rx_ring(queue);
queue_writel(queue, RBQP, queue->rx_ring_dma);
macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
spin_unlock_irqrestore(&bp->lock, flags);
return received;
}
if (first_frag != -1)
queue->rx_tail = first_frag;
else
queue->rx_tail = tail;
return received;
}
static int macb_poll(struct napi_struct *napi, int budget)
{
struct macb_queue *queue = container_of(napi, struct macb_queue, napi);
struct macb *bp = queue->bp;
int work_done;
u32 status;
status = macb_readl(bp, RSR);
macb_writel(bp, RSR, status);
netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n",
(unsigned long)status, budget);
work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
/* Packets received while interrupts were disabled */
status = macb_readl(bp, RSR);
if (status) {
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(RCOMP));
napi_reschedule(napi);
} else {
queue_writel(queue, IER, bp->rx_intr_mask);
}
}
/* TODO: Handle errors */
return work_done;
}
static void macb_hresp_error_task(unsigned long data)
{
struct macb *bp = (struct macb *)data;
struct net_device *dev = bp->dev;
struct macb_queue *queue = bp->queues;
unsigned int q;
u32 ctrl;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
queue_writel(queue, IDR, bp->rx_intr_mask |
MACB_TX_INT_FLAGS |
MACB_BIT(HRESP));
}
ctrl = macb_readl(bp, NCR);
ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
macb_writel(bp, NCR, ctrl);
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
bp->macbgem_ops.mog_init_rings(bp);
/* Initialize TX and RX buffers */
macb_init_buffers(bp);
/* Enable interrupts */
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
queue_writel(queue, IER,
bp->rx_intr_mask |
MACB_TX_INT_FLAGS |
MACB_BIT(HRESP));
ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
macb_writel(bp, NCR, ctrl);
netif_carrier_on(dev);
netif_tx_start_all_queues(dev);
}
static void macb_tx_restart(struct macb_queue *queue)
{
unsigned int head = queue->tx_head;
unsigned int tail = queue->tx_tail;
struct macb *bp = queue->bp;
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(TXUBR));
if (head == tail)
return;
macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
}
static irqreturn_t macb_interrupt(int irq, void *dev_id)
{
struct macb_queue *queue = dev_id;
struct macb *bp = queue->bp;
struct net_device *dev = bp->dev;
u32 status, ctrl;
status = queue_readl(queue, ISR);
if (unlikely(!status))
return IRQ_NONE;
spin_lock(&bp->lock);
while (status) {
/* close possible race with dev_close */
if (unlikely(!netif_running(dev))) {
queue_writel(queue, IDR, -1);
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, -1);
break;
}
netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
(unsigned int)(queue - bp->queues),
(unsigned long)status);
if (status & bp->rx_intr_mask) {
/* There's no point taking any more interrupts
* until we have processed the buffers. The
* scheduling call may fail if the poll routine
* is already scheduled, so disable interrupts
* now.
*/
queue_writel(queue, IDR, bp->rx_intr_mask);
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(RCOMP));
if (napi_schedule_prep(&queue->napi)) {
netdev_vdbg(bp->dev, "scheduling RX softirq\n");
__napi_schedule(&queue->napi);
}
}
if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
schedule_work(&queue->tx_error_task);
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
break;
}
if (status & MACB_BIT(TCOMP))
macb_tx_interrupt(queue);
if (status & MACB_BIT(TXUBR))
macb_tx_restart(queue);
/* Link change detection isn't possible with RMII, so we'll
* add that if/when we get our hands on a full-blown MII PHY.
*/
/* There is a hardware issue under heavy load where DMA can
* stop, this causes endless "used buffer descriptor read"
* interrupts but it can be cleared by re-enabling RX. See
* the at91rm9200 manual, section 41.3.1 or the Zynq manual
* section 16.7.4 for details. RXUBR is only enabled for
* these two versions.
*/
if (status & MACB_BIT(RXUBR)) {
ctrl = macb_readl(bp, NCR);
macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
wmb();
macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(RXUBR));
}
if (status & MACB_BIT(ISR_ROVR)) {
/* We missed at least one packet */
if (macb_is_gem(bp))
bp->hw_stats.gem.rx_overruns++;
else
bp->hw_stats.macb.rx_overruns++;
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
}
if (status & MACB_BIT(HRESP)) {
tasklet_schedule(&bp->hresp_err_tasklet);
netdev_err(dev, "DMA bus error: HRESP not OK\n");
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, MACB_BIT(HRESP));
}
status = queue_readl(queue, ISR);
}
spin_unlock(&bp->lock);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by netconsole and other diagnostic tools
* to allow network i/o with interrupts disabled.
*/
static void macb_poll_controller(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
struct macb_queue *queue;
unsigned long flags;
unsigned int q;
local_irq_save(flags);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
macb_interrupt(dev->irq, queue);
local_irq_restore(flags);
}
#endif
static unsigned int macb_tx_map(struct macb *bp,
struct macb_queue *queue,
struct sk_buff *skb,
unsigned int hdrlen)
{
dma_addr_t mapping;
unsigned int len, entry, i, tx_head = queue->tx_head;
struct macb_tx_skb *tx_skb = NULL;
struct macb_dma_desc *desc;
unsigned int offset, size, count = 0;
unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
unsigned int eof = 1, mss_mfs = 0;
u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
/* LSO */
if (skb_shinfo(skb)->gso_size != 0) {
if (ip_hdr(skb)->protocol == IPPROTO_UDP)
/* UDP - UFO */
lso_ctrl = MACB_LSO_UFO_ENABLE;
else
/* TCP - TSO */
lso_ctrl = MACB_LSO_TSO_ENABLE;
}
/* First, map non-paged data */
len = skb_headlen(skb);
/* first buffer length */
size = hdrlen;
offset = 0;
while (len) {
entry = macb_tx_ring_wrap(bp, tx_head);
tx_skb = &queue->tx_skb[entry];
mapping = dma_map_single(&bp->pdev->dev,
skb->data + offset,
size, DMA_TO_DEVICE);
if (dma_mapping_error(&bp->pdev->dev, mapping))
goto dma_error;
/* Save info to properly release resources */
tx_skb->skb = NULL;
tx_skb->mapping = mapping;
tx_skb->size = size;
tx_skb->mapped_as_page = false;
len -= size;
offset += size;
count++;
tx_head++;
size = min(len, bp->max_tx_length);
}
/* Then, map paged data from fragments */
for (f = 0; f < nr_frags; f++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
offset = 0;
while (len) {
size = min(len, bp->max_tx_length);
entry = macb_tx_ring_wrap(bp, tx_head);
tx_skb = &queue->tx_skb[entry];
mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
offset, size, DMA_TO_DEVICE);
if (dma_mapping_error(&bp->pdev->dev, mapping))
goto dma_error;
/* Save info to properly release resources */
tx_skb->skb = NULL;
tx_skb->mapping = mapping;
tx_skb->size = size;
tx_skb->mapped_as_page = true;
len -= size;
offset += size;
count++;
tx_head++;
}
}
/* Should never happen */
if (unlikely(!tx_skb)) {
netdev_err(bp->dev, "BUG! empty skb!\n");
return 0;
}
/* This is the last buffer of the frame: save socket buffer */
tx_skb->skb = skb;
/* Update TX ring: update buffer descriptors in reverse order
* to avoid race condition
*/
/* Set 'TX_USED' bit in buffer descriptor at tx_head position
* to set the end of TX queue
*/
i = tx_head;
entry = macb_tx_ring_wrap(bp, i);
ctrl = MACB_BIT(TX_USED);
desc = macb_tx_desc(queue, entry);
desc->ctrl = ctrl;
if (lso_ctrl) {
if (lso_ctrl == MACB_LSO_UFO_ENABLE)
/* include header and FCS in value given to h/w */
mss_mfs = skb_shinfo(skb)->gso_size +
skb_transport_offset(skb) +
ETH_FCS_LEN;
else /* TSO */ {
mss_mfs = skb_shinfo(skb)->gso_size;
/* TCP Sequence Number Source Select
* can be set only for TSO
*/
seq_ctrl = 0;
}
}
do {
i--;
entry = macb_tx_ring_wrap(bp, i);
tx_skb = &queue->tx_skb[entry];
desc = macb_tx_desc(queue, entry);
ctrl = (u32)tx_skb->size;
if (eof) {
ctrl |= MACB_BIT(TX_LAST);
eof = 0;
}
if (unlikely(entry == (bp->tx_ring_size - 1)))
ctrl |= MACB_BIT(TX_WRAP);
/* First descriptor is header descriptor */
if (i == queue->tx_head) {
ctrl |= MACB_BF(TX_LSO, lso_ctrl);
ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
if ((bp->dev->features & NETIF_F_HW_CSUM) &&
skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl)
ctrl |= MACB_BIT(TX_NOCRC);
} else
/* Only set MSS/MFS on payload descriptors
* (second or later descriptor)
*/
ctrl |= MACB_BF(MSS_MFS, mss_mfs);
/* Set TX buffer descriptor */
macb_set_addr(bp, desc, tx_skb->mapping);
/* desc->addr must be visible to hardware before clearing
* 'TX_USED' bit in desc->ctrl.
*/
wmb();
desc->ctrl = ctrl;
} while (i != queue->tx_head);
queue->tx_head = tx_head;
return count;
dma_error:
netdev_err(bp->dev, "TX DMA map failed\n");
for (i = queue->tx_head; i != tx_head; i++) {
tx_skb = macb_tx_skb(queue, i);
macb_tx_unmap(bp, tx_skb);
}
return 0;
}
static netdev_features_t macb_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
unsigned int nr_frags, f;
unsigned int hdrlen;
/* Validate LSO compatibility */
/* there is only one buffer or protocol is not UDP */
if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
return features;
/* length of header */
hdrlen = skb_transport_offset(skb);
/* For UFO only:
* When software supplies two or more payload buffers all payload buffers
* apart from the last must be a multiple of 8 bytes in size.
*/
if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
return features & ~MACB_NETIF_LSO;
nr_frags = skb_shinfo(skb)->nr_frags;
/* No need to check last fragment */
nr_frags--;
for (f = 0; f < nr_frags; f++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
return features & ~MACB_NETIF_LSO;
}
return features;
}
static inline int macb_clear_csum(struct sk_buff *skb)
{
/* no change for packets without checksum offloading */
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
/* make sure we can modify the header */
if (unlikely(skb_cow_head(skb, 0)))
return -1;
/* initialize checksum field
* This is required - at least for Zynq, which otherwise calculates
* wrong UDP header checksums for UDP packets with UDP data len <=2
*/
*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
return 0;
}
static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
{
bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb);
int padlen = ETH_ZLEN - (*skb)->len;
int headroom = skb_headroom(*skb);
int tailroom = skb_tailroom(*skb);
struct sk_buff *nskb;
u32 fcs;
if (!(ndev->features & NETIF_F_HW_CSUM) ||
!((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
skb_shinfo(*skb)->gso_size) /* Not available for GSO */
return 0;
if (padlen <= 0) {
/* FCS could be appeded to tailroom. */
if (tailroom >= ETH_FCS_LEN)
goto add_fcs;
/* FCS could be appeded by moving data to headroom. */
else if (!cloned && headroom + tailroom >= ETH_FCS_LEN)
padlen = 0;
/* No room for FCS, need to reallocate skb. */
else
padlen = ETH_FCS_LEN;
} else {
/* Add room for FCS. */
padlen += ETH_FCS_LEN;
}
if (!cloned && headroom + tailroom >= padlen) {
(*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len);
skb_set_tail_pointer(*skb, (*skb)->len);
} else {
nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
if (!nskb)
return -ENOMEM;
dev_consume_skb_any(*skb);
*skb = nskb;
}
if (padlen > ETH_FCS_LEN)
skb_put_zero(*skb, padlen - ETH_FCS_LEN);
add_fcs:
/* set FCS to packet */
fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
fcs = ~fcs;
skb_put_u8(*skb, fcs & 0xff);
skb_put_u8(*skb, (fcs >> 8) & 0xff);
skb_put_u8(*skb, (fcs >> 16) & 0xff);
skb_put_u8(*skb, (fcs >> 24) & 0xff);
return 0;
}
static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
u16 queue_index = skb_get_queue_mapping(skb);
struct macb *bp = netdev_priv(dev);
struct macb_queue *queue = &bp->queues[queue_index];
unsigned long flags;
unsigned int desc_cnt, nr_frags, frag_size, f;
unsigned int hdrlen;
bool is_lso, is_udp = 0;
netdev_tx_t ret = NETDEV_TX_OK;
if (macb_clear_csum(skb)) {
dev_kfree_skb_any(skb);
return ret;
}
if (macb_pad_and_fcs(&skb, dev)) {
dev_kfree_skb_any(skb);
return ret;
}
is_lso = (skb_shinfo(skb)->gso_size != 0);
if (is_lso) {
is_udp = !!(ip_hdr(skb)->protocol == IPPROTO_UDP);
/* length of headers */
if (is_udp)
/* only queue eth + ip headers separately for UDP */
hdrlen = skb_transport_offset(skb);
else
hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (skb_headlen(skb) < hdrlen) {
netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
/* if this is required, would need to copy to single buffer */
return NETDEV_TX_BUSY;
}
} else
hdrlen = min(skb_headlen(skb), bp->max_tx_length);
#if defined(DEBUG) && defined(VERBOSE_DEBUG)
netdev_vdbg(bp->dev,
"start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
queue_index, skb->len, skb->head, skb->data,
skb_tail_pointer(skb), skb_end_pointer(skb));
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, 16, true);
#endif
/* Count how many TX buffer descriptors are needed to send this
* socket buffer: skb fragments of jumbo frames may need to be
* split into many buffer descriptors.
*/
if (is_lso && (skb_headlen(skb) > hdrlen))
/* extra header descriptor if also payload in first buffer */
desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
else
desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++) {
frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
}
spin_lock_irqsave(&bp->lock, flags);
/* This is a hard error, log it. */
if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
bp->tx_ring_size) < desc_cnt) {
netif_stop_subqueue(dev, queue_index);
spin_unlock_irqrestore(&bp->lock, flags);
netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
queue->tx_head, queue->tx_tail);
return NETDEV_TX_BUSY;
}
/* Map socket buffer for DMA transfer */
if (!macb_tx_map(bp, queue, skb, hdrlen)) {
dev_kfree_skb_any(skb);
goto unlock;
}
/* Make newly initialized descriptor visible to hardware */
wmb();
skb_tx_timestamp(skb);
macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
netif_stop_subqueue(dev, queue_index);
unlock:
spin_unlock_irqrestore(&bp->lock, flags);
return ret;
}
static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
{
if (!macb_is_gem(bp)) {
bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
} else {
bp->rx_buffer_size = size;
if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
netdev_dbg(bp->dev,
"RX buffer must be multiple of %d bytes, expanding\n",
RX_BUFFER_MULTIPLE);
bp->rx_buffer_size =
roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
}
}
netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
bp->dev->mtu, bp->rx_buffer_size);
}
static void gem_free_rx_buffers(struct macb *bp)
{
struct sk_buff *skb;
struct macb_dma_desc *desc;
struct macb_queue *queue;
dma_addr_t addr;
unsigned int q;
int i;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
if (!queue->rx_skbuff)
continue;
for (i = 0; i < bp->rx_ring_size; i++) {
skb = queue->rx_skbuff[i];
if (!skb)
continue;
desc = macb_rx_desc(queue, i);
addr = macb_get_addr(bp, desc);
dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
skb = NULL;
}
kfree(queue->rx_skbuff);
queue->rx_skbuff = NULL;
}
}
static void macb_free_rx_buffers(struct macb *bp)
{
struct macb_queue *queue = &bp->queues[0];
if (queue->rx_buffers) {
dma_free_coherent(&bp->pdev->dev,
bp->rx_ring_size * bp->rx_buffer_size,
queue->rx_buffers, queue->rx_buffers_dma);
queue->rx_buffers = NULL;
}
}
static void macb_free_consistent(struct macb *bp)
{
struct macb_queue *queue;
unsigned int q;
int size;
bp->macbgem_ops.mog_free_rx_buffers(bp);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
kfree(queue->tx_skb);
queue->tx_skb = NULL;
if (queue->tx_ring) {
size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
dma_free_coherent(&bp->pdev->dev, size,
queue->tx_ring, queue->tx_ring_dma);
queue->tx_ring = NULL;
}
if (queue->rx_ring) {
size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
dma_free_coherent(&bp->pdev->dev, size,
queue->rx_ring, queue->rx_ring_dma);
queue->rx_ring = NULL;
}
}
}
static int gem_alloc_rx_buffers(struct macb *bp)
{
struct macb_queue *queue;
unsigned int q;
int size;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
size = bp->rx_ring_size * sizeof(struct sk_buff *);
queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
if (!queue->rx_skbuff)
return -ENOMEM;
else
netdev_dbg(bp->dev,
"Allocated %d RX struct sk_buff entries at %p\n",
bp->rx_ring_size, queue->rx_skbuff);
}
return 0;
}
static int macb_alloc_rx_buffers(struct macb *bp)
{
struct macb_queue *queue = &bp->queues[0];
int size;
size = bp->rx_ring_size * bp->rx_buffer_size;
queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
&queue->rx_buffers_dma, GFP_KERNEL);
if (!queue->rx_buffers)
return -ENOMEM;
netdev_dbg(bp->dev,
"Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
return 0;
}
static int macb_alloc_consistent(struct macb *bp)
{
struct macb_queue *queue;
unsigned int q;
int size;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
&queue->tx_ring_dma,
GFP_KERNEL);
if (!queue->tx_ring)
goto out_err;
netdev_dbg(bp->dev,
"Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
q, size, (unsigned long)queue->tx_ring_dma,
queue->tx_ring);
size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
queue->tx_skb = kmalloc(size, GFP_KERNEL);
if (!queue->tx_skb)
goto out_err;
size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
&queue->rx_ring_dma, GFP_KERNEL);
if (!queue->rx_ring)
goto out_err;
netdev_dbg(bp->dev,
"Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
}
if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
goto out_err;
return 0;
out_err:
macb_free_consistent(bp);
return -ENOMEM;
}
static void gem_init_rings(struct macb *bp)
{
struct macb_queue *queue;
struct macb_dma_desc *desc = NULL;
unsigned int q;
int i;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
for (i = 0; i < bp->tx_ring_size; i++) {
desc = macb_tx_desc(queue, i);
macb_set_addr(bp, desc, 0);
desc->ctrl = MACB_BIT(TX_USED);
}
desc->ctrl |= MACB_BIT(TX_WRAP);
queue->tx_head = 0;
queue->tx_tail = 0;
queue->rx_tail = 0;
queue->rx_prepared_head = 0;
gem_rx_refill(queue);
}
}
static void macb_init_rings(struct macb *bp)
{
int i;
struct macb_dma_desc *desc = NULL;
macb_init_rx_ring(&bp->queues[0]);
for (i = 0; i < bp->tx_ring_size; i++) {
desc = macb_tx_desc(&bp->queues[0], i);
macb_set_addr(bp, desc, 0);
desc->ctrl = MACB_BIT(TX_USED);
}
bp->queues[0].tx_head = 0;
bp->queues[0].tx_tail = 0;
desc->ctrl |= MACB_BIT(TX_WRAP);
}
static void macb_reset_hw(struct macb *bp)
{
struct macb_queue *queue;
unsigned int q;
u32 ctrl = macb_readl(bp, NCR);
/* Disable RX and TX (XXX: Should we halt the transmission
* more gracefully?)
*/
ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
/* Clear the stats registers (XXX: Update stats first?) */
ctrl |= MACB_BIT(CLRSTAT);
macb_writel(bp, NCR, ctrl);
/* Clear all status flags */
macb_writel(bp, TSR, -1);
macb_writel(bp, RSR, -1);
/* Disable all interrupts */
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
queue_writel(queue, IDR, -1);
queue_readl(queue, ISR);
if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
queue_writel(queue, ISR, -1);
}
}
static u32 gem_mdc_clk_div(struct macb *bp)
{
u32 config;
unsigned long pclk_hz = clk_get_rate(bp->pclk);
if (pclk_hz <= 20000000)
config = GEM_BF(CLK, GEM_CLK_DIV8);
else if (pclk_hz <= 40000000)
config = GEM_BF(CLK, GEM_CLK_DIV16);
else if (pclk_hz <= 80000000)
config = GEM_BF(CLK, GEM_CLK_DIV32);
else if (pclk_hz <= 120000000)
config = GEM_BF(CLK, GEM_CLK_DIV48);
else if (pclk_hz <= 160000000)
config = GEM_BF(CLK, GEM_CLK_DIV64);
else
config = GEM_BF(CLK, GEM_CLK_DIV96);
return config;
}
static u32 macb_mdc_clk_div(struct macb *bp)
{
u32 config;
unsigned long pclk_hz;
if (macb_is_gem(bp))
return gem_mdc_clk_div(bp);
pclk_hz = clk_get_rate(bp->pclk);
if (pclk_hz <= 20000000)
config = MACB_BF(CLK, MACB_CLK_DIV8);
else if (pclk_hz <= 40000000)
config = MACB_BF(CLK, MACB_CLK_DIV16);
else if (pclk_hz <= 80000000)
config = MACB_BF(CLK, MACB_CLK_DIV32);
else
config = MACB_BF(CLK, MACB_CLK_DIV64);
return config;
}
/* Get the DMA bus width field of the network configuration register that we
* should program. We find the width from decoding the design configuration
* register to find the maximum supported data bus width.
*/
static u32 macb_dbw(struct macb *bp)
{
if (!macb_is_gem(bp))
return 0;
switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
case 4:
return GEM_BF(DBW, GEM_DBW128);
case 2:
return GEM_BF(DBW, GEM_DBW64);
case 1:
default:
return GEM_BF(DBW, GEM_DBW32);
}
}
/* Configure the receive DMA engine
* - use the correct receive buffer size
* - set best burst length for DMA operations
* (if not supported by FIFO, it will fallback to default)
* - set both rx/tx packet buffers to full memory size
* These are configurable parameters for GEM.
*/
static void macb_configure_dma(struct macb *bp)
{
struct macb_queue *queue;
u32 buffer_size;
unsigned int q;
u32 dmacfg;
buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
if (macb_is_gem(bp)) {
dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
if (q)
queue_writel(queue, RBQS, buffer_size);
else
dmacfg |= GEM_BF(RXBS, buffer_size);
}
if (bp->dma_burst_length)
dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
dmacfg &= ~GEM_BIT(ENDIA_PKT);
if (bp->native_io)
dmacfg &= ~GEM_BIT(ENDIA_DESC);
else
dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
if (bp->dev->features & NETIF_F_HW_CSUM)
dmacfg |= GEM_BIT(TXCOEN);
else
dmacfg &= ~GEM_BIT(TXCOEN);
dmacfg &= ~GEM_BIT(ADDR64);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (bp->hw_dma_cap & HW_DMA_CAP_64B)
dmacfg |= GEM_BIT(ADDR64);
#endif
#ifdef CONFIG_MACB_USE_HWSTAMP
if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
#endif
netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
dmacfg);
gem_writel(bp, DMACFG, dmacfg);
}
}
static void macb_init_hw(struct macb *bp)
{
u32 config;
macb_reset_hw(bp);
macb_set_hwaddr(bp);
config = macb_mdc_clk_div(bp);
config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */
config |= MACB_BIT(DRFCS); /* Discard Rx FCS */
if (bp->caps & MACB_CAPS_JUMBO)
config |= MACB_BIT(JFRAME); /* Enable jumbo frames */
else
config |= MACB_BIT(BIG); /* Receive oversized frames */
if (bp->dev->flags & IFF_PROMISC)
config |= MACB_BIT(CAF); /* Copy All Frames */
else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
config |= GEM_BIT(RXCOEN);
if (!(bp->dev->flags & IFF_BROADCAST))
config |= MACB_BIT(NBC); /* No BroadCast */
config |= macb_dbw(bp);
macb_writel(bp, NCFGR, config);
if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
gem_writel(bp, JML, bp->jumbo_max_len);
bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
if (bp->caps & MACB_CAPS_JUMBO)
bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
macb_configure_dma(bp);
}
/* The hash address register is 64 bits long and takes up two
* locations in the memory map. The least significant bits are stored
* in EMAC_HSL and the most significant bits in EMAC_HSH.
*
* The unicast hash enable and the multicast hash enable bits in the
* network configuration register enable the reception of hash matched
* frames. The destination address is reduced to a 6 bit index into
* the 64 bit hash register using the following hash function. The
* hash function is an exclusive or of every sixth bit of the
* destination address.
*
* hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
* hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
* hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
* hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
* hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
* hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
*
* da[0] represents the least significant bit of the first byte
* received, that is, the multicast/unicast indicator, and da[47]
* represents the most significant bit of the last byte received. If
* the hash index, hi[n], points to a bit that is set in the hash
* register then the frame will be matched according to whether the
* frame is multicast or unicast. A multicast match will be signalled
* if the multicast hash enable bit is set, da[0] is 1 and the hash
* index points to a bit set in the hash register. A unicast match
* will be signalled if the unicast hash enable bit is set, da[0] is 0
* and the hash index points to a bit set in the hash register. To
* receive all multicast frames, the hash register should be set with
* all ones and the multicast hash enable bit should be set in the
* network configuration register.
*/
static inline int hash_bit_value(int bitnr, __u8 *addr)
{
if (addr[bitnr / 8] & (1 << (bitnr % 8)))
return 1;
return 0;
}
/* Return the hash index value for the specified address. */
static int hash_get_index(__u8 *addr)
{
int i, j, bitval;
int hash_index = 0;
for (j = 0; j < 6; j++) {
for (i = 0, bitval = 0; i < 8; i++)
bitval ^= hash_bit_value(i * 6 + j, addr);
hash_index |= (bitval << j);
}
return hash_index;
}
/* Add multicast addresses to the internal multicast-hash table. */
static void macb_sethashtable(struct net_device *dev)
{
struct netdev_hw_addr *ha;
unsigned long mc_filter[2];
unsigned int bitnr;
struct macb *bp = netdev_priv(dev);
mc_filter[0] = 0;
mc_filter[1] = 0;
netdev_for_each_mc_addr(ha, dev) {
bitnr = hash_get_index(ha->addr);
mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
}
macb_or_gem_writel(bp, HRB, mc_filter[0]);
macb_or_gem_writel(bp, HRT, mc_filter[1]);
}
/* Enable/Disable promiscuous and multicast modes. */
static void macb_set_rx_mode(struct net_device *dev)
{
unsigned long cfg;
struct macb *bp = netdev_priv(dev);
cfg = macb_readl(bp, NCFGR);
if (dev->flags & IFF_PROMISC) {
/* Enable promiscuous mode */
cfg |= MACB_BIT(CAF);
/* Disable RX checksum offload */
if (macb_is_gem(bp))
cfg &= ~GEM_BIT(RXCOEN);
} else {
/* Disable promiscuous mode */
cfg &= ~MACB_BIT(CAF);
/* Enable RX checksum offload only if requested */
if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
cfg |= GEM_BIT(RXCOEN);
}
if (dev->flags & IFF_ALLMULTI) {
/* Enable all multicast mode */
macb_or_gem_writel(bp, HRB, -1);
macb_or_gem_writel(bp, HRT, -1);
cfg |= MACB_BIT(NCFGR_MTI);
} else if (!netdev_mc_empty(dev)) {
/* Enable specific multicasts */
macb_sethashtable(dev);
cfg |= MACB_BIT(NCFGR_MTI);
} else if (dev->flags & (~IFF_ALLMULTI)) {
/* Disable all multicast mode */
macb_or_gem_writel(bp, HRB, 0);
macb_or_gem_writel(bp, HRT, 0);
cfg &= ~MACB_BIT(NCFGR_MTI);
}
macb_writel(bp, NCFGR, cfg);
}
static int macb_open(struct net_device *dev)
{
size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
struct macb *bp = netdev_priv(dev);
struct macb_queue *queue;
unsigned int q;
int err;
netdev_dbg(bp->dev, "open\n");
err = pm_runtime_get_sync(&bp->pdev->dev);
if (err < 0)
goto pm_exit;
/* RX buffers initialization */
macb_init_rx_buffer_size(bp, bufsz);
err = macb_alloc_consistent(bp);
if (err) {
netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
err);
goto pm_exit;
}
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
napi_enable(&queue->napi);
macb_init_hw(bp);
err = macb_phylink_connect(bp);
if (err)
goto reset_hw;
netif_tx_start_all_queues(dev);
if (bp->ptp_info)
bp->ptp_info->ptp_init(dev);
return 0;
reset_hw:
macb_reset_hw(bp);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
napi_disable(&queue->napi);
macb_free_consistent(bp);
pm_exit:
pm_runtime_put_sync(&bp->pdev->dev);
return err;
}
static int macb_close(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
struct macb_queue *queue;
unsigned long flags;
unsigned int q;
netif_tx_stop_all_queues(dev);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
napi_disable(&queue->napi);
phylink_stop(bp->phylink);
phylink_disconnect_phy(bp->phylink);
spin_lock_irqsave(&bp->lock, flags);
macb_reset_hw(bp);
netif_carrier_off(dev);
spin_unlock_irqrestore(&bp->lock, flags);
macb_free_consistent(bp);
if (bp->ptp_info)
bp->ptp_info->ptp_remove(dev);
pm_runtime_put(&bp->pdev->dev);
return 0;
}
static int macb_change_mtu(struct net_device *dev, int new_mtu)
{
if (netif_running(dev))
return -EBUSY;
dev->mtu = new_mtu;
return 0;
}
static void gem_update_stats(struct macb *bp)
{
struct macb_queue *queue;
unsigned int i, q, idx;
unsigned long *stat;
u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
u32 offset = gem_statistics[i].offset;
u64 val = bp->macb_reg_readl(bp, offset);
bp->ethtool_stats[i] += val;
*p += val;
if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
/* Add GEM_OCTTXH, GEM_OCTRXH */
val = bp->macb_reg_readl(bp, offset + 4);
bp->ethtool_stats[i] += ((u64)val) << 32;
*(++p) += val;
}
}
idx = GEM_STATS_LEN;
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
bp->ethtool_stats[idx++] = *stat;
}
static struct net_device_stats *gem_get_stats(struct macb *bp)
{
struct gem_stats *hwstat = &bp->hw_stats.gem;
struct net_device_stats *nstat = &bp->dev->stats;
gem_update_stats(bp);
nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
hwstat->rx_alignment_errors +
hwstat->rx_resource_errors +
hwstat->rx_overruns +
hwstat->rx_oversize_frames +
hwstat->rx_jabbers +
hwstat->rx_undersized_frames +
hwstat->rx_length_field_frame_errors);
nstat->tx_errors = (hwstat->tx_late_collisions +
hwstat->tx_excessive_collisions +
hwstat->tx_underrun +
hwstat->tx_carrier_sense_errors);
nstat->multicast = hwstat->rx_multicast_frames;
nstat->collisions = (hwstat->tx_single_collision_frames +
hwstat->tx_multiple_collision_frames +
hwstat->tx_excessive_collisions);
nstat->rx_length_errors = (hwstat->rx_oversize_frames +
hwstat->rx_jabbers +
hwstat->rx_undersized_frames +
hwstat->rx_length_field_frame_errors);
nstat->rx_over_errors = hwstat->rx_resource_errors;
nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
nstat->rx_frame_errors = hwstat->rx_alignment_errors;
nstat->rx_fifo_errors = hwstat->rx_overruns;
nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
nstat->tx_fifo_errors = hwstat->tx_underrun;
return nstat;
}
static void gem_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct macb *bp;
bp = netdev_priv(dev);
gem_update_stats(bp);
memcpy(data, &bp->ethtool_stats, sizeof(u64)
* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
}
static int gem_get_sset_count(struct net_device *dev, int sset)
{
struct macb *bp = netdev_priv(dev);
switch (sset) {
case ETH_SS_STATS:
return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
{
char stat_string[ETH_GSTRING_LEN];
struct macb *bp = netdev_priv(dev);
struct macb_queue *queue;
unsigned int i;
unsigned int q;
switch (sset) {
case ETH_SS_STATS:
for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
memcpy(p, gem_statistics[i].stat_string,
ETH_GSTRING_LEN);
for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
q, queue_statistics[i].stat_string);
memcpy(p, stat_string, ETH_GSTRING_LEN);
}
}
break;
}
}
static struct net_device_stats *macb_get_stats(struct net_device *dev)
{
struct macb *bp = netdev_priv(dev);
struct net_device_stats *nstat = &bp->dev->stats;
struct macb_stats *hwstat = &bp->hw_stats.macb;
if (macb_is_gem(bp))
return gem_get_stats(bp);
/* read stats from hardware */
macb_update_stats(bp);
/* Convert HW stats into netdevice stats */
nstat->rx_errors = (hwstat->rx_fcs_errors +
hwstat->rx_align_errors +
hwstat->rx_resource_errors +
hwstat->rx_overruns +
hwstat->rx_oversize_pkts +
hwstat->rx_jabbers +
hwstat->rx_undersize_pkts +
hwstat->rx_length_mismatch);
nstat->tx_errors = (hwstat->tx_late_cols +
hwstat->tx_excessive_cols +
hwstat->tx_underruns +
hwstat->tx_carrier_errors +
hwstat->sqe_test_errors);
nstat->collisions = (hwstat->tx_single_cols +
hwstat->tx_multiple_cols +
hwstat->tx_excessive_cols);
nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
hwstat->rx_jabbers +
hwstat->rx_undersize_pkts +
hwstat->rx_length_mismatch);
nstat->rx_over_errors = hwstat->rx_resource_errors +
hwstat->rx_overruns;
nstat->rx_crc_errors = hwstat->rx_fcs_errors;
nstat->rx_frame_errors = hwstat->rx_align_errors;
nstat->rx_fifo_errors = hwstat->rx_overruns;
/* XXX: What does "missed" mean? */
nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
nstat->tx_fifo_errors = hwstat->tx_underruns;
/* Don't know about heartbeat or window errors... */
return nstat;
}
static int macb_get_regs_len(struct net_device *netdev)
{
return MACB_GREGS_NBR * sizeof(u32);
}
static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct macb *bp = netdev_priv(dev);
unsigned int tail, head;
u32 *regs_buff = p;
regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
| MACB_GREGS_VERSION;
tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
regs_buff[0] = macb_readl(bp, NCR);
regs_buff[1] = macb_or_gem_readl(bp, NCFGR);
regs_buff[2] = macb_readl(bp, NSR);
regs_buff[3] = macb_readl(bp, TSR);
regs_buff[4] = macb_readl(bp, RBQP);
regs_buff[5] = macb_readl(bp, TBQP);
regs_buff[6] = macb_readl(bp, RSR);
regs_buff[7] = macb_readl(bp, IMR);
regs_buff[8] = tail;
regs_buff[9] = head;
regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
regs_buff[12] = macb_or_gem_readl(bp, USRIO);
if (macb_is_gem(bp))
regs_buff[13] = gem_readl(bp, DMACFG);
}
static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct macb *bp = netdev_priv(netdev);
wol->supported = 0;
wol->wolopts = 0;
if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET)
phylink_ethtool_get_wol(bp->phylink, wol);
}
static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct macb *bp = netdev_priv(netdev);
int ret;
ret = phylink_ethtool_set_wol(bp->phylink, wol);
if (!ret)
return 0;
if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
(wol->wolopts & ~WAKE_MAGIC))
return -EOPNOTSUPP;
if (wol->wolopts & WAKE_MAGIC)
bp->wol |= MACB_WOL_ENABLED;
else
bp->wol &= ~MACB_WOL_ENABLED;
device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
return 0;
}
static int macb_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *kset)
{
struct macb *bp = netdev_priv(netdev);
return phylink_ethtool_ksettings_get(bp->phylink, kset);
}
static int macb_set_link_ksettings(struct net_device *netdev,
const struct ethtool_link_ksettings *kset)
{
struct macb *bp = netdev_priv(netdev);
return phylink_ethtool_ksettings_set(bp->phylink, kset);
}
static void macb_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct macb *bp = netdev_priv(netdev);
ring->rx_max_pending = MAX_RX_RING_SIZE;
ring->tx_max_pending = MAX_TX_RING_SIZE;
ring->rx_pending = bp->rx_ring_size;
ring->tx_pending = bp->tx_ring_size;
}
static int macb_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct macb *bp = netdev_priv(netdev);
u32 new_rx_size, new_tx_size;
unsigned int reset = 0;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
new_rx_size = clamp_t(u32, ring->rx_pending,
MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
new_rx_size = roundup_pow_of_two(new_rx_size);
new_tx_size = clamp_t(u32, ring->tx_pending,
MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
new_tx_size = roundup_pow_of_two(new_tx_size);
if ((new_tx_size == bp->tx_ring_size) &&
(new_rx_size == bp->rx_ring_size)) {
/* nothing to do */
return 0;
}
if (netif_running(bp->dev)) {
reset = 1;
macb_close(bp->dev);
}
bp->rx_ring_size = new_rx_size;
bp->tx_ring_size = new_tx_size;
if (reset)
macb_open(bp->dev);
return 0;
}
#ifdef CONFIG_MACB_USE_HWSTAMP
static unsigned int gem_get_tsu_rate(struct macb *bp)
{
struct clk *tsu_clk;
unsigned int tsu_rate;
tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
if (!IS_ERR(tsu_clk))
tsu_rate = clk_get_rate(tsu_clk);
/* try pclk instead */
else if (!IS_ERR(bp->pclk)) {
tsu_clk = bp->pclk;
tsu_rate = clk_get_rate(tsu_clk);
} else
return -ENOTSUPP;
return tsu_rate;
}
static s32 gem_get_ptp_max_adj(void)
{
return 64000000;
}
static int gem_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
struct macb *bp = netdev_priv(dev);
if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
ethtool_op_get_ts_info(dev, info);
return 0;
}
info->so_timestamping =
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types =
(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_ALL);
info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
return 0;
}
static struct macb_ptp_info gem_ptp_info = {
.ptp_init = gem_ptp_init,
.ptp_remove = gem_ptp_remove,
.get_ptp_max_adj = gem_get_ptp_max_adj,
.get_tsu_rate = gem_get_tsu_rate,
.get_ts_info = gem_get_ts_info,
.get_hwtst = gem_get_hwtst,
.set_hwtst = gem_set_hwtst,
};
#endif
static int macb_get_ts_info(struct net_device *netdev,
struct ethtool_ts_info *info)
{
struct macb *bp = netdev_priv(netdev);
if (bp->ptp_info)
return bp->ptp_info->get_ts_info(netdev, info);
return ethtool_op_get_ts_info(netdev, info);
}
static void gem_enable_flow_filters(struct macb *bp, bool enable)
{
struct net_device *netdev = bp->dev;
struct ethtool_rx_fs_item *item;
u32 t2_scr;
int num_t2_scr;
if (!(netdev->features & NETIF_F_NTUPLE))
return;
num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
list_for_each_entry(item, &bp->rx_fs_list.list, list) {
struct ethtool_rx_flow_spec *fs = &item->fs;
struct ethtool_tcpip4_spec *tp4sp_m;
if (fs->location >= num_t2_scr)
continue;
t2_scr = gem_readl_n(bp, SCRT2, fs->location);
/* enable/disable screener regs for the flow entry */
t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
/* only enable fields with no masking */
tp4sp_m = &(fs->m_u.tcp_ip4_spec);
if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
else
t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
else
t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
else
t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
gem_writel_n(bp, SCRT2, fs->location, t2_scr);
}
}
static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
{
struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
uint16_t index = fs->location;
u32 w0, w1, t2_scr;
bool cmp_a = false;
bool cmp_b = false;
bool cmp_c = false;
tp4sp_v = &(fs->h_u.tcp_ip4_spec);
tp4sp_m = &(fs->m_u.tcp_ip4_spec);
/* ignore field if any masking set */
if (tp4sp_m->ip4src == 0xFFFFFFFF) {
/* 1st compare reg - IP source address */
w0 = 0;
w1 = 0;
w0 = tp4sp_v->ip4src;
w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
cmp_a = true;
}
/* ignore field if any masking set */
if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
/* 2nd compare reg - IP destination address */
w0 = 0;
w1 = 0;
w0 = tp4sp_v->ip4dst;
w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
cmp_b = true;
}
/* ignore both port fields if masking set in both */
if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
/* 3rd compare reg - source port, destination port */
w0 = 0;
w1 = 0;
w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
if (tp4sp_m->psrc == tp4sp_m->pdst) {
w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
} else {
/* only one port definition */
w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
if (tp4sp_m->psrc == 0xFFFF) { /* src port */
w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
} else { /* dst port */
w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
}
}
gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
cmp_c = true;
}
t2_scr = 0;
t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
if (cmp_a)
t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
if (cmp_b)
t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
if (cmp_c)
t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
gem_writel_n(bp, SCRT2, index, t2_scr);
}
static int gem_add_flow_filter(struct net_device *netdev,
struct ethtool_rxnfc *cmd)
{
struct macb *bp = netdev_priv(netdev);
struct ethtool_rx_flow_spec *fs = &cmd->fs;
struct ethtool_rx_fs_item *item, *newfs;
unsigned long flags;
int ret = -EINVAL;
bool added = false;
newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
if (newfs == NULL)
return -ENOMEM;
memcpy(&newfs->fs, fs, sizeof(newfs->fs));
netdev_dbg(netdev,
"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
fs->flow_type, (int)fs->ring_cookie, fs->location,
htonl(fs->h_u.tcp_ip4_spec.ip4src),
htonl(fs->h_u.tcp_ip4_spec.ip4dst),
htons(fs->h_u.tcp_ip4_spec.psrc), htons(fs->h_u.tcp_ip4_spec.pdst));
spin_lock_irqsave(&bp->rx_fs_lock, flags);
/* find correct place to add in list */
list_for_each_entry(item, &bp->rx_fs_list.list, list) {
if (item->fs.location > newfs->fs.location) {
list_add_tail(&newfs->list, &item->list);
added = true;
break;
} else if (item->fs.location == fs->location) {
netdev_err(netdev, "Rule not added: location %d not free!\n",
fs->location);
ret = -EBUSY;
goto err;
}
}
if (!added)
list_add_tail(&newfs->list, &bp->rx_fs_list.list);
gem_prog_cmp_regs(bp, fs);
bp->rx_fs_list.count++;
/* enable filtering if NTUPLE on */
gem_enable_flow_filters(bp, 1);
spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
return 0;
err:
spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
kfree(newfs);
return ret;
}
static int gem_del_flow_filter(struct net_device *netdev,
struct ethtool_rxnfc *cmd)
{
struct macb *bp = netdev_priv(netdev);
struct ethtool_rx_fs_item *item;
struct ethtool_rx_flow_spec *fs;
unsigned long flags;
spin_lock_irqsave(&bp->rx_fs_lock, flags);
list_for_each_entry(item, &bp->rx_fs_list.list, list) {
if (item->fs.location == cmd->fs.location) {
/* disable screener regs for the flow entry */
fs = &(item->fs);
netdev_dbg(netdev,
"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
fs->flow_type, (int)fs->ring_cookie, fs->location,
htonl(fs->h_u.tcp_ip4_spec.ip4src),
htonl(fs->h_u.tcp_ip4_spec.ip4dst),
htons(fs->h_u.tcp_ip4_spec.psrc),
htons(fs->h_u.tcp_ip4_spec.pdst));
gem_writel_n(bp, SCRT2, fs->location, 0);
list_del(&item->list);
bp->rx_fs_list.count--;
spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
kfree(item);
return 0;
}
}
spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
return -EINVAL;
}
static int gem_get_flow_entry(struct net_device *netdev,
struct ethtool_rxnfc *cmd)
{
struct macb *bp = netdev_priv(netdev);
struct ethtool_rx_fs_item *item;
list_for_each_entry(item, &bp->rx_fs_list.list, list) {
if (item->fs.location == cmd->fs.location) {
memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
return 0;
}
}
return -EINVAL;
}
static int gem_get_all_flow_entries(struct net_device *netdev,
struct ethtool_rxnfc *cmd, u32 *rule_locs)
{
struct macb *bp = netdev_priv(netdev);
struct ethtool_rx_fs_item *item;
uint32_t cnt = 0;
list_for_each_entry(item, &bp->rx_fs_list.list, list) {
if (cnt == cmd->rule_cnt)
return -EMSGSIZE;
rule_locs[cnt] = item->fs.location;
cnt++;
}
cmd->data = bp->max_tuples;
cmd->rule_cnt = cnt;
return 0;
}
static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct macb *bp = netdev_priv(netdev);
int ret = 0;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
cmd->data = bp->num_queues;
break;
case ETHTOOL_GRXCLSRLCNT:
cmd->rule_cnt = bp->rx_fs_list.count;
break;
case ETHTOOL_GRXCLSRULE:
ret = gem_get_flow_entry(netdev, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
break;
default:
netdev_err(netdev,
"Command parameter %d is not supported\n", cmd->cmd);
ret = -EOPNOTSUPP;
}
return ret;
}
static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
{
struct macb *bp = netdev_priv(netdev);
int ret;
switch (cmd->cmd) {
case ETHTOOL_SRXCLSRLINS:
if ((cmd->fs.location >= bp->max_tuples)
|| (cmd->fs.ring_cookie >= bp->num_queues)) {
ret = -EINVAL;
break;
}
ret = gem_add_flow_filter(netdev, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = gem_del_flow_filter(netdev, cmd);
break;
default:
netdev_err(netdev,
"Command parameter %d is not supported\n", cmd->cmd);
ret = -EOPNOTSUPP;
}
return ret;
}
static const struct ethtool_ops macb_ethtool_ops = {
.get_regs_len = macb_get_regs_len,
.get_regs = macb_get_regs,
.get_link = ethtool_op_get_link,
.get_ts_info = ethtool_op_get_ts_info,
.get_wol = macb_get_wol,
.set_wol = macb_set_wol,
.get_link_ksettings = macb_get_link_ksettings,
.set_link_ksettings = macb_set_link_ksettings,
.get_ringparam = macb_get_ringparam,
.set_ringparam = macb_set_ringparam,
};
static const struct ethtool_ops gem_ethtool_ops = {
.get_regs_len = macb_get_regs_len,
.get_regs = macb_get_regs,
.get_link = ethtool_op_get_link,
.get_ts_info = macb_get_ts_info,
.get_ethtool_stats = gem_get_ethtool_stats,
.get_strings = gem_get_ethtool_strings,
.get_sset_count = gem_get_sset_count,
.get_link_ksettings = macb_get_link_ksettings,
.set_link_ksettings = macb_set_link_ksettings,
.get_ringparam = macb_get_ringparam,
.set_ringparam = macb_set_ringparam,
.get_rxnfc = gem_get_rxnfc,
.set_rxnfc = gem_set_rxnfc,
};
static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct macb *bp = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (bp->ptp_info) {
switch (cmd) {
case SIOCSHWTSTAMP:
return bp->ptp_info->set_hwtst(dev, rq, cmd);
case SIOCGHWTSTAMP:
return bp->ptp_info->get_hwtst(dev, rq);
}
}
return phylink_mii_ioctl(bp->phylink, rq, cmd);
}
static inline void macb_set_txcsum_feature(struct macb *bp,
netdev_features_t features)
{
u32 val;
if (!macb_is_gem(bp))
return;
val = gem_readl(bp, DMACFG);
if (features & NETIF_F_HW_CSUM)
val |= GEM_BIT(TXCOEN);
else
val &= ~GEM_BIT(TXCOEN);
gem_writel(bp, DMACFG, val);
}
static inline void macb_set_rxcsum_feature(struct macb *bp,
netdev_features_t features)
{
struct net_device *netdev = bp->dev;
u32 val;
if (!macb_is_gem(bp))
return;
val = gem_readl(bp, NCFGR);
if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
val |= GEM_BIT(RXCOEN);
else
val &= ~GEM_BIT(RXCOEN);
gem_writel(bp, NCFGR, val);
}
static inline void macb_set_rxflow_feature(struct macb *bp,
netdev_features_t features)
{
if (!macb_is_gem(bp))
return;
gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
}
static int macb_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct macb *bp = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
/* TX checksum offload */
if (changed & NETIF_F_HW_CSUM)
macb_set_txcsum_feature(bp, features);
/* RX checksum offload */
if (changed & NETIF_F_RXCSUM)
macb_set_rxcsum_feature(bp, features);
/* RX Flow Filters */
if (changed & NETIF_F_NTUPLE)
macb_set_rxflow_feature(bp, features);
return 0;
}
static void macb_restore_features(struct macb *bp)
{
struct net_device *netdev = bp->dev;
netdev_features_t features = netdev->features;
/* TX checksum offload */
macb_set_txcsum_feature(bp, features);
/* RX checksum offload */
macb_set_rxcsum_feature(bp, features);
/* RX Flow Filters */
macb_set_rxflow_feature(bp, features);
}
static const struct net_device_ops macb_netdev_ops = {
.ndo_open = macb_open,
.ndo_stop = macb_close,
.ndo_start_xmit = macb_start_xmit,
.ndo_set_rx_mode = macb_set_rx_mode,
.ndo_get_stats = macb_get_stats,
.ndo_do_ioctl = macb_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = macb_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = macb_poll_controller,
#endif
.ndo_set_features = macb_set_features,
.ndo_features_check = macb_features_check,
};
/* Configure peripheral capabilities according to device tree
* and integration options used
*/
static void macb_configure_caps(struct macb *bp,
const struct macb_config *dt_conf)
{
u32 dcfg;
if (dt_conf)
bp->caps = dt_conf->caps;
if (hw_is_gem(bp->regs, bp->native_io)) {
bp->caps |= MACB_CAPS_MACB_IS_GEM;
dcfg = gem_readl(bp, DCFG1);
if (GEM_BFEXT(IRQCOR, dcfg) == 0)
bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
dcfg = gem_readl(bp, DCFG2);
if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
bp->caps |= MACB_CAPS_FIFO_MODE;
#ifdef CONFIG_MACB_USE_HWSTAMP
if (gem_has_ptp(bp)) {
if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
dev_err(&bp->pdev->dev,
"GEM doesn't support hardware ptp.\n");
else {
bp->hw_dma_cap |= HW_DMA_CAP_PTP;
bp->ptp_info = &gem_ptp_info;
}
}
#endif
}
dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
}
static void macb_probe_queues(void __iomem *mem,
bool native_io,
unsigned int *queue_mask,
unsigned int *num_queues)
{
unsigned int hw_q;
*queue_mask = 0x1;
*num_queues = 1;
/* is it macb or gem ?
*
* We need to read directly from the hardware here because
* we are early in the probe process and don't have the
* MACB_CAPS_MACB_IS_GEM flag positioned
*/
if (!hw_is_gem(mem, native_io))
return;
/* bit 0 is never set but queue 0 always exists */
*queue_mask = readl_relaxed(mem + GEM_DCFG6) & 0xff;
*queue_mask |= 0x1;
for (hw_q = 1; hw_q < MACB_MAX_QUEUES; ++hw_q)
if (*queue_mask & (1 << hw_q))
(*num_queues)++;
}
static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
struct clk **hclk, struct clk **tx_clk,
struct clk **rx_clk, struct clk **tsu_clk)
{
struct macb_platform_data *pdata;
int err;
pdata = dev_get_platdata(&pdev->dev);
if (pdata) {
*pclk = pdata->pclk;
*hclk = pdata->hclk;
} else {
*pclk = devm_clk_get(&pdev->dev, "pclk");
*hclk = devm_clk_get(&pdev->dev, "hclk");
}
if (IS_ERR_OR_NULL(*pclk)) {
err = PTR_ERR(*pclk);
if (!err)
err = -ENODEV;
dev_err(&pdev->dev, "failed to get macb_clk (%d)\n", err);
return err;
}
if (IS_ERR_OR_NULL(*hclk)) {
err = PTR_ERR(*hclk);
if (!err)
err = -ENODEV;
dev_err(&pdev->dev, "failed to get hclk (%d)\n", err);
return err;
}
*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
if (IS_ERR(*tx_clk))
return PTR_ERR(*tx_clk);
*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
if (IS_ERR(*rx_clk))
return PTR_ERR(*rx_clk);
*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
if (IS_ERR(*tsu_clk))
return PTR_ERR(*tsu_clk);
err = clk_prepare_enable(*pclk);
if (err) {
dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
return err;
}
err = clk_prepare_enable(*hclk);
if (err) {
dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
goto err_disable_pclk;
}
err = clk_prepare_enable(*tx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
goto err_disable_hclk;
}
err = clk_prepare_enable(*rx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
goto err_disable_txclk;
}
err = clk_prepare_enable(*tsu_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
goto err_disable_rxclk;
}
return 0;
err_disable_rxclk:
clk_disable_unprepare(*rx_clk);
err_disable_txclk:
clk_disable_unprepare(*tx_clk);
err_disable_hclk:
clk_disable_unprepare(*hclk);
err_disable_pclk:
clk_disable_unprepare(*pclk);
return err;
}
static int macb_init(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unsigned int hw_q, q;
struct macb *bp = netdev_priv(dev);
struct macb_queue *queue;
int err;
u32 val, reg;
bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
/* set the queue register mapping once for all: queue0 has a special
* register mapping but we don't want to test the queue index then
* compute the corresponding register offset at run time.
*/
for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
if (!(bp->queue_mask & (1 << hw_q)))
continue;
queue = &bp->queues[q];
queue->bp = bp;
netif_napi_add(dev, &queue->napi, macb_poll, NAPI_POLL_WEIGHT);
if (hw_q) {
queue->ISR = GEM_ISR(hw_q - 1);
queue->IER = GEM_IER(hw_q - 1);
queue->IDR = GEM_IDR(hw_q - 1);
queue->IMR = GEM_IMR(hw_q - 1);
queue->TBQP = GEM_TBQP(hw_q - 1);
queue->RBQP = GEM_RBQP(hw_q - 1);
queue->RBQS = GEM_RBQS(hw_q - 1);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
queue->TBQPH = GEM_TBQPH(hw_q - 1);
queue->RBQPH = GEM_RBQPH(hw_q - 1);
}
#endif
} else {
/* queue0 uses legacy registers */
queue->ISR = MACB_ISR;
queue->IER = MACB_IER;
queue->IDR = MACB_IDR;
queue->IMR = MACB_IMR;
queue->TBQP = MACB_TBQP;
queue->RBQP = MACB_RBQP;
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
queue->TBQPH = MACB_TBQPH;
queue->RBQPH = MACB_RBQPH;
}
#endif
}
/* get irq: here we use the linux queue index, not the hardware
* queue index. the queue irq definitions in the device tree
* must remove the optional gaps that could exist in the
* hardware queue mask.
*/
queue->irq = platform_get_irq(pdev, q);
err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
IRQF_SHARED, dev->name, queue);
if (err) {
dev_err(&pdev->dev,
"Unable to request IRQ %d (error %d)\n",
queue->irq, err);
return err;
}
INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
q++;
}
dev->netdev_ops = &macb_netdev_ops;
/* setup appropriated routines according to adapter type */
if (macb_is_gem(bp)) {
bp->max_tx_length = GEM_MAX_TX_LEN;
bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
bp->macbgem_ops.mog_init_rings = gem_init_rings;
bp->macbgem_ops.mog_rx = gem_rx;
dev->ethtool_ops = &gem_ethtool_ops;
} else {
bp->max_tx_length = MACB_MAX_TX_LEN;
bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
bp->macbgem_ops.mog_init_rings = macb_init_rings;
bp->macbgem_ops.mog_rx = macb_rx;
dev->ethtool_ops = &macb_ethtool_ops;
}
/* Set features */
dev->hw_features = NETIF_F_SG;
/* Check LSO capability */
if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
dev->hw_features |= MACB_NETIF_LSO;
/* Checksum offload is only available on gem with packet buffer */
if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
if (bp->caps & MACB_CAPS_SG_DISABLED)
dev->hw_features &= ~NETIF_F_SG;
dev->features = dev->hw_features;
/* Check RX Flow Filters support.
* Max Rx flows set by availability of screeners & compare regs:
* each 4-tuple define requires 1 T2 screener reg + 3 compare regs
*/
reg = gem_readl(bp, DCFG8);
bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
GEM_BFEXT(T2SCR, reg));
if (bp->max_tuples > 0) {
/* also needs one ethtype match to check IPv4 */
if (GEM_BFEXT(SCR2ETH, reg) > 0) {
/* program this reg now */
reg = 0;
reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
/* Filtering is supported in hw but don't enable it in kernel now */
dev->hw_features |= NETIF_F_NTUPLE;
/* init Rx flow definitions */
INIT_LIST_HEAD(&bp->rx_fs_list.list);
bp->rx_fs_list.count = 0;
spin_lock_init(&bp->rx_fs_lock);
} else
bp->max_tuples = 0;
}
if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
val = 0;
if (bp->phy_interface == PHY_INTERFACE_MODE_RGMII)
val = GEM_BIT(RGMII);
else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
val = MACB_BIT(RMII);
else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
val = MACB_BIT(MII);
if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
val |= MACB_BIT(CLKEN);
macb_or_gem_writel(bp, USRIO, val);
}
/* Set MII management clock divider */
val = macb_mdc_clk_div(bp);
val |= macb_dbw(bp);
if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
macb_writel(bp, NCFGR, val);
return 0;
}
#if defined(CONFIG_OF)
/* 1518 rounded up */
#define AT91ETHER_MAX_RBUFF_SZ 0x600
/* max number of receive buffers */
#define AT91ETHER_MAX_RX_DESCR 9
static struct sifive_fu540_macb_mgmt *mgmt;
static int at91ether_alloc_coherent(struct macb *lp)
{
struct macb_queue *q = &lp->queues[0];
q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
(AT91ETHER_MAX_RX_DESCR *
macb_dma_desc_get_size(lp)),
&q->rx_ring_dma, GFP_KERNEL);
if (!q->rx_ring)
return -ENOMEM;
q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
AT91ETHER_MAX_RX_DESCR *
AT91ETHER_MAX_RBUFF_SZ,
&q->rx_buffers_dma, GFP_KERNEL);
if (!q->rx_buffers) {
dma_free_coherent(&lp->pdev->dev,
AT91ETHER_MAX_RX_DESCR *
macb_dma_desc_get_size(lp),
q->rx_ring, q->rx_ring_dma);
q->rx_ring = NULL;
return -ENOMEM;
}
return 0;
}
static void at91ether_free_coherent(struct macb *lp)
{
struct macb_queue *q = &lp->queues[0];
if (q->rx_ring) {
dma_free_coherent(&lp->pdev->dev,
AT91ETHER_MAX_RX_DESCR *
macb_dma_desc_get_size(lp),
q->rx_ring, q->rx_ring_dma);
q->rx_ring = NULL;
}
if (q->rx_buffers) {
dma_free_coherent(&lp->pdev->dev,
AT91ETHER_MAX_RX_DESCR *
AT91ETHER_MAX_RBUFF_SZ,
q->rx_buffers, q->rx_buffers_dma);
q->rx_buffers = NULL;
}
}
/* Initialize and start the Receiver and Transmit subsystems */
static int at91ether_start(struct macb *lp)
{
struct macb_queue *q = &lp->queues[0];
struct macb_dma_desc *desc;
dma_addr_t addr;
u32 ctl;
int i, ret;
ret = at91ether_alloc_coherent(lp);
if (ret)
return ret;
addr = q->rx_buffers_dma;
for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
desc = macb_rx_desc(q, i);
macb_set_addr(lp, desc, addr);
desc->ctrl = 0;
addr += AT91ETHER_MAX_RBUFF_SZ;
}
/* Set the Wrap bit on the last descriptor */
desc->addr |= MACB_BIT(RX_WRAP);
/* Reset buffer index */
q->rx_tail = 0;
/* Program address of descriptor list in Rx Buffer Queue register */
macb_writel(lp, RBQP, q->rx_ring_dma);
/* Enable Receive and Transmit */
ctl = macb_readl(lp, NCR);
macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
/* Enable MAC interrupts */
macb_writel(lp, IER, MACB_BIT(RCOMP) |
MACB_BIT(RXUBR) |
MACB_BIT(ISR_TUND) |
MACB_BIT(ISR_RLE) |
MACB_BIT(TCOMP) |
MACB_BIT(ISR_ROVR) |
MACB_BIT(HRESP));
return 0;
}
static void at91ether_stop(struct macb *lp)
{
u32 ctl;
/* Disable MAC interrupts */
macb_writel(lp, IDR, MACB_BIT(RCOMP) |
MACB_BIT(RXUBR) |
MACB_BIT(ISR_TUND) |
MACB_BIT(ISR_RLE) |
MACB_BIT(TCOMP) |
MACB_BIT(ISR_ROVR) |
MACB_BIT(HRESP));
/* Disable Receiver and Transmitter */
ctl = macb_readl(lp, NCR);
macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
/* Free resources. */
at91ether_free_coherent(lp);
}
/* Open the ethernet interface */
static int at91ether_open(struct net_device *dev)
{
struct macb *lp = netdev_priv(dev);
u32 ctl;
int ret;
ret = pm_runtime_get_sync(&lp->pdev->dev);
if (ret < 0) {
pm_runtime_put_noidle(&lp->pdev->dev);
return ret;
}
/* Clear internal statistics */
ctl = macb_readl(lp, NCR);
macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
macb_set_hwaddr(lp);
ret = at91ether_start(lp);
if (ret)
goto pm_exit;
ret = macb_phylink_connect(lp);
if (ret)
goto stop;
netif_start_queue(dev);
return 0;
stop:
at91ether_stop(lp);
pm_exit:
pm_runtime_put_sync(&lp->pdev->dev);
return ret;
}
/* Close the interface */
static int at91ether_close(struct net_device *dev)
{
struct macb *lp = netdev_priv(dev);
netif_stop_queue(dev);
phylink_stop(lp->phylink);
phylink_disconnect_phy(lp->phylink);
at91ether_stop(lp);
return pm_runtime_put(&lp->pdev->dev);
}
/* Transmit packet */
static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct macb *lp = netdev_priv(dev);
if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
netif_stop_queue(dev);
/* Store packet information (to free when Tx completed) */
lp->skb = skb;
lp->skb_length = skb->len;
lp->skb_physaddr = dma_map_single(&lp->pdev->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(&lp->pdev->dev, lp->skb_physaddr)) {
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
netdev_err(dev, "%s: DMA mapping error\n", __func__);
return NETDEV_TX_OK;
}
/* Set address of the data in the Transmit Address register */
macb_writel(lp, TAR, lp->skb_physaddr);
/* Set length of the packet in the Transmit Control register */
macb_writel(lp, TCR, skb->len);
} else {
netdev_err(dev, "%s called, but device is busy!\n", __func__);
return NETDEV_TX_BUSY;
}
return NETDEV_TX_OK;
}
/* Extract received frame from buffer descriptors and sent to upper layers.
* (Called from interrupt context)
*/
static void at91ether_rx(struct net_device *dev)
{
struct macb *lp = netdev_priv(dev);
struct macb_queue *q = &lp->queues[0];
struct macb_dma_desc *desc;
unsigned char *p_recv;
struct sk_buff *skb;
unsigned int pktlen;
desc = macb_rx_desc(q, q->rx_tail);
while (desc->addr & MACB_BIT(RX_USED)) {
p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
skb = netdev_alloc_skb(dev, pktlen + 2);
if (skb) {
skb_reserve(skb, 2);
skb_put_data(skb, p_recv, pktlen);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += pktlen;
netif_rx(skb);
} else {
dev->stats.rx_dropped++;
}
if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
dev->stats.multicast++;
/* reset ownership bit */
desc->addr &= ~MACB_BIT(RX_USED);
/* wrap after last buffer */
if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
q->rx_tail = 0;
else
q->rx_tail++;
desc = macb_rx_desc(q, q->rx_tail);
}
}
/* MAC interrupt handler */
static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct macb *lp = netdev_priv(dev);
u32 intstatus, ctl;
/* MAC Interrupt Status register indicates what interrupts are pending.
* It is automatically cleared once read.
*/
intstatus = macb_readl(lp, ISR);
/* Receive complete */
if (intstatus & MACB_BIT(RCOMP))
at91ether_rx(dev);
/* Transmit complete */
if (intstatus & MACB_BIT(TCOMP)) {
/* The TCOM bit is set even if the transmission failed */
if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
dev->stats.tx_errors++;
if (lp->skb) {
dev_consume_skb_irq(lp->skb);
lp->skb = NULL;
dma_unmap_single(&lp->pdev->dev, lp->skb_physaddr,
lp->skb_length, DMA_TO_DEVICE);
dev->stats.tx_packets++;
dev->stats.tx_bytes += lp->skb_length;
}
netif_wake_queue(dev);
}
/* Work-around for EMAC Errata section 41.3.1 */
if (intstatus & MACB_BIT(RXUBR)) {
ctl = macb_readl(lp, NCR);
macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
wmb();
macb_writel(lp, NCR, ctl | MACB_BIT(RE));
}
if (intstatus & MACB_BIT(ISR_ROVR))
netdev_err(dev, "ROVR error\n");
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void at91ether_poll_controller(struct net_device *dev)
{
unsigned long flags;
local_irq_save(flags);
at91ether_interrupt(dev->irq, dev);
local_irq_restore(flags);
}
#endif
static const struct net_device_ops at91ether_netdev_ops = {
.ndo_open = at91ether_open,
.ndo_stop = at91ether_close,
.ndo_start_xmit = at91ether_start_xmit,
.ndo_get_stats = macb_get_stats,
.ndo_set_rx_mode = macb_set_rx_mode,
.ndo_set_mac_address = eth_mac_addr,
.ndo_do_ioctl = macb_ioctl,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = at91ether_poll_controller,
#endif
};
static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
struct clk **hclk, struct clk **tx_clk,
struct clk **rx_clk, struct clk **tsu_clk)
{
int err;
*hclk = NULL;
*tx_clk = NULL;
*rx_clk = NULL;
*tsu_clk = NULL;
*pclk = devm_clk_get(&pdev->dev, "ether_clk");
if (IS_ERR(*pclk))
return PTR_ERR(*pclk);
err = clk_prepare_enable(*pclk);
if (err) {
dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
return err;
}
return 0;
}
static int at91ether_init(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct macb *bp = netdev_priv(dev);
int err;
bp->queues[0].bp = bp;
dev->netdev_ops = &at91ether_netdev_ops;
dev->ethtool_ops = &macb_ethtool_ops;
err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
0, dev->name, dev);
if (err)
return err;
macb_writel(bp, NCR, 0);
macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
return 0;
}
static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return mgmt->rate;
}
static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
if (WARN_ON(rate < 2500000))
return 2500000;
else if (rate == 2500000)
return 2500000;
else if (WARN_ON(rate < 13750000))
return 2500000;
else if (WARN_ON(rate < 25000000))
return 25000000;
else if (rate == 25000000)
return 25000000;
else if (WARN_ON(rate < 75000000))
return 25000000;
else if (WARN_ON(rate < 125000000))
return 125000000;
else if (rate == 125000000)
return 125000000;
WARN_ON(rate > 125000000);
return 125000000;
}
static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
if (rate != 125000000)
iowrite32(1, mgmt->reg);
else
iowrite32(0, mgmt->reg);
mgmt->rate = rate;
return 0;
}
static const struct clk_ops fu540_c000_ops = {
.recalc_rate = fu540_macb_tx_recalc_rate,
.round_rate = fu540_macb_tx_round_rate,
.set_rate = fu540_macb_tx_set_rate,
};
static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
struct clk **hclk, struct clk **tx_clk,
struct clk **rx_clk, struct clk **tsu_clk)
{
struct clk_init_data init;
int err = 0;
err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
if (err)
return err;
mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
if (!mgmt)
return -ENOMEM;
init.name = "sifive-gemgxl-mgmt";
init.ops = &fu540_c000_ops;
init.flags = 0;
init.num_parents = 0;
mgmt->rate = 0;
mgmt->hw.init = &init;
*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
if (IS_ERR(*tx_clk))
return PTR_ERR(*tx_clk);
err = clk_prepare_enable(*tx_clk);
if (err)
dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
else
dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
return 0;
}
static int fu540_c000_init(struct platform_device *pdev)
{
mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(mgmt->reg))
return PTR_ERR(mgmt->reg);
return macb_init(pdev);
}
static const struct macb_config fu540_c000_config = {
.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
MACB_CAPS_GEM_HAS_PTP,
.dma_burst_length = 16,
.clk_init = fu540_c000_clk_init,
.init = fu540_c000_init,
.jumbo_max_len = 10240,
};
static const struct macb_config at91sam9260_config = {
.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct macb_config sama5d3macb_config = {
.caps = MACB_CAPS_SG_DISABLED
| MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct macb_config pc302gem_config = {
.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct macb_config sama5d2_config = {
.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct macb_config sama5d3_config = {
.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE
| MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
.jumbo_max_len = 10240,
};
static const struct macb_config sama5d4_config = {
.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
.dma_burst_length = 4,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct macb_config emac_config = {
.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
.clk_init = at91ether_clk_init,
.init = at91ether_init,
};
static const struct macb_config np4_config = {
.caps = MACB_CAPS_USRIO_DISABLED,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct macb_config zynqmp_config = {
.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
MACB_CAPS_JUMBO |
MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
.jumbo_max_len = 10240,
};
static const struct macb_config zynq_config = {
.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
MACB_CAPS_NEEDS_RSTONUBR,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
};
static const struct of_device_id macb_dt_ids[] = {
{ .compatible = "cdns,at32ap7000-macb" },
{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
{ .compatible = "cdns,macb" },
{ .compatible = "cdns,np4-macb", .data = &np4_config },
{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
{ .compatible = "cdns,gem", .data = &pc302gem_config },
{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
{ .compatible = "cdns,emac", .data = &emac_config },
{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
{ .compatible = "cdns,zynq-gem", .data = &zynq_config },
{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, macb_dt_ids);
#endif /* CONFIG_OF */
static const struct macb_config default_gem_config = {
.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
MACB_CAPS_JUMBO |
MACB_CAPS_GEM_HAS_PTP,
.dma_burst_length = 16,
.clk_init = macb_clk_init,
.init = macb_init,
.jumbo_max_len = 10240,
};
static int macb_probe(struct platform_device *pdev)
{
const struct macb_config *macb_config = &default_gem_config;
int (*clk_init)(struct platform_device *, struct clk **,
struct clk **, struct clk **, struct clk **,
struct clk **) = macb_config->clk_init;
int (*init)(struct platform_device *) = macb_config->init;
struct device_node *np = pdev->dev.of_node;
struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
struct clk *tsu_clk = NULL;
unsigned int queue_mask, num_queues;
bool native_io;
phy_interface_t interface;
struct net_device *dev;
struct resource *regs;
void __iomem *mem;
const char *mac;
struct macb *bp;
int err, val;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mem = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(mem))
return PTR_ERR(mem);
if (np) {
const struct of_device_id *match;
match = of_match_node(macb_dt_ids, np);
if (match && match->data) {
macb_config = match->data;
clk_init = macb_config->clk_init;
init = macb_config->init;
}
}
err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
if (err)
return err;
pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
native_io = hw_is_native_io(mem);
macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
if (!dev) {
err = -ENOMEM;
goto err_disable_clocks;
}
dev->base_addr = regs->start;
SET_NETDEV_DEV(dev, &pdev->dev);
bp = netdev_priv(dev);
bp->pdev = pdev;
bp->dev = dev;
bp->regs = mem;
bp->native_io = native_io;
if (native_io) {
bp->macb_reg_readl = hw_readl_native;
bp->macb_reg_writel = hw_writel_native;
} else {
bp->macb_reg_readl = hw_readl;
bp->macb_reg_writel = hw_writel;
}
bp->num_queues = num_queues;
bp->queue_mask = queue_mask;
if (macb_config)
bp->dma_burst_length = macb_config->dma_burst_length;
bp->pclk = pclk;
bp->hclk = hclk;
bp->tx_clk = tx_clk;
bp->rx_clk = rx_clk;
bp->tsu_clk = tsu_clk;
if (macb_config)
bp->jumbo_max_len = macb_config->jumbo_max_len;
bp->wol = 0;
if (of_get_property(np, "magic-packet", NULL))
bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
device_init_wakeup(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
spin_lock_init(&bp->lock);
/* setup capabilities */
macb_configure_caps(bp, macb_config);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
bp->hw_dma_cap |= HW_DMA_CAP_64B;
}
#endif
platform_set_drvdata(pdev, dev);
dev->irq = platform_get_irq(pdev, 0);
if (dev->irq < 0) {
err = dev->irq;
goto err_out_free_netdev;
}
/* MTU range: 68 - 1500 or 10240 */
dev->min_mtu = GEM_MTU_MIN_SIZE;
if (bp->caps & MACB_CAPS_JUMBO)
dev->max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN;
else
dev->max_mtu = ETH_DATA_LEN;
if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
if (val)
bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
macb_dma_desc_get_size(bp);
val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
if (val)
bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
macb_dma_desc_get_size(bp);
}
bp->rx_intr_mask = MACB_RX_INT_FLAGS;
if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
bp->rx_intr_mask |= MACB_BIT(RXUBR);
mac = of_get_mac_address(np);
if (PTR_ERR(mac) == -EPROBE_DEFER) {
err = -EPROBE_DEFER;
goto err_out_free_netdev;
} else if (!IS_ERR_OR_NULL(mac)) {
ether_addr_copy(bp->dev->dev_addr, mac);
} else {
macb_get_hwaddr(bp);
}
err = of_get_phy_mode(np, &interface);
if (err)
/* not found in DT, MII by default */
bp->phy_interface = PHY_INTERFACE_MODE_MII;
else
bp->phy_interface = interface;
/* IP specific init */
err = init(pdev);
if (err)
goto err_out_free_netdev;
err = macb_mii_init(bp);
if (err)
goto err_out_free_netdev;
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
goto err_out_unregister_mdio;
}
tasklet_init(&bp->hresp_err_tasklet, macb_hresp_error_task,
(unsigned long)bp);
netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
dev->base_addr, dev->irq, dev->dev_addr);
pm_runtime_mark_last_busy(&bp->pdev->dev);
pm_runtime_put_autosuspend(&bp->pdev->dev);
return 0;
err_out_unregister_mdio:
mdiobus_unregister(bp->mii_bus);
mdiobus_free(bp->mii_bus);
err_out_free_netdev:
free_netdev(dev);
err_disable_clocks:
clk_disable_unprepare(tx_clk);
clk_disable_unprepare(hclk);
clk_disable_unprepare(pclk);
clk_disable_unprepare(rx_clk);
clk_disable_unprepare(tsu_clk);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
return err;
}
static int macb_remove(struct platform_device *pdev)
{
struct net_device *dev;
struct macb *bp;
dev = platform_get_drvdata(pdev);
if (dev) {
bp = netdev_priv(dev);
mdiobus_unregister(bp->mii_bus);
mdiobus_free(bp->mii_bus);
unregister_netdev(dev);
tasklet_kill(&bp->hresp_err_tasklet);
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
if (!pm_runtime_suspended(&pdev->dev)) {
clk_disable_unprepare(bp->tx_clk);
clk_disable_unprepare(bp->hclk);
clk_disable_unprepare(bp->pclk);
clk_disable_unprepare(bp->rx_clk);
clk_disable_unprepare(bp->tsu_clk);
pm_runtime_set_suspended(&pdev->dev);
}
phylink_destroy(bp->phylink);
free_netdev(dev);
}
return 0;
}
static int __maybe_unused macb_suspend(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct macb *bp = netdev_priv(netdev);
struct macb_queue *queue = bp->queues;
unsigned long flags;
unsigned int q;
if (!netif_running(netdev))
return 0;
if (bp->wol & MACB_WOL_ENABLED) {
macb_writel(bp, IER, MACB_BIT(WOL));
macb_writel(bp, WOL, MACB_BIT(MAG));
enable_irq_wake(bp->queues[0].irq);
netif_device_detach(netdev);
} else {
netif_device_detach(netdev);
for (q = 0, queue = bp->queues; q < bp->num_queues;
++q, ++queue)
napi_disable(&queue->napi);
rtnl_lock();
phylink_stop(bp->phylink);
rtnl_unlock();
spin_lock_irqsave(&bp->lock, flags);
macb_reset_hw(bp);
spin_unlock_irqrestore(&bp->lock, flags);
if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
if (netdev->hw_features & NETIF_F_NTUPLE)
bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
}
netif_carrier_off(netdev);
if (bp->ptp_info)
bp->ptp_info->ptp_remove(netdev);
pm_runtime_force_suspend(dev);
return 0;
}
static int __maybe_unused macb_resume(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct macb *bp = netdev_priv(netdev);
struct macb_queue *queue = bp->queues;
unsigned int q;
if (!netif_running(netdev))
return 0;
pm_runtime_force_resume(dev);
if (bp->wol & MACB_WOL_ENABLED) {
macb_writel(bp, IDR, MACB_BIT(WOL));
macb_writel(bp, WOL, 0);
disable_irq_wake(bp->queues[0].irq);
} else {
macb_writel(bp, NCR, MACB_BIT(MPE));
if (netdev->hw_features & NETIF_F_NTUPLE)
gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
for (q = 0, queue = bp->queues; q < bp->num_queues;
++q, ++queue)
napi_enable(&queue->napi);
rtnl_lock();
phylink_start(bp->phylink);
rtnl_unlock();
}
macb_init_hw(bp);
macb_set_rx_mode(netdev);
macb_restore_features(bp);
netif_device_attach(netdev);
if (bp->ptp_info)
bp->ptp_info->ptp_init(netdev);
return 0;
}
static int __maybe_unused macb_runtime_suspend(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct macb *bp = netdev_priv(netdev);
if (!(device_may_wakeup(&bp->dev->dev))) {
clk_disable_unprepare(bp->tx_clk);
clk_disable_unprepare(bp->hclk);
clk_disable_unprepare(bp->pclk);
clk_disable_unprepare(bp->rx_clk);
}
clk_disable_unprepare(bp->tsu_clk);
return 0;
}
static int __maybe_unused macb_runtime_resume(struct device *dev)
{
struct net_device *netdev = dev_get_drvdata(dev);
struct macb *bp = netdev_priv(netdev);
if (!(device_may_wakeup(&bp->dev->dev))) {
clk_prepare_enable(bp->pclk);
clk_prepare_enable(bp->hclk);
clk_prepare_enable(bp->tx_clk);
clk_prepare_enable(bp->rx_clk);
}
clk_prepare_enable(bp->tsu_clk);
return 0;
}
static const struct dev_pm_ops macb_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
};
static struct platform_driver macb_driver = {
.probe = macb_probe,
.remove = macb_remove,
.driver = {
.name = "macb",
.of_match_table = of_match_ptr(macb_dt_ids),
.pm = &macb_pm_ops,
},
};
module_platform_driver(macb_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_ALIAS("platform:macb");