linux_dsm_epyc7002/drivers/net/ethernet/mscc/ocelot_flower.c
Pablo Neira Ayuso ef01adae0e net: sched: use major priority number as hardware priority
tc transparently maps the software priority number to hardware. Update
it to pass the major priority which is what most drivers expect. Update
drivers too so they do not need to lshift the priority field of the
flow_cls_common_offload object. The stmmac driver is an exception, since
this code assumes the tc software priority is fine, therefore, lshift it
just to be conservative.

Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-18 14:13:23 -07:00

357 lines
8.8 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Microsemi Ocelot Switch driver
* Copyright (c) 2019 Microsemi Corporation
*/
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include "ocelot_ace.h"
struct ocelot_port_block {
struct ocelot_acl_block *block;
struct ocelot_port *port;
};
static int ocelot_flower_parse_action(struct flow_cls_offload *f,
struct ocelot_ace_rule *rule)
{
const struct flow_action_entry *a;
int i;
if (f->rule->action.num_entries != 1)
return -EOPNOTSUPP;
flow_action_for_each(i, a, &f->rule->action) {
switch (a->id) {
case FLOW_ACTION_DROP:
rule->action = OCELOT_ACL_ACTION_DROP;
break;
case FLOW_ACTION_TRAP:
rule->action = OCELOT_ACL_ACTION_TRAP;
break;
default:
return -EOPNOTSUPP;
}
}
return 0;
}
static int ocelot_flower_parse(struct flow_cls_offload *f,
struct ocelot_ace_rule *ocelot_rule)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_PORTS) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS))) {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
u16 proto = ntohs(f->common.protocol);
/* The hw support mac matches only for MAC_ETYPE key,
* therefore if other matches(port, tcp flags, etc) are added
* then just bail out
*/
if ((dissector->used_keys &
(BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_CONTROL))) !=
(BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_CONTROL)))
return -EOPNOTSUPP;
if (proto == ETH_P_IP ||
proto == ETH_P_IPV6 ||
proto == ETH_P_ARP)
return -EOPNOTSUPP;
flow_rule_match_eth_addrs(rule, &match);
ocelot_rule->type = OCELOT_ACE_TYPE_ETYPE;
ether_addr_copy(ocelot_rule->frame.etype.dmac.value,
match.key->dst);
ether_addr_copy(ocelot_rule->frame.etype.smac.value,
match.key->src);
ether_addr_copy(ocelot_rule->frame.etype.dmac.mask,
match.mask->dst);
ether_addr_copy(ocelot_rule->frame.etype.smac.mask,
match.mask->src);
goto finished_key_parsing;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
if (ntohs(match.key->n_proto) == ETH_P_IP) {
ocelot_rule->type = OCELOT_ACE_TYPE_IPV4;
ocelot_rule->frame.ipv4.proto.value[0] =
match.key->ip_proto;
ocelot_rule->frame.ipv4.proto.mask[0] =
match.mask->ip_proto;
}
if (ntohs(match.key->n_proto) == ETH_P_IPV6) {
ocelot_rule->type = OCELOT_ACE_TYPE_IPV6;
ocelot_rule->frame.ipv6.proto.value[0] =
match.key->ip_proto;
ocelot_rule->frame.ipv6.proto.mask[0] =
match.mask->ip_proto;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) &&
ntohs(f->common.protocol) == ETH_P_IP) {
struct flow_match_ipv4_addrs match;
u8 *tmp;
flow_rule_match_ipv4_addrs(rule, &match);
tmp = &ocelot_rule->frame.ipv4.sip.value.addr[0];
memcpy(tmp, &match.key->src, 4);
tmp = &ocelot_rule->frame.ipv4.sip.mask.addr[0];
memcpy(tmp, &match.mask->src, 4);
tmp = &ocelot_rule->frame.ipv4.dip.value.addr[0];
memcpy(tmp, &match.key->dst, 4);
tmp = &ocelot_rule->frame.ipv4.dip.mask.addr[0];
memcpy(tmp, &match.mask->dst, 4);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) &&
ntohs(f->common.protocol) == ETH_P_IPV6) {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
ocelot_rule->frame.ipv4.sport.value = ntohs(match.key->src);
ocelot_rule->frame.ipv4.sport.mask = ntohs(match.mask->src);
ocelot_rule->frame.ipv4.dport.value = ntohs(match.key->dst);
ocelot_rule->frame.ipv4.dport.mask = ntohs(match.mask->dst);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
ocelot_rule->type = OCELOT_ACE_TYPE_ANY;
ocelot_rule->vlan.vid.value = match.key->vlan_id;
ocelot_rule->vlan.vid.mask = match.mask->vlan_id;
ocelot_rule->vlan.pcp.value[0] = match.key->vlan_priority;
ocelot_rule->vlan.pcp.mask[0] = match.mask->vlan_priority;
}
finished_key_parsing:
ocelot_rule->prio = f->common.prio;
ocelot_rule->id = f->cookie;
return ocelot_flower_parse_action(f, ocelot_rule);
}
static
struct ocelot_ace_rule *ocelot_ace_rule_create(struct flow_cls_offload *f,
struct ocelot_port_block *block)
{
struct ocelot_ace_rule *rule;
rule = kzalloc(sizeof(*rule), GFP_KERNEL);
if (!rule)
return NULL;
rule->port = block->port;
rule->chip_port = block->port->chip_port;
return rule;
}
static int ocelot_flower_replace(struct flow_cls_offload *f,
struct ocelot_port_block *port_block)
{
struct ocelot_ace_rule *rule;
int ret;
rule = ocelot_ace_rule_create(f, port_block);
if (!rule)
return -ENOMEM;
ret = ocelot_flower_parse(f, rule);
if (ret) {
kfree(rule);
return ret;
}
ret = ocelot_ace_rule_offload_add(rule);
if (ret)
return ret;
port_block->port->tc.offload_cnt++;
return 0;
}
static int ocelot_flower_destroy(struct flow_cls_offload *f,
struct ocelot_port_block *port_block)
{
struct ocelot_ace_rule rule;
int ret;
rule.prio = f->common.prio;
rule.port = port_block->port;
rule.id = f->cookie;
ret = ocelot_ace_rule_offload_del(&rule);
if (ret)
return ret;
port_block->port->tc.offload_cnt--;
return 0;
}
static int ocelot_flower_stats_update(struct flow_cls_offload *f,
struct ocelot_port_block *port_block)
{
struct ocelot_ace_rule rule;
int ret;
rule.prio = f->common.prio;
rule.port = port_block->port;
rule.id = f->cookie;
ret = ocelot_ace_rule_stats_update(&rule);
if (ret)
return ret;
flow_stats_update(&f->stats, 0x0, rule.stats.pkts, 0x0);
return 0;
}
static int ocelot_setup_tc_cls_flower(struct flow_cls_offload *f,
struct ocelot_port_block *port_block)
{
switch (f->command) {
case FLOW_CLS_REPLACE:
return ocelot_flower_replace(f, port_block);
case FLOW_CLS_DESTROY:
return ocelot_flower_destroy(f, port_block);
case FLOW_CLS_STATS:
return ocelot_flower_stats_update(f, port_block);
default:
return -EOPNOTSUPP;
}
}
static int ocelot_setup_tc_block_cb_flower(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct ocelot_port_block *port_block = cb_priv;
if (!tc_cls_can_offload_and_chain0(port_block->port->dev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return ocelot_setup_tc_cls_flower(type_data, cb_priv);
case TC_SETUP_CLSMATCHALL:
return 0;
default:
return -EOPNOTSUPP;
}
}
static struct ocelot_port_block*
ocelot_port_block_create(struct ocelot_port *port)
{
struct ocelot_port_block *port_block;
port_block = kzalloc(sizeof(*port_block), GFP_KERNEL);
if (!port_block)
return NULL;
port_block->port = port;
return port_block;
}
static void ocelot_port_block_destroy(struct ocelot_port_block *block)
{
kfree(block);
}
static void ocelot_tc_block_unbind(void *cb_priv)
{
struct ocelot_port_block *port_block = cb_priv;
ocelot_port_block_destroy(port_block);
}
int ocelot_setup_tc_block_flower_bind(struct ocelot_port *port,
struct flow_block_offload *f)
{
struct ocelot_port_block *port_block;
struct flow_block_cb *block_cb;
int ret;
if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS)
return -EOPNOTSUPP;
block_cb = flow_block_cb_lookup(f->block,
ocelot_setup_tc_block_cb_flower, port);
if (!block_cb) {
port_block = ocelot_port_block_create(port);
if (!port_block)
return -ENOMEM;
block_cb = flow_block_cb_alloc(ocelot_setup_tc_block_cb_flower,
port, port_block,
ocelot_tc_block_unbind);
if (IS_ERR(block_cb)) {
ret = PTR_ERR(block_cb);
goto err_cb_register;
}
flow_block_cb_add(block_cb, f);
list_add_tail(&block_cb->driver_list, f->driver_block_list);
} else {
port_block = flow_block_cb_priv(block_cb);
}
flow_block_cb_incref(block_cb);
return 0;
err_cb_register:
ocelot_port_block_destroy(port_block);
return ret;
}
void ocelot_setup_tc_block_flower_unbind(struct ocelot_port *port,
struct flow_block_offload *f)
{
struct flow_block_cb *block_cb;
block_cb = flow_block_cb_lookup(f->block,
ocelot_setup_tc_block_cb_flower, port);
if (!block_cb)
return;
if (!flow_block_cb_decref(block_cb)) {
flow_block_cb_remove(block_cb, f);
list_del(&block_cb->driver_list);
}
}