linux_dsm_epyc7002/drivers/gpu/drm/i915/gt/selftest_lrc.c
Chris Wilson 4ba5c086a1 drm/i915/execlists: Take a reference while capturing the guilty request
Thanks to preempt-to-busy, we leave the request on the HW as we submit
the preemption request. This means that the request may complete at any
moment as we process HW events, and in particular the request may be
retired as we are planning to capture it for a preemption timeout.

Be more careful while obtaining the request to capture after a
preemption timeout, and check to see if it completed before we were able
to put it on the on-hold list. If we do see it did complete just before
we capture the request, proclaim the preemption-timeout a false positive
and pardon the reset as we should hit an arbitration point momentarily
and so be able to process the preemption.

Note that even after we move the request to be on hold it may be retired
(as the reset to stop the HW comes after), so we do require to hold our
own reference as we work on the request for capture (and all of the
peeking at state within the request needs to be carefully protected).

Fixes: 32ff621fd7 ("drm/i915/gt: Allow temporary suspension of inflight requests")
Closes: https://gitlab.freedesktop.org/drm/intel/issues/997
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200122140243.495621-1-chris@chris-wilson.co.uk
2020-01-22 17:10:15 +00:00

3941 lines
85 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2018 Intel Corporation
*/
#include <linux/prime_numbers.h>
#include "gem/i915_gem_pm.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_reset.h"
#include "i915_selftest.h"
#include "selftests/i915_random.h"
#include "selftests/igt_flush_test.h"
#include "selftests/igt_live_test.h"
#include "selftests/igt_spinner.h"
#include "selftests/lib_sw_fence.h"
#include "gem/selftests/igt_gem_utils.h"
#include "gem/selftests/mock_context.h"
#define CS_GPR(engine, n) ((engine)->mmio_base + 0x600 + (n) * 4)
#define NUM_GPR_DW (16 * 2) /* each GPR is 2 dwords */
static struct i915_vma *create_scratch(struct intel_gt *gt)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return ERR_CAST(obj);
i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err) {
i915_gem_object_put(obj);
return ERR_PTR(err);
}
return vma;
}
static void engine_heartbeat_disable(struct intel_engine_cs *engine,
unsigned long *saved)
{
*saved = engine->props.heartbeat_interval_ms;
engine->props.heartbeat_interval_ms = 0;
intel_engine_pm_get(engine);
intel_engine_park_heartbeat(engine);
}
static void engine_heartbeat_enable(struct intel_engine_cs *engine,
unsigned long saved)
{
intel_engine_pm_put(engine);
engine->props.heartbeat_interval_ms = saved;
}
static int live_sanitycheck(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
if (!HAS_LOGICAL_RING_CONTEXTS(gt->i915))
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
for_each_engine(engine, gt, id) {
struct intel_context *ce;
struct i915_request *rq;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
break;
}
rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ctx;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
GEM_TRACE("spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto out_ctx;
}
igt_spinner_end(&spin);
if (igt_flush_test(gt->i915)) {
err = -EIO;
goto out_ctx;
}
out_ctx:
intel_context_put(ce);
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}
static int live_unlite_restore(struct intel_gt *gt, int prio)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = -ENOMEM;
/*
* Check that we can correctly context switch between 2 instances
* on the same engine from the same parent context.
*/
if (igt_spinner_init(&spin, gt))
return err;
err = 0;
for_each_engine(engine, gt, id) {
struct intel_context *ce[2] = {};
struct i915_request *rq[2];
struct igt_live_test t;
unsigned long saved;
int n;
if (prio && !intel_engine_has_preemption(engine))
continue;
if (!intel_engine_can_store_dword(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
break;
}
engine_heartbeat_disable(engine, &saved);
for (n = 0; n < ARRAY_SIZE(ce); n++) {
struct intel_context *tmp;
tmp = intel_context_create(engine);
if (IS_ERR(tmp)) {
err = PTR_ERR(tmp);
goto err_ce;
}
err = intel_context_pin(tmp);
if (err) {
intel_context_put(tmp);
goto err_ce;
}
/*
* Setup the pair of contexts such that if we
* lite-restore using the RING_TAIL from ce[1] it
* will execute garbage from ce[0]->ring.
*/
memset(tmp->ring->vaddr,
POISON_INUSE, /* IPEHR: 0x5a5a5a5a [hung!] */
tmp->ring->vma->size);
ce[n] = tmp;
}
GEM_BUG_ON(!ce[1]->ring->size);
intel_ring_reset(ce[1]->ring, ce[1]->ring->size / 2);
__execlists_update_reg_state(ce[1], engine);
rq[0] = igt_spinner_create_request(&spin, ce[0], MI_ARB_CHECK);
if (IS_ERR(rq[0])) {
err = PTR_ERR(rq[0]);
goto err_ce;
}
i915_request_get(rq[0]);
i915_request_add(rq[0]);
GEM_BUG_ON(rq[0]->postfix > ce[1]->ring->emit);
if (!igt_wait_for_spinner(&spin, rq[0])) {
i915_request_put(rq[0]);
goto err_ce;
}
rq[1] = i915_request_create(ce[1]);
if (IS_ERR(rq[1])) {
err = PTR_ERR(rq[1]);
i915_request_put(rq[0]);
goto err_ce;
}
if (!prio) {
/*
* Ensure we do the switch to ce[1] on completion.
*
* rq[0] is already submitted, so this should reduce
* to a no-op (a wait on a request on the same engine
* uses the submit fence, not the completion fence),
* but it will install a dependency on rq[1] for rq[0]
* that will prevent the pair being reordered by
* timeslicing.
*/
i915_request_await_dma_fence(rq[1], &rq[0]->fence);
}
i915_request_get(rq[1]);
i915_request_add(rq[1]);
GEM_BUG_ON(rq[1]->postfix <= rq[0]->postfix);
i915_request_put(rq[0]);
if (prio) {
struct i915_sched_attr attr = {
.priority = prio,
};
/* Alternatively preempt the spinner with ce[1] */
engine->schedule(rq[1], &attr);
}
/* And switch back to ce[0] for good measure */
rq[0] = i915_request_create(ce[0]);
if (IS_ERR(rq[0])) {
err = PTR_ERR(rq[0]);
i915_request_put(rq[1]);
goto err_ce;
}
i915_request_await_dma_fence(rq[0], &rq[1]->fence);
i915_request_get(rq[0]);
i915_request_add(rq[0]);
GEM_BUG_ON(rq[0]->postfix > rq[1]->postfix);
i915_request_put(rq[1]);
i915_request_put(rq[0]);
err_ce:
tasklet_kill(&engine->execlists.tasklet); /* flush submission */
igt_spinner_end(&spin);
for (n = 0; n < ARRAY_SIZE(ce); n++) {
if (IS_ERR_OR_NULL(ce[n]))
break;
intel_context_unpin(ce[n]);
intel_context_put(ce[n]);
}
engine_heartbeat_enable(engine, saved);
if (igt_live_test_end(&t))
err = -EIO;
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}
static int live_unlite_switch(void *arg)
{
return live_unlite_restore(arg, 0);
}
static int live_unlite_preempt(void *arg)
{
return live_unlite_restore(arg, I915_USER_PRIORITY(I915_PRIORITY_MAX));
}
static int live_hold_reset(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
/*
* In order to support offline error capture for fast preempt reset,
* we need to decouple the guilty request and ensure that it and its
* descendents are not executed while the capture is in progress.
*/
if (!intel_has_reset_engine(gt))
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
for_each_engine(engine, gt, id) {
struct intel_context *ce;
unsigned long heartbeat;
struct i915_request *rq;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
break;
}
engine_heartbeat_disable(engine, &heartbeat);
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
intel_gt_set_wedged(gt);
err = -ETIME;
goto out;
}
/* We have our request executing, now remove it and reset */
if (test_and_set_bit(I915_RESET_ENGINE + id,
&gt->reset.flags)) {
intel_gt_set_wedged(gt);
err = -EBUSY;
goto out;
}
tasklet_disable(&engine->execlists.tasklet);
engine->execlists.tasklet.func(engine->execlists.tasklet.data);
GEM_BUG_ON(execlists_active(&engine->execlists) != rq);
i915_request_get(rq);
execlists_hold(engine, rq);
GEM_BUG_ON(!i915_request_on_hold(rq));
intel_engine_reset(engine, NULL);
GEM_BUG_ON(rq->fence.error != -EIO);
tasklet_enable(&engine->execlists.tasklet);
clear_and_wake_up_bit(I915_RESET_ENGINE + id,
&gt->reset.flags);
/* Check that we do not resubmit the held request */
if (!i915_request_wait(rq, 0, HZ / 5)) {
pr_err("%s: on hold request completed!\n",
engine->name);
i915_request_put(rq);
err = -EIO;
goto out;
}
GEM_BUG_ON(!i915_request_on_hold(rq));
/* But is resubmitted on release */
execlists_unhold(engine, rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
pr_err("%s: held request did not complete!\n",
engine->name);
intel_gt_set_wedged(gt);
err = -ETIME;
}
i915_request_put(rq);
out:
engine_heartbeat_enable(engine, heartbeat);
intel_context_put(ce);
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}
static int
emit_semaphore_chain(struct i915_request *rq, struct i915_vma *vma, int idx)
{
u32 *cs;
cs = intel_ring_begin(rq, 10);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = i915_ggtt_offset(vma) + 4 * idx;
*cs++ = 0;
if (idx > 0) {
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma) + 4 * (idx - 1);
*cs++ = 0;
*cs++ = 1;
} else {
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
intel_ring_advance(rq, cs);
return 0;
}
static struct i915_request *
semaphore_queue(struct intel_engine_cs *engine, struct i915_vma *vma, int idx)
{
struct intel_context *ce;
struct i915_request *rq;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return ERR_CAST(ce);
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
goto out_ce;
err = 0;
if (rq->engine->emit_init_breadcrumb)
err = rq->engine->emit_init_breadcrumb(rq);
if (err == 0)
err = emit_semaphore_chain(rq, vma, idx);
if (err == 0)
i915_request_get(rq);
i915_request_add(rq);
if (err)
rq = ERR_PTR(err);
out_ce:
intel_context_put(ce);
return rq;
}
static int
release_queue(struct intel_engine_cs *engine,
struct i915_vma *vma,
int idx, int prio)
{
struct i915_sched_attr attr = {
.priority = prio,
};
struct i915_request *rq;
u32 *cs;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma) + 4 * (idx - 1);
*cs++ = 0;
*cs++ = 1;
intel_ring_advance(rq, cs);
i915_request_get(rq);
i915_request_add(rq);
local_bh_disable();
engine->schedule(rq, &attr);
local_bh_enable(); /* kick tasklet */
i915_request_put(rq);
return 0;
}
static int
slice_semaphore_queue(struct intel_engine_cs *outer,
struct i915_vma *vma,
int count)
{
struct intel_engine_cs *engine;
struct i915_request *head;
enum intel_engine_id id;
int err, i, n = 0;
head = semaphore_queue(outer, vma, n++);
if (IS_ERR(head))
return PTR_ERR(head);
for_each_engine(engine, outer->gt, id) {
for (i = 0; i < count; i++) {
struct i915_request *rq;
rq = semaphore_queue(engine, vma, n++);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
i915_request_put(rq);
}
}
err = release_queue(outer, vma, n, INT_MAX);
if (err)
goto out;
if (i915_request_wait(head, 0,
2 * RUNTIME_INFO(outer->i915)->num_engines * (count + 2) * (count + 3)) < 0) {
pr_err("Failed to slice along semaphore chain of length (%d, %d)!\n",
count, n);
GEM_TRACE_DUMP();
intel_gt_set_wedged(outer->gt);
err = -EIO;
}
out:
i915_request_put(head);
return err;
}
static int live_timeslice_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
void *vaddr;
int err = 0;
int count;
/*
* If a request takes too long, we would like to give other users
* a fair go on the GPU. In particular, users may create batches
* that wait upon external input, where that input may even be
* supplied by another GPU job. To avoid blocking forever, we
* need to preempt the current task and replace it with another
* ready task.
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
return 0;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto err_obj;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto err_map;
for_each_prime_number_from(count, 1, 16) {
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id) {
unsigned long saved;
if (!intel_engine_has_preemption(engine))
continue;
memset(vaddr, 0, PAGE_SIZE);
engine_heartbeat_disable(engine, &saved);
err = slice_semaphore_queue(engine, vma, count);
engine_heartbeat_enable(engine, saved);
if (err)
goto err_pin;
if (igt_flush_test(gt->i915)) {
err = -EIO;
goto err_pin;
}
}
}
err_pin:
i915_vma_unpin(vma);
err_map:
i915_gem_object_unpin_map(obj);
err_obj:
i915_gem_object_put(obj);
return err;
}
static struct i915_request *nop_request(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq))
return rq;
i915_request_get(rq);
i915_request_add(rq);
return rq;
}
static int wait_for_submit(struct intel_engine_cs *engine,
struct i915_request *rq,
unsigned long timeout)
{
timeout += jiffies;
do {
cond_resched();
intel_engine_flush_submission(engine);
if (i915_request_is_active(rq))
return 0;
} while (time_before(jiffies, timeout));
return -ETIME;
}
static long timeslice_threshold(const struct intel_engine_cs *engine)
{
return 2 * msecs_to_jiffies_timeout(timeslice(engine)) + 1;
}
static int live_timeslice_queue(void *arg)
{
struct intel_gt *gt = arg;
struct drm_i915_gem_object *obj;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct i915_vma *vma;
void *vaddr;
int err = 0;
/*
* Make sure that even if ELSP[0] and ELSP[1] are filled with
* timeslicing between them disabled, we *do* enable timeslicing
* if the queue demands it. (Normally, we do not submit if
* ELSP[1] is already occupied, so must rely on timeslicing to
* eject ELSP[0] in favour of the queue.)
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
return 0;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto err_obj;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto err_map;
for_each_engine(engine, gt, id) {
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX),
};
struct i915_request *rq, *nop;
unsigned long saved;
if (!intel_engine_has_preemption(engine))
continue;
engine_heartbeat_disable(engine, &saved);
memset(vaddr, 0, PAGE_SIZE);
/* ELSP[0]: semaphore wait */
rq = semaphore_queue(engine, vma, 0);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_heartbeat;
}
engine->schedule(rq, &attr);
err = wait_for_submit(engine, rq, HZ / 2);
if (err) {
pr_err("%s: Timed out trying to submit semaphores\n",
engine->name);
goto err_rq;
}
/* ELSP[1]: nop request */
nop = nop_request(engine);
if (IS_ERR(nop)) {
err = PTR_ERR(nop);
goto err_rq;
}
err = wait_for_submit(engine, nop, HZ / 2);
i915_request_put(nop);
if (err) {
pr_err("%s: Timed out trying to submit nop\n",
engine->name);
goto err_rq;
}
GEM_BUG_ON(i915_request_completed(rq));
GEM_BUG_ON(execlists_active(&engine->execlists) != rq);
/* Queue: semaphore signal, matching priority as semaphore */
err = release_queue(engine, vma, 1, effective_prio(rq));
if (err)
goto err_rq;
intel_engine_flush_submission(engine);
if (!READ_ONCE(engine->execlists.timer.expires) &&
!i915_request_completed(rq)) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
GEM_TRACE_ERR("%s: Failed to enable timeslicing!\n",
engine->name);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
GEM_TRACE_DUMP();
memset(vaddr, 0xff, PAGE_SIZE);
err = -EINVAL;
}
/* Timeslice every jiffy, so within 2 we should signal */
if (i915_request_wait(rq, 0, timeslice_threshold(engine)) < 0) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
pr_err("%s: Failed to timeslice into queue\n",
engine->name);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
memset(vaddr, 0xff, PAGE_SIZE);
err = -EIO;
}
err_rq:
i915_request_put(rq);
err_heartbeat:
engine_heartbeat_enable(engine, saved);
if (err)
break;
}
i915_vma_unpin(vma);
err_map:
i915_gem_object_unpin_map(obj);
err_obj:
i915_gem_object_put(obj);
return err;
}
static int live_busywait_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
enum intel_engine_id id;
int err = -ENOMEM;
u32 *map;
/*
* Verify that even without HAS_LOGICAL_RING_PREEMPTION, we can
* preempt the busywaits used to synchronise between rings.
*/
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
return -ENOMEM;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_ctx_lo;
}
map = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(map)) {
err = PTR_ERR(map);
goto err_obj;
}
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_map;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto err_map;
for_each_engine(engine, gt, id) {
struct i915_request *lo, *hi;
struct igt_live_test t;
u32 *cs;
if (!intel_engine_has_preemption(engine))
continue;
if (!intel_engine_can_store_dword(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_vma;
}
/*
* We create two requests. The low priority request
* busywaits on a semaphore (inside the ringbuffer where
* is should be preemptible) and the high priority requests
* uses a MI_STORE_DWORD_IMM to update the semaphore value
* allowing the first request to complete. If preemption
* fails, we hang instead.
*/
lo = igt_request_alloc(ctx_lo, engine);
if (IS_ERR(lo)) {
err = PTR_ERR(lo);
goto err_vma;
}
cs = intel_ring_begin(lo, 8);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(lo);
goto err_vma;
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma);
*cs++ = 0;
*cs++ = 1;
/* XXX Do we need a flush + invalidate here? */
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = i915_ggtt_offset(vma);
*cs++ = 0;
intel_ring_advance(lo, cs);
i915_request_get(lo);
i915_request_add(lo);
if (wait_for(READ_ONCE(*map), 10)) {
i915_request_put(lo);
err = -ETIMEDOUT;
goto err_vma;
}
/* Low priority request should be busywaiting now */
if (i915_request_wait(lo, 0, 1) != -ETIME) {
i915_request_put(lo);
pr_err("%s: Busywaiting request did not!\n",
engine->name);
err = -EIO;
goto err_vma;
}
hi = igt_request_alloc(ctx_hi, engine);
if (IS_ERR(hi)) {
err = PTR_ERR(hi);
i915_request_put(lo);
goto err_vma;
}
cs = intel_ring_begin(hi, 4);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(hi);
i915_request_put(lo);
goto err_vma;
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma);
*cs++ = 0;
*cs++ = 0;
intel_ring_advance(hi, cs);
i915_request_add(hi);
if (i915_request_wait(lo, 0, HZ / 5) < 0) {
struct drm_printer p = drm_info_printer(gt->i915->drm.dev);
pr_err("%s: Failed to preempt semaphore busywait!\n",
engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
GEM_TRACE_DUMP();
i915_request_put(lo);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_vma;
}
GEM_BUG_ON(READ_ONCE(*map));
i915_request_put(lo);
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_vma;
}
}
err = 0;
err_vma:
i915_vma_unpin(vma);
err_map:
i915_gem_object_unpin_map(obj);
err_obj:
i915_gem_object_put(obj);
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
return err;
}
static struct i915_request *
spinner_create_request(struct igt_spinner *spin,
struct i915_gem_context *ctx,
struct intel_engine_cs *engine,
u32 arb)
{
struct intel_context *ce;
struct i915_request *rq;
ce = i915_gem_context_get_engine(ctx, engine->legacy_idx);
if (IS_ERR(ce))
return ERR_CAST(ce);
rq = igt_spinner_create_request(spin, ce, arb);
intel_context_put(ce);
return rq;
}
static int live_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_hi, spin_lo;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (!(gt->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
pr_err("Logical preemption supported, but not exposed\n");
if (igt_spinner_init(&spin_hi, gt))
return -ENOMEM;
if (igt_spinner_init(&spin_lo, gt))
goto err_spin_hi;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
for_each_engine(engine, gt, id) {
struct igt_live_test t;
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
GEM_TRACE("lo spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_hi, ctx_hi, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_hi, rq)) {
GEM_TRACE("hi spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_ctx_lo;
}
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
err_spin_hi:
igt_spinner_fini(&spin_hi);
return err;
}
static int live_late_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_hi, spin_lo;
struct intel_engine_cs *engine;
struct i915_sched_attr attr = {};
enum intel_engine_id id;
int err = -ENOMEM;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (igt_spinner_init(&spin_hi, gt))
return -ENOMEM;
if (igt_spinner_init(&spin_lo, gt))
goto err_spin_hi;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
/* Make sure ctx_lo stays before ctx_hi until we trigger preemption. */
ctx_lo->sched.priority = I915_USER_PRIORITY(1);
for_each_engine(engine, gt, id) {
struct igt_live_test t;
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
pr_err("First context failed to start\n");
goto err_wedged;
}
rq = spinner_create_request(&spin_hi, ctx_hi, engine,
MI_NOOP);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (igt_wait_for_spinner(&spin_hi, rq)) {
pr_err("Second context overtook first?\n");
goto err_wedged;
}
attr.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX);
engine->schedule(rq, &attr);
if (!igt_wait_for_spinner(&spin_hi, rq)) {
pr_err("High priority context failed to preempt the low priority context\n");
GEM_TRACE_DUMP();
goto err_wedged;
}
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_ctx_lo;
}
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
err_spin_hi:
igt_spinner_fini(&spin_hi);
return err;
err_wedged:
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
struct preempt_client {
struct igt_spinner spin;
struct i915_gem_context *ctx;
};
static int preempt_client_init(struct intel_gt *gt, struct preempt_client *c)
{
c->ctx = kernel_context(gt->i915);
if (!c->ctx)
return -ENOMEM;
if (igt_spinner_init(&c->spin, gt))
goto err_ctx;
return 0;
err_ctx:
kernel_context_close(c->ctx);
return -ENOMEM;
}
static void preempt_client_fini(struct preempt_client *c)
{
igt_spinner_fini(&c->spin);
kernel_context_close(c->ctx);
}
static int live_nopreempt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct preempt_client a, b;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Verify that we can disable preemption for an individual request
* that may be being observed and not want to be interrupted.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &a))
return -ENOMEM;
if (preempt_client_init(gt, &b))
goto err_client_a;
b.ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX);
for_each_engine(engine, gt, id) {
struct i915_request *rq_a, *rq_b;
if (!intel_engine_has_preemption(engine))
continue;
engine->execlists.preempt_hang.count = 0;
rq_a = spinner_create_request(&a.spin,
a.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq_a)) {
err = PTR_ERR(rq_a);
goto err_client_b;
}
/* Low priority client, but unpreemptable! */
__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq_a->fence.flags);
i915_request_add(rq_a);
if (!igt_wait_for_spinner(&a.spin, rq_a)) {
pr_err("First client failed to start\n");
goto err_wedged;
}
rq_b = spinner_create_request(&b.spin,
b.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq_b)) {
err = PTR_ERR(rq_b);
goto err_client_b;
}
i915_request_add(rq_b);
/* B is much more important than A! (But A is unpreemptable.) */
GEM_BUG_ON(rq_prio(rq_b) <= rq_prio(rq_a));
/* Wait long enough for preemption and timeslicing */
if (igt_wait_for_spinner(&b.spin, rq_b)) {
pr_err("Second client started too early!\n");
goto err_wedged;
}
igt_spinner_end(&a.spin);
if (!igt_wait_for_spinner(&b.spin, rq_b)) {
pr_err("Second client failed to start\n");
goto err_wedged;
}
igt_spinner_end(&b.spin);
if (engine->execlists.preempt_hang.count) {
pr_err("Preemption recorded x%d; should have been suppressed!\n",
engine->execlists.preempt_hang.count);
err = -EINVAL;
goto err_wedged;
}
if (igt_flush_test(gt->i915))
goto err_wedged;
}
err = 0;
err_client_b:
preempt_client_fini(&b);
err_client_a:
preempt_client_fini(&a);
return err;
err_wedged:
igt_spinner_end(&b.spin);
igt_spinner_end(&a.spin);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_b;
}
struct live_preempt_cancel {
struct intel_engine_cs *engine;
struct preempt_client a, b;
};
static int __cancel_active0(struct live_preempt_cancel *arg)
{
struct i915_request *rq;
struct igt_live_test t;
int err;
/* Preempt cancel of ELSP0 */
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
if (igt_live_test_begin(&t, arg->engine->i915,
__func__, arg->engine->name))
return -EIO;
rq = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
return PTR_ERR(rq);
clear_bit(CONTEXT_BANNED, &rq->context->flags);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(&arg->a.spin, rq)) {
err = -EIO;
goto out;
}
intel_context_set_banned(rq->context);
err = intel_engine_pulse(arg->engine);
if (err)
goto out;
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -EIO;
goto out;
}
if (rq->fence.error != -EIO) {
pr_err("Cancelled inflight0 request did not report -EIO\n");
err = -EINVAL;
goto out;
}
out:
i915_request_put(rq);
if (igt_live_test_end(&t))
err = -EIO;
return err;
}
static int __cancel_active1(struct live_preempt_cancel *arg)
{
struct i915_request *rq[2] = {};
struct igt_live_test t;
int err;
/* Preempt cancel of ELSP1 */
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
if (igt_live_test_begin(&t, arg->engine->i915,
__func__, arg->engine->name))
return -EIO;
rq[0] = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_NOOP); /* no preemption */
if (IS_ERR(rq[0]))
return PTR_ERR(rq[0]);
clear_bit(CONTEXT_BANNED, &rq[0]->context->flags);
i915_request_get(rq[0]);
i915_request_add(rq[0]);
if (!igt_wait_for_spinner(&arg->a.spin, rq[0])) {
err = -EIO;
goto out;
}
rq[1] = spinner_create_request(&arg->b.spin,
arg->b.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq[1])) {
err = PTR_ERR(rq[1]);
goto out;
}
clear_bit(CONTEXT_BANNED, &rq[1]->context->flags);
i915_request_get(rq[1]);
err = i915_request_await_dma_fence(rq[1], &rq[0]->fence);
i915_request_add(rq[1]);
if (err)
goto out;
intel_context_set_banned(rq[1]->context);
err = intel_engine_pulse(arg->engine);
if (err)
goto out;
igt_spinner_end(&arg->a.spin);
if (i915_request_wait(rq[1], 0, HZ / 5) < 0) {
err = -EIO;
goto out;
}
if (rq[0]->fence.error != 0) {
pr_err("Normal inflight0 request did not complete\n");
err = -EINVAL;
goto out;
}
if (rq[1]->fence.error != -EIO) {
pr_err("Cancelled inflight1 request did not report -EIO\n");
err = -EINVAL;
goto out;
}
out:
i915_request_put(rq[1]);
i915_request_put(rq[0]);
if (igt_live_test_end(&t))
err = -EIO;
return err;
}
static int __cancel_queued(struct live_preempt_cancel *arg)
{
struct i915_request *rq[3] = {};
struct igt_live_test t;
int err;
/* Full ELSP and one in the wings */
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
if (igt_live_test_begin(&t, arg->engine->i915,
__func__, arg->engine->name))
return -EIO;
rq[0] = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq[0]))
return PTR_ERR(rq[0]);
clear_bit(CONTEXT_BANNED, &rq[0]->context->flags);
i915_request_get(rq[0]);
i915_request_add(rq[0]);
if (!igt_wait_for_spinner(&arg->a.spin, rq[0])) {
err = -EIO;
goto out;
}
rq[1] = igt_request_alloc(arg->b.ctx, arg->engine);
if (IS_ERR(rq[1])) {
err = PTR_ERR(rq[1]);
goto out;
}
clear_bit(CONTEXT_BANNED, &rq[1]->context->flags);
i915_request_get(rq[1]);
err = i915_request_await_dma_fence(rq[1], &rq[0]->fence);
i915_request_add(rq[1]);
if (err)
goto out;
rq[2] = spinner_create_request(&arg->b.spin,
arg->a.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq[2])) {
err = PTR_ERR(rq[2]);
goto out;
}
i915_request_get(rq[2]);
err = i915_request_await_dma_fence(rq[2], &rq[1]->fence);
i915_request_add(rq[2]);
if (err)
goto out;
intel_context_set_banned(rq[2]->context);
err = intel_engine_pulse(arg->engine);
if (err)
goto out;
if (i915_request_wait(rq[2], 0, HZ / 5) < 0) {
err = -EIO;
goto out;
}
if (rq[0]->fence.error != -EIO) {
pr_err("Cancelled inflight0 request did not report -EIO\n");
err = -EINVAL;
goto out;
}
if (rq[1]->fence.error != 0) {
pr_err("Normal inflight1 request did not complete\n");
err = -EINVAL;
goto out;
}
if (rq[2]->fence.error != -EIO) {
pr_err("Cancelled queued request did not report -EIO\n");
err = -EINVAL;
goto out;
}
out:
i915_request_put(rq[2]);
i915_request_put(rq[1]);
i915_request_put(rq[0]);
if (igt_live_test_end(&t))
err = -EIO;
return err;
}
static int __cancel_hostile(struct live_preempt_cancel *arg)
{
struct i915_request *rq;
int err;
/* Preempt cancel non-preemptible spinner in ELSP0 */
if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT))
return 0;
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
rq = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_NOOP); /* preemption disabled */
if (IS_ERR(rq))
return PTR_ERR(rq);
clear_bit(CONTEXT_BANNED, &rq->context->flags);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(&arg->a.spin, rq)) {
err = -EIO;
goto out;
}
intel_context_set_banned(rq->context);
err = intel_engine_pulse(arg->engine); /* force reset */
if (err)
goto out;
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -EIO;
goto out;
}
if (rq->fence.error != -EIO) {
pr_err("Cancelled inflight0 request did not report -EIO\n");
err = -EINVAL;
goto out;
}
out:
i915_request_put(rq);
if (igt_flush_test(arg->engine->i915))
err = -EIO;
return err;
}
static int live_preempt_cancel(void *arg)
{
struct intel_gt *gt = arg;
struct live_preempt_cancel data;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* To cancel an inflight context, we need to first remove it from the
* GPU. That sounds like preemption! Plus a little bit of bookkeeping.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &data.a))
return -ENOMEM;
if (preempt_client_init(gt, &data.b))
goto err_client_a;
for_each_engine(data.engine, gt, id) {
if (!intel_engine_has_preemption(data.engine))
continue;
err = __cancel_active0(&data);
if (err)
goto err_wedged;
err = __cancel_active1(&data);
if (err)
goto err_wedged;
err = __cancel_queued(&data);
if (err)
goto err_wedged;
err = __cancel_hostile(&data);
if (err)
goto err_wedged;
}
err = 0;
err_client_b:
preempt_client_fini(&data.b);
err_client_a:
preempt_client_fini(&data.a);
return err;
err_wedged:
GEM_TRACE_DUMP();
igt_spinner_end(&data.b.spin);
igt_spinner_end(&data.a.spin);
intel_gt_set_wedged(gt);
goto err_client_b;
}
static int live_suppress_self_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX)
};
struct preempt_client a, b;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Verify that if a preemption request does not cause a change in
* the current execution order, the preempt-to-idle injection is
* skipped and that we do not accidentally apply it after the CS
* completion event.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (USES_GUC_SUBMISSION(gt->i915))
return 0; /* presume black blox */
if (intel_vgpu_active(gt->i915))
return 0; /* GVT forces single port & request submission */
if (preempt_client_init(gt, &a))
return -ENOMEM;
if (preempt_client_init(gt, &b))
goto err_client_a;
for_each_engine(engine, gt, id) {
struct i915_request *rq_a, *rq_b;
int depth;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_flush_test(gt->i915))
goto err_wedged;
intel_engine_pm_get(engine);
engine->execlists.preempt_hang.count = 0;
rq_a = spinner_create_request(&a.spin,
a.ctx, engine,
MI_NOOP);
if (IS_ERR(rq_a)) {
err = PTR_ERR(rq_a);
intel_engine_pm_put(engine);
goto err_client_b;
}
i915_request_add(rq_a);
if (!igt_wait_for_spinner(&a.spin, rq_a)) {
pr_err("First client failed to start\n");
intel_engine_pm_put(engine);
goto err_wedged;
}
/* Keep postponing the timer to avoid premature slicing */
mod_timer(&engine->execlists.timer, jiffies + HZ);
for (depth = 0; depth < 8; depth++) {
rq_b = spinner_create_request(&b.spin,
b.ctx, engine,
MI_NOOP);
if (IS_ERR(rq_b)) {
err = PTR_ERR(rq_b);
intel_engine_pm_put(engine);
goto err_client_b;
}
i915_request_add(rq_b);
GEM_BUG_ON(i915_request_completed(rq_a));
engine->schedule(rq_a, &attr);
igt_spinner_end(&a.spin);
if (!igt_wait_for_spinner(&b.spin, rq_b)) {
pr_err("Second client failed to start\n");
intel_engine_pm_put(engine);
goto err_wedged;
}
swap(a, b);
rq_a = rq_b;
}
igt_spinner_end(&a.spin);
if (engine->execlists.preempt_hang.count) {
pr_err("Preemption on %s recorded x%d, depth %d; should have been suppressed!\n",
engine->name,
engine->execlists.preempt_hang.count,
depth);
intel_engine_pm_put(engine);
err = -EINVAL;
goto err_client_b;
}
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
goto err_wedged;
}
err = 0;
err_client_b:
preempt_client_fini(&b);
err_client_a:
preempt_client_fini(&a);
return err;
err_wedged:
igt_spinner_end(&b.spin);
igt_spinner_end(&a.spin);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_b;
}
static int __i915_sw_fence_call
dummy_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
return NOTIFY_DONE;
}
static struct i915_request *dummy_request(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = kzalloc(sizeof(*rq), GFP_KERNEL);
if (!rq)
return NULL;
rq->engine = engine;
spin_lock_init(&rq->lock);
INIT_LIST_HEAD(&rq->fence.cb_list);
rq->fence.lock = &rq->lock;
rq->fence.ops = &i915_fence_ops;
i915_sched_node_init(&rq->sched);
/* mark this request as permanently incomplete */
rq->fence.seqno = 1;
BUILD_BUG_ON(sizeof(rq->fence.seqno) != 8); /* upper 32b == 0 */
rq->hwsp_seqno = (u32 *)&rq->fence.seqno + 1;
GEM_BUG_ON(i915_request_completed(rq));
i915_sw_fence_init(&rq->submit, dummy_notify);
set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
spin_lock_init(&rq->lock);
rq->fence.lock = &rq->lock;
INIT_LIST_HEAD(&rq->fence.cb_list);
return rq;
}
static void dummy_request_free(struct i915_request *dummy)
{
/* We have to fake the CS interrupt to kick the next request */
i915_sw_fence_commit(&dummy->submit);
i915_request_mark_complete(dummy);
dma_fence_signal(&dummy->fence);
i915_sched_node_fini(&dummy->sched);
i915_sw_fence_fini(&dummy->submit);
dma_fence_free(&dummy->fence);
}
static int live_suppress_wait_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct preempt_client client[4];
struct i915_request *rq[ARRAY_SIZE(client)] = {};
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
int i;
/*
* Waiters are given a little priority nudge, but not enough
* to actually cause any preemption. Double check that we do
* not needlessly generate preempt-to-idle cycles.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &client[0])) /* ELSP[0] */
return -ENOMEM;
if (preempt_client_init(gt, &client[1])) /* ELSP[1] */
goto err_client_0;
if (preempt_client_init(gt, &client[2])) /* head of queue */
goto err_client_1;
if (preempt_client_init(gt, &client[3])) /* bystander */
goto err_client_2;
for_each_engine(engine, gt, id) {
int depth;
if (!intel_engine_has_preemption(engine))
continue;
if (!engine->emit_init_breadcrumb)
continue;
for (depth = 0; depth < ARRAY_SIZE(client); depth++) {
struct i915_request *dummy;
engine->execlists.preempt_hang.count = 0;
dummy = dummy_request(engine);
if (!dummy)
goto err_client_3;
for (i = 0; i < ARRAY_SIZE(client); i++) {
struct i915_request *this;
this = spinner_create_request(&client[i].spin,
client[i].ctx, engine,
MI_NOOP);
if (IS_ERR(this)) {
err = PTR_ERR(this);
goto err_wedged;
}
/* Disable NEWCLIENT promotion */
__i915_active_fence_set(&i915_request_timeline(this)->last_request,
&dummy->fence);
rq[i] = i915_request_get(this);
i915_request_add(this);
}
dummy_request_free(dummy);
GEM_BUG_ON(i915_request_completed(rq[0]));
if (!igt_wait_for_spinner(&client[0].spin, rq[0])) {
pr_err("%s: First client failed to start\n",
engine->name);
goto err_wedged;
}
GEM_BUG_ON(!i915_request_started(rq[0]));
if (i915_request_wait(rq[depth],
I915_WAIT_PRIORITY,
1) != -ETIME) {
pr_err("%s: Waiter depth:%d completed!\n",
engine->name, depth);
goto err_wedged;
}
for (i = 0; i < ARRAY_SIZE(client); i++) {
igt_spinner_end(&client[i].spin);
i915_request_put(rq[i]);
rq[i] = NULL;
}
if (igt_flush_test(gt->i915))
goto err_wedged;
if (engine->execlists.preempt_hang.count) {
pr_err("%s: Preemption recorded x%d, depth %d; should have been suppressed!\n",
engine->name,
engine->execlists.preempt_hang.count,
depth);
err = -EINVAL;
goto err_client_3;
}
}
}
err = 0;
err_client_3:
preempt_client_fini(&client[3]);
err_client_2:
preempt_client_fini(&client[2]);
err_client_1:
preempt_client_fini(&client[1]);
err_client_0:
preempt_client_fini(&client[0]);
return err;
err_wedged:
for (i = 0; i < ARRAY_SIZE(client); i++) {
igt_spinner_end(&client[i].spin);
i915_request_put(rq[i]);
}
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_3;
}
static int live_chain_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct preempt_client hi, lo;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Build a chain AB...BA between two contexts (A, B) and request
* preemption of the last request. It should then complete before
* the previously submitted spinner in B.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &hi))
return -ENOMEM;
if (preempt_client_init(gt, &lo))
goto err_client_hi;
for_each_engine(engine, gt, id) {
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX),
};
struct igt_live_test t;
struct i915_request *rq;
int ring_size, count, i;
if (!intel_engine_has_preemption(engine))
continue;
rq = spinner_create_request(&lo.spin,
lo.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
goto err_wedged;
i915_request_get(rq);
i915_request_add(rq);
ring_size = rq->wa_tail - rq->head;
if (ring_size < 0)
ring_size += rq->ring->size;
ring_size = rq->ring->size / ring_size;
pr_debug("%s(%s): Using maximum of %d requests\n",
__func__, engine->name, ring_size);
igt_spinner_end(&lo.spin);
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
pr_err("Timed out waiting to flush %s\n", engine->name);
i915_request_put(rq);
goto err_wedged;
}
i915_request_put(rq);
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_wedged;
}
for_each_prime_number_from(count, 1, ring_size) {
rq = spinner_create_request(&hi.spin,
hi.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
goto err_wedged;
i915_request_add(rq);
if (!igt_wait_for_spinner(&hi.spin, rq))
goto err_wedged;
rq = spinner_create_request(&lo.spin,
lo.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
goto err_wedged;
i915_request_add(rq);
for (i = 0; i < count; i++) {
rq = igt_request_alloc(lo.ctx, engine);
if (IS_ERR(rq))
goto err_wedged;
i915_request_add(rq);
}
rq = igt_request_alloc(hi.ctx, engine);
if (IS_ERR(rq))
goto err_wedged;
i915_request_get(rq);
i915_request_add(rq);
engine->schedule(rq, &attr);
igt_spinner_end(&hi.spin);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
pr_err("Failed to preempt over chain of %d\n",
count);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
i915_request_put(rq);
goto err_wedged;
}
igt_spinner_end(&lo.spin);
i915_request_put(rq);
rq = igt_request_alloc(lo.ctx, engine);
if (IS_ERR(rq))
goto err_wedged;
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
pr_err("Failed to flush low priority chain of %d requests\n",
count);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
i915_request_put(rq);
goto err_wedged;
}
i915_request_put(rq);
}
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_wedged;
}
}
err = 0;
err_client_lo:
preempt_client_fini(&lo);
err_client_hi:
preempt_client_fini(&hi);
return err;
err_wedged:
igt_spinner_end(&hi.spin);
igt_spinner_end(&lo.spin);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_lo;
}
static int create_gang(struct intel_engine_cs *engine,
struct i915_request **prev)
{
struct drm_i915_gem_object *obj;
struct intel_context *ce;
struct i915_request *rq;
struct i915_vma *vma;
u32 *cs;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
obj = i915_gem_object_create_internal(engine->i915, 4096);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_ce;
}
vma = i915_vma_instance(obj, ce->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto err_obj;
cs = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(cs))
goto err_obj;
/* Semaphore target: spin until zero */
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = lower_32_bits(vma->node.start);
*cs++ = upper_32_bits(vma->node.start);
if (*prev) {
u64 offset = (*prev)->batch->node.start;
/* Terminate the spinner in the next lower priority batch. */
*cs++ = MI_STORE_DWORD_IMM_GEN4;
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = 0;
}
*cs++ = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(obj);
i915_gem_object_unpin_map(obj);
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
goto err_obj;
rq->batch = vma;
i915_request_get(rq);
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
vma->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(vma);
i915_request_add(rq);
if (err)
goto err_rq;
i915_gem_object_put(obj);
intel_context_put(ce);
rq->client_link.next = &(*prev)->client_link;
*prev = rq;
return 0;
err_rq:
i915_request_put(rq);
err_obj:
i915_gem_object_put(obj);
err_ce:
intel_context_put(ce);
return err;
}
static int live_preempt_gang(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
/*
* Build as long a chain of preempters as we can, with each
* request higher priority than the last. Once we are ready, we release
* the last batch which then precolates down the chain, each releasing
* the next oldest in turn. The intent is to simply push as hard as we
* can with the number of preemptions, trying to exceed narrow HW
* limits. At a minimum, we insist that we can sort all the user
* high priority levels into execution order.
*/
for_each_engine(engine, gt, id) {
struct i915_request *rq = NULL;
struct igt_live_test t;
IGT_TIMEOUT(end_time);
int prio = 0;
int err = 0;
u32 *cs;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name))
return -EIO;
do {
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(prio++),
};
err = create_gang(engine, &rq);
if (err)
break;
/* Submit each spinner at increasing priority */
engine->schedule(rq, &attr);
if (prio <= I915_PRIORITY_MAX)
continue;
if (prio > (INT_MAX >> I915_USER_PRIORITY_SHIFT))
break;
if (__igt_timeout(end_time, NULL))
break;
} while (1);
pr_debug("%s: Preempt chain of %d requests\n",
engine->name, prio);
/*
* Such that the last spinner is the highest priority and
* should execute first. When that spinner completes,
* it will terminate the next lowest spinner until there
* are no more spinners and the gang is complete.
*/
cs = i915_gem_object_pin_map(rq->batch->obj, I915_MAP_WC);
if (!IS_ERR(cs)) {
*cs = 0;
i915_gem_object_unpin_map(rq->batch->obj);
} else {
err = PTR_ERR(cs);
intel_gt_set_wedged(gt);
}
while (rq) { /* wait for each rq from highest to lowest prio */
struct i915_request *n =
list_next_entry(rq, client_link);
if (err == 0 && i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(engine->i915->drm.dev);
pr_err("Failed to flush chain of %d requests, at %d\n",
prio, rq_prio(rq) >> I915_USER_PRIORITY_SHIFT);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
err = -ETIME;
}
i915_request_put(rq);
rq = n;
}
if (igt_live_test_end(&t))
err = -EIO;
if (err)
return err;
}
return 0;
}
static int live_preempt_hang(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_hi, spin_lo;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (!intel_has_reset_engine(gt))
return 0;
if (igt_spinner_init(&spin_hi, gt))
return -ENOMEM;
if (igt_spinner_init(&spin_lo, gt))
goto err_spin_hi;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
for_each_engine(engine, gt, id) {
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
GEM_TRACE("lo spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_hi, ctx_hi, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
init_completion(&engine->execlists.preempt_hang.completion);
engine->execlists.preempt_hang.inject_hang = true;
i915_request_add(rq);
if (!wait_for_completion_timeout(&engine->execlists.preempt_hang.completion,
HZ / 10)) {
pr_err("Preemption did not occur within timeout!");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
set_bit(I915_RESET_ENGINE + id, &gt->reset.flags);
intel_engine_reset(engine, NULL);
clear_bit(I915_RESET_ENGINE + id, &gt->reset.flags);
engine->execlists.preempt_hang.inject_hang = false;
if (!igt_wait_for_spinner(&spin_hi, rq)) {
GEM_TRACE("hi spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
if (igt_flush_test(gt->i915)) {
err = -EIO;
goto err_ctx_lo;
}
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
err_spin_hi:
igt_spinner_fini(&spin_hi);
return err;
}
static int live_preempt_timeout(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_lo;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Check that we force preemption to occur by cancelling the previous
* context if it refuses to yield the GPU.
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT))
return 0;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (!intel_has_reset_engine(gt))
return 0;
if (igt_spinner_init(&spin_lo, gt))
return -ENOMEM;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
for_each_engine(engine, gt, id) {
unsigned long saved_timeout;
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_NOOP); /* preemption disabled */
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
rq = igt_request_alloc(ctx_hi, engine);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
/* Flush the previous CS ack before changing timeouts */
while (READ_ONCE(engine->execlists.pending[0]))
cpu_relax();
saved_timeout = engine->props.preempt_timeout_ms;
engine->props.preempt_timeout_ms = 1; /* in ms, -> 1 jiffie */
i915_request_get(rq);
i915_request_add(rq);
intel_engine_flush_submission(engine);
engine->props.preempt_timeout_ms = saved_timeout;
if (i915_request_wait(rq, 0, HZ / 10) < 0) {
intel_gt_set_wedged(gt);
i915_request_put(rq);
err = -ETIME;
goto err_ctx_lo;
}
igt_spinner_end(&spin_lo);
i915_request_put(rq);
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
return err;
}
static int random_range(struct rnd_state *rnd, int min, int max)
{
return i915_prandom_u32_max_state(max - min, rnd) + min;
}
static int random_priority(struct rnd_state *rnd)
{
return random_range(rnd, I915_PRIORITY_MIN, I915_PRIORITY_MAX);
}
struct preempt_smoke {
struct intel_gt *gt;
struct i915_gem_context **contexts;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *batch;
unsigned int ncontext;
struct rnd_state prng;
unsigned long count;
};
static struct i915_gem_context *smoke_context(struct preempt_smoke *smoke)
{
return smoke->contexts[i915_prandom_u32_max_state(smoke->ncontext,
&smoke->prng)];
}
static int smoke_submit(struct preempt_smoke *smoke,
struct i915_gem_context *ctx, int prio,
struct drm_i915_gem_object *batch)
{
struct i915_request *rq;
struct i915_vma *vma = NULL;
int err = 0;
if (batch) {
struct i915_address_space *vm;
vm = i915_gem_context_get_vm_rcu(ctx);
vma = i915_vma_instance(batch, vm, NULL);
i915_vm_put(vm);
if (IS_ERR(vma))
return PTR_ERR(vma);
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
return err;
}
ctx->sched.priority = prio;
rq = igt_request_alloc(ctx, smoke->engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto unpin;
}
if (vma) {
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
vma->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(vma);
}
i915_request_add(rq);
unpin:
if (vma)
i915_vma_unpin(vma);
return err;
}
static int smoke_crescendo_thread(void *arg)
{
struct preempt_smoke *smoke = arg;
IGT_TIMEOUT(end_time);
unsigned long count;
count = 0;
do {
struct i915_gem_context *ctx = smoke_context(smoke);
int err;
err = smoke_submit(smoke,
ctx, count % I915_PRIORITY_MAX,
smoke->batch);
if (err)
return err;
count++;
} while (!__igt_timeout(end_time, NULL));
smoke->count = count;
return 0;
}
static int smoke_crescendo(struct preempt_smoke *smoke, unsigned int flags)
#define BATCH BIT(0)
{
struct task_struct *tsk[I915_NUM_ENGINES] = {};
struct preempt_smoke arg[I915_NUM_ENGINES];
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned long count;
int err = 0;
for_each_engine(engine, smoke->gt, id) {
arg[id] = *smoke;
arg[id].engine = engine;
if (!(flags & BATCH))
arg[id].batch = NULL;
arg[id].count = 0;
tsk[id] = kthread_run(smoke_crescendo_thread, &arg,
"igt/smoke:%d", id);
if (IS_ERR(tsk[id])) {
err = PTR_ERR(tsk[id]);
break;
}
get_task_struct(tsk[id]);
}
yield(); /* start all threads before we kthread_stop() */
count = 0;
for_each_engine(engine, smoke->gt, id) {
int status;
if (IS_ERR_OR_NULL(tsk[id]))
continue;
status = kthread_stop(tsk[id]);
if (status && !err)
err = status;
count += arg[id].count;
put_task_struct(tsk[id]);
}
pr_info("Submitted %lu crescendo:%x requests across %d engines and %d contexts\n",
count, flags,
RUNTIME_INFO(smoke->gt->i915)->num_engines, smoke->ncontext);
return 0;
}
static int smoke_random(struct preempt_smoke *smoke, unsigned int flags)
{
enum intel_engine_id id;
IGT_TIMEOUT(end_time);
unsigned long count;
count = 0;
do {
for_each_engine(smoke->engine, smoke->gt, id) {
struct i915_gem_context *ctx = smoke_context(smoke);
int err;
err = smoke_submit(smoke,
ctx, random_priority(&smoke->prng),
flags & BATCH ? smoke->batch : NULL);
if (err)
return err;
count++;
}
} while (!__igt_timeout(end_time, NULL));
pr_info("Submitted %lu random:%x requests across %d engines and %d contexts\n",
count, flags,
RUNTIME_INFO(smoke->gt->i915)->num_engines, smoke->ncontext);
return 0;
}
static int live_preempt_smoke(void *arg)
{
struct preempt_smoke smoke = {
.gt = arg,
.prng = I915_RND_STATE_INITIALIZER(i915_selftest.random_seed),
.ncontext = 1024,
};
const unsigned int phase[] = { 0, BATCH };
struct igt_live_test t;
int err = -ENOMEM;
u32 *cs;
int n;
if (!HAS_LOGICAL_RING_PREEMPTION(smoke.gt->i915))
return 0;
smoke.contexts = kmalloc_array(smoke.ncontext,
sizeof(*smoke.contexts),
GFP_KERNEL);
if (!smoke.contexts)
return -ENOMEM;
smoke.batch =
i915_gem_object_create_internal(smoke.gt->i915, PAGE_SIZE);
if (IS_ERR(smoke.batch)) {
err = PTR_ERR(smoke.batch);
goto err_free;
}
cs = i915_gem_object_pin_map(smoke.batch, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_batch;
}
for (n = 0; n < PAGE_SIZE / sizeof(*cs) - 1; n++)
cs[n] = MI_ARB_CHECK;
cs[n] = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(smoke.batch);
i915_gem_object_unpin_map(smoke.batch);
if (igt_live_test_begin(&t, smoke.gt->i915, __func__, "all")) {
err = -EIO;
goto err_batch;
}
for (n = 0; n < smoke.ncontext; n++) {
smoke.contexts[n] = kernel_context(smoke.gt->i915);
if (!smoke.contexts[n])
goto err_ctx;
}
for (n = 0; n < ARRAY_SIZE(phase); n++) {
err = smoke_crescendo(&smoke, phase[n]);
if (err)
goto err_ctx;
err = smoke_random(&smoke, phase[n]);
if (err)
goto err_ctx;
}
err_ctx:
if (igt_live_test_end(&t))
err = -EIO;
for (n = 0; n < smoke.ncontext; n++) {
if (!smoke.contexts[n])
break;
kernel_context_close(smoke.contexts[n]);
}
err_batch:
i915_gem_object_put(smoke.batch);
err_free:
kfree(smoke.contexts);
return err;
}
static int nop_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling,
unsigned int nctx,
unsigned int flags)
#define CHAIN BIT(0)
{
IGT_TIMEOUT(end_time);
struct i915_request *request[16] = {};
struct intel_context *ve[16];
unsigned long n, prime, nc;
struct igt_live_test t;
ktime_t times[2] = {};
int err;
GEM_BUG_ON(!nctx || nctx > ARRAY_SIZE(ve));
for (n = 0; n < nctx; n++) {
ve[n] = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve[n])) {
err = PTR_ERR(ve[n]);
nctx = n;
goto out;
}
err = intel_context_pin(ve[n]);
if (err) {
intel_context_put(ve[n]);
nctx = n;
goto out;
}
}
err = igt_live_test_begin(&t, gt->i915, __func__, ve[0]->engine->name);
if (err)
goto out;
for_each_prime_number_from(prime, 1, 8192) {
times[1] = ktime_get_raw();
if (flags & CHAIN) {
for (nc = 0; nc < nctx; nc++) {
for (n = 0; n < prime; n++) {
struct i915_request *rq;
rq = i915_request_create(ve[nc]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
if (request[nc])
i915_request_put(request[nc]);
request[nc] = i915_request_get(rq);
i915_request_add(rq);
}
}
} else {
for (n = 0; n < prime; n++) {
for (nc = 0; nc < nctx; nc++) {
struct i915_request *rq;
rq = i915_request_create(ve[nc]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
if (request[nc])
i915_request_put(request[nc]);
request[nc] = i915_request_get(rq);
i915_request_add(rq);
}
}
}
for (nc = 0; nc < nctx; nc++) {
if (i915_request_wait(request[nc], 0, HZ / 10) < 0) {
pr_err("%s(%s): wait for %llx:%lld timed out\n",
__func__, ve[0]->engine->name,
request[nc]->fence.context,
request[nc]->fence.seqno);
GEM_TRACE("%s(%s) failed at request %llx:%lld\n",
__func__, ve[0]->engine->name,
request[nc]->fence.context,
request[nc]->fence.seqno);
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
break;
}
}
times[1] = ktime_sub(ktime_get_raw(), times[1]);
if (prime == 1)
times[0] = times[1];
for (nc = 0; nc < nctx; nc++) {
i915_request_put(request[nc]);
request[nc] = NULL;
}
if (__igt_timeout(end_time, NULL))
break;
}
err = igt_live_test_end(&t);
if (err)
goto out;
pr_info("Requestx%d latencies on %s: 1 = %lluns, %lu = %lluns\n",
nctx, ve[0]->engine->name, ktime_to_ns(times[0]),
prime, div64_u64(ktime_to_ns(times[1]), prime));
out:
if (igt_flush_test(gt->i915))
err = -EIO;
for (nc = 0; nc < nctx; nc++) {
i915_request_put(request[nc]);
intel_context_unpin(ve[nc]);
intel_context_put(ve[nc]);
}
return err;
}
static int live_virtual_engine(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned int class, inst;
int err;
if (USES_GUC_SUBMISSION(gt->i915))
return 0;
for_each_engine(engine, gt, id) {
err = nop_virtual_engine(gt, &engine, 1, 1, 0);
if (err) {
pr_err("Failed to wrap engine %s: err=%d\n",
engine->name, err);
return err;
}
}
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
int nsibling, n;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
continue;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
for (n = 1; n <= nsibling + 1; n++) {
err = nop_virtual_engine(gt, siblings, nsibling,
n, 0);
if (err)
return err;
}
err = nop_virtual_engine(gt, siblings, nsibling, n, CHAIN);
if (err)
return err;
}
return 0;
}
static int mask_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling)
{
struct i915_request *request[MAX_ENGINE_INSTANCE + 1];
struct intel_context *ve;
struct igt_live_test t;
unsigned int n;
int err;
/*
* Check that by setting the execution mask on a request, we can
* restrict it to our desired engine within the virtual engine.
*/
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
goto out_close;
}
err = intel_context_pin(ve);
if (err)
goto out_put;
err = igt_live_test_begin(&t, gt->i915, __func__, ve->engine->name);
if (err)
goto out_unpin;
for (n = 0; n < nsibling; n++) {
request[n] = i915_request_create(ve);
if (IS_ERR(request[n])) {
err = PTR_ERR(request[n]);
nsibling = n;
goto out;
}
/* Reverse order as it's more likely to be unnatural */
request[n]->execution_mask = siblings[nsibling - n - 1]->mask;
i915_request_get(request[n]);
i915_request_add(request[n]);
}
for (n = 0; n < nsibling; n++) {
if (i915_request_wait(request[n], 0, HZ / 10) < 0) {
pr_err("%s(%s): wait for %llx:%lld timed out\n",
__func__, ve->engine->name,
request[n]->fence.context,
request[n]->fence.seqno);
GEM_TRACE("%s(%s) failed at request %llx:%lld\n",
__func__, ve->engine->name,
request[n]->fence.context,
request[n]->fence.seqno);
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto out;
}
if (request[n]->engine != siblings[nsibling - n - 1]) {
pr_err("Executed on wrong sibling '%s', expected '%s'\n",
request[n]->engine->name,
siblings[nsibling - n - 1]->name);
err = -EINVAL;
goto out;
}
}
err = igt_live_test_end(&t);
out:
if (igt_flush_test(gt->i915))
err = -EIO;
for (n = 0; n < nsibling; n++)
i915_request_put(request[n]);
out_unpin:
intel_context_unpin(ve);
out_put:
intel_context_put(ve);
out_close:
return err;
}
static int live_virtual_mask(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
int err;
if (USES_GUC_SUBMISSION(gt->i915))
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
unsigned int nsibling;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
break;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
err = mask_virtual_engine(gt, siblings, nsibling);
if (err)
return err;
}
return 0;
}
static int preserved_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling)
{
struct i915_request *last = NULL;
struct intel_context *ve;
struct i915_vma *scratch;
struct igt_live_test t;
unsigned int n;
int err = 0;
u32 *cs;
scratch = create_scratch(siblings[0]->gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
goto out_scratch;
}
err = intel_context_pin(ve);
if (err)
goto out_put;
err = igt_live_test_begin(&t, gt->i915, __func__, ve->engine->name);
if (err)
goto out_unpin;
for (n = 0; n < NUM_GPR_DW; n++) {
struct intel_engine_cs *engine = siblings[n % nsibling];
struct i915_request *rq;
rq = i915_request_create(ve);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_end;
}
i915_request_put(last);
last = i915_request_get(rq);
cs = intel_ring_begin(rq, 8);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto out_end;
}
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = CS_GPR(engine, n);
*cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32);
*cs++ = 0;
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = CS_GPR(engine, (n + 1) % NUM_GPR_DW);
*cs++ = n + 1;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
/* Restrict this request to run on a particular engine */
rq->execution_mask = engine->mask;
i915_request_add(rq);
}
if (i915_request_wait(last, 0, HZ / 5) < 0) {
err = -ETIME;
goto out_end;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto out_end;
}
for (n = 0; n < NUM_GPR_DW; n++) {
if (cs[n] != n) {
pr_err("Incorrect value[%d] found for GPR[%d]\n",
cs[n], n);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
out_end:
if (igt_live_test_end(&t))
err = -EIO;
i915_request_put(last);
out_unpin:
intel_context_unpin(ve);
out_put:
intel_context_put(ve);
out_scratch:
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static int live_virtual_preserved(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
/*
* Check that the context image retains non-privileged (user) registers
* from one engine to the next. For this we check that the CS_GPR
* are preserved.
*/
if (USES_GUC_SUBMISSION(gt->i915))
return 0;
/* As we use CS_GPR we cannot run before they existed on all engines. */
if (INTEL_GEN(gt->i915) < 9)
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
int nsibling, err;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
continue;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
err = preserved_virtual_engine(gt, siblings, nsibling);
if (err)
return err;
}
return 0;
}
static int bond_virtual_engine(struct intel_gt *gt,
unsigned int class,
struct intel_engine_cs **siblings,
unsigned int nsibling,
unsigned int flags)
#define BOND_SCHEDULE BIT(0)
{
struct intel_engine_cs *master;
struct i915_request *rq[16];
enum intel_engine_id id;
struct igt_spinner spin;
unsigned long n;
int err;
/*
* A set of bonded requests is intended to be run concurrently
* across a number of engines. We use one request per-engine
* and a magic fence to schedule each of the bonded requests
* at the same time. A consequence of our current scheduler is that
* we only move requests to the HW ready queue when the request
* becomes ready, that is when all of its prerequisite fences have
* been signaled. As one of those fences is the master submit fence,
* there is a delay on all secondary fences as the HW may be
* currently busy. Equally, as all the requests are independent,
* they may have other fences that delay individual request
* submission to HW. Ergo, we do not guarantee that all requests are
* immediately submitted to HW at the same time, just that if the
* rules are abided by, they are ready at the same time as the
* first is submitted. Userspace can embed semaphores in its batch
* to ensure parallel execution of its phases as it requires.
* Though naturally it gets requested that perhaps the scheduler should
* take care of parallel execution, even across preemption events on
* different HW. (The proper answer is of course "lalalala".)
*
* With the submit-fence, we have identified three possible phases
* of synchronisation depending on the master fence: queued (not
* ready), executing, and signaled. The first two are quite simple
* and checked below. However, the signaled master fence handling is
* contentious. Currently we do not distinguish between a signaled
* fence and an expired fence, as once signaled it does not convey
* any information about the previous execution. It may even be freed
* and hence checking later it may not exist at all. Ergo we currently
* do not apply the bonding constraint for an already signaled fence,
* as our expectation is that it should not constrain the secondaries
* and is outside of the scope of the bonded request API (i.e. all
* userspace requests are meant to be running in parallel). As
* it imposes no constraint, and is effectively a no-op, we do not
* check below as normal execution flows are checked extensively above.
*
* XXX Is the degenerate handling of signaled submit fences the
* expected behaviour for userpace?
*/
GEM_BUG_ON(nsibling >= ARRAY_SIZE(rq) - 1);
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
err = 0;
rq[0] = ERR_PTR(-ENOMEM);
for_each_engine(master, gt, id) {
struct i915_sw_fence fence = {};
if (master->class == class)
continue;
memset_p((void *)rq, ERR_PTR(-EINVAL), ARRAY_SIZE(rq));
rq[0] = igt_spinner_create_request(&spin,
master->kernel_context,
MI_NOOP);
if (IS_ERR(rq[0])) {
err = PTR_ERR(rq[0]);
goto out;
}
i915_request_get(rq[0]);
if (flags & BOND_SCHEDULE) {
onstack_fence_init(&fence);
err = i915_sw_fence_await_sw_fence_gfp(&rq[0]->submit,
&fence,
GFP_KERNEL);
}
i915_request_add(rq[0]);
if (err < 0)
goto out;
if (!(flags & BOND_SCHEDULE) &&
!igt_wait_for_spinner(&spin, rq[0])) {
err = -EIO;
goto out;
}
for (n = 0; n < nsibling; n++) {
struct intel_context *ve;
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
onstack_fence_fini(&fence);
goto out;
}
err = intel_virtual_engine_attach_bond(ve->engine,
master,
siblings[n]);
if (err) {
intel_context_put(ve);
onstack_fence_fini(&fence);
goto out;
}
err = intel_context_pin(ve);
intel_context_put(ve);
if (err) {
onstack_fence_fini(&fence);
goto out;
}
rq[n + 1] = i915_request_create(ve);
intel_context_unpin(ve);
if (IS_ERR(rq[n + 1])) {
err = PTR_ERR(rq[n + 1]);
onstack_fence_fini(&fence);
goto out;
}
i915_request_get(rq[n + 1]);
err = i915_request_await_execution(rq[n + 1],
&rq[0]->fence,
ve->engine->bond_execute);
i915_request_add(rq[n + 1]);
if (err < 0) {
onstack_fence_fini(&fence);
goto out;
}
}
onstack_fence_fini(&fence);
intel_engine_flush_submission(master);
igt_spinner_end(&spin);
if (i915_request_wait(rq[0], 0, HZ / 10) < 0) {
pr_err("Master request did not execute (on %s)!\n",
rq[0]->engine->name);
err = -EIO;
goto out;
}
for (n = 0; n < nsibling; n++) {
if (i915_request_wait(rq[n + 1], 0,
MAX_SCHEDULE_TIMEOUT) < 0) {
err = -EIO;
goto out;
}
if (rq[n + 1]->engine != siblings[n]) {
pr_err("Bonded request did not execute on target engine: expected %s, used %s; master was %s\n",
siblings[n]->name,
rq[n + 1]->engine->name,
rq[0]->engine->name);
err = -EINVAL;
goto out;
}
}
for (n = 0; !IS_ERR(rq[n]); n++)
i915_request_put(rq[n]);
rq[0] = ERR_PTR(-ENOMEM);
}
out:
for (n = 0; !IS_ERR(rq[n]); n++)
i915_request_put(rq[n]);
if (igt_flush_test(gt->i915))
err = -EIO;
igt_spinner_fini(&spin);
return err;
}
static int live_virtual_bond(void *arg)
{
static const struct phase {
const char *name;
unsigned int flags;
} phases[] = {
{ "", 0 },
{ "schedule", BOND_SCHEDULE },
{ },
};
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
int err;
if (USES_GUC_SUBMISSION(gt->i915))
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
const struct phase *p;
int nsibling;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
break;
GEM_BUG_ON(nsibling == ARRAY_SIZE(siblings));
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
for (p = phases; p->name; p++) {
err = bond_virtual_engine(gt,
class, siblings, nsibling,
p->flags);
if (err) {
pr_err("%s(%s): failed class=%d, nsibling=%d, err=%d\n",
__func__, p->name, class, nsibling, err);
return err;
}
}
}
return 0;
}
int intel_execlists_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_sanitycheck),
SUBTEST(live_unlite_switch),
SUBTEST(live_unlite_preempt),
SUBTEST(live_hold_reset),
SUBTEST(live_timeslice_preempt),
SUBTEST(live_timeslice_queue),
SUBTEST(live_busywait_preempt),
SUBTEST(live_preempt),
SUBTEST(live_late_preempt),
SUBTEST(live_nopreempt),
SUBTEST(live_preempt_cancel),
SUBTEST(live_suppress_self_preempt),
SUBTEST(live_suppress_wait_preempt),
SUBTEST(live_chain_preempt),
SUBTEST(live_preempt_gang),
SUBTEST(live_preempt_hang),
SUBTEST(live_preempt_timeout),
SUBTEST(live_preempt_smoke),
SUBTEST(live_virtual_engine),
SUBTEST(live_virtual_mask),
SUBTEST(live_virtual_preserved),
SUBTEST(live_virtual_bond),
};
if (!HAS_EXECLISTS(i915))
return 0;
if (intel_gt_is_wedged(&i915->gt))
return 0;
return intel_gt_live_subtests(tests, &i915->gt);
}
static void hexdump(const void *buf, size_t len)
{
const size_t rowsize = 8 * sizeof(u32);
const void *prev = NULL;
bool skip = false;
size_t pos;
for (pos = 0; pos < len; pos += rowsize) {
char line[128];
if (prev && !memcmp(prev, buf + pos, rowsize)) {
if (!skip) {
pr_info("*\n");
skip = true;
}
continue;
}
WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
rowsize, sizeof(u32),
line, sizeof(line),
false) >= sizeof(line));
pr_info("[%04zx] %s\n", pos, line);
prev = buf + pos;
skip = false;
}
}
static int live_lrc_layout(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 *lrc;
int err;
/*
* Check the registers offsets we use to create the initial reg state
* match the layout saved by HW.
*/
lrc = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!lrc)
return -ENOMEM;
err = 0;
for_each_engine(engine, gt, id) {
u32 *hw;
int dw;
if (!engine->default_state)
continue;
hw = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (IS_ERR(hw)) {
err = PTR_ERR(hw);
break;
}
hw += LRC_STATE_PN * PAGE_SIZE / sizeof(*hw);
execlists_init_reg_state(memset(lrc, POISON_INUSE, PAGE_SIZE),
engine->kernel_context,
engine,
engine->kernel_context->ring,
true);
dw = 0;
do {
u32 lri = hw[dw];
if (lri == 0) {
dw++;
continue;
}
if (lrc[dw] == 0) {
pr_debug("%s: skipped instruction %x at dword %d\n",
engine->name, lri, dw);
dw++;
continue;
}
if ((lri & GENMASK(31, 23)) != MI_INSTR(0x22, 0)) {
pr_err("%s: Expected LRI command at dword %d, found %08x\n",
engine->name, dw, lri);
err = -EINVAL;
break;
}
if (lrc[dw] != lri) {
pr_err("%s: LRI command mismatch at dword %d, expected %08x found %08x\n",
engine->name, dw, lri, lrc[dw]);
err = -EINVAL;
break;
}
lri &= 0x7f;
lri++;
dw++;
while (lri) {
if (hw[dw] != lrc[dw]) {
pr_err("%s: Different registers found at dword %d, expected %x, found %x\n",
engine->name, dw, hw[dw], lrc[dw]);
err = -EINVAL;
break;
}
/*
* Skip over the actual register value as we
* expect that to differ.
*/
dw += 2;
lri -= 2;
}
} while ((lrc[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
if (err) {
pr_info("%s: HW register image:\n", engine->name);
hexdump(hw, PAGE_SIZE);
pr_info("%s: SW register image:\n", engine->name);
hexdump(lrc, PAGE_SIZE);
}
i915_gem_object_unpin_map(engine->default_state);
if (err)
break;
}
kfree(lrc);
return err;
}
static int find_offset(const u32 *lri, u32 offset)
{
int i;
for (i = 0; i < PAGE_SIZE / sizeof(u32); i++)
if (lri[i] == offset)
return i;
return -1;
}
static int live_lrc_fixed(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* Check the assumed register offsets match the actual locations in
* the context image.
*/
for_each_engine(engine, gt, id) {
const struct {
u32 reg;
u32 offset;
const char *name;
} tbl[] = {
{
i915_mmio_reg_offset(RING_START(engine->mmio_base)),
CTX_RING_START - 1,
"RING_START"
},
{
i915_mmio_reg_offset(RING_CTL(engine->mmio_base)),
CTX_RING_CTL - 1,
"RING_CTL"
},
{
i915_mmio_reg_offset(RING_HEAD(engine->mmio_base)),
CTX_RING_HEAD - 1,
"RING_HEAD"
},
{
i915_mmio_reg_offset(RING_TAIL(engine->mmio_base)),
CTX_RING_TAIL - 1,
"RING_TAIL"
},
{
i915_mmio_reg_offset(RING_MI_MODE(engine->mmio_base)),
lrc_ring_mi_mode(engine),
"RING_MI_MODE"
},
{
i915_mmio_reg_offset(RING_BBSTATE(engine->mmio_base)),
CTX_BB_STATE - 1,
"BB_STATE"
},
{ },
}, *t;
u32 *hw;
if (!engine->default_state)
continue;
hw = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (IS_ERR(hw)) {
err = PTR_ERR(hw);
break;
}
hw += LRC_STATE_PN * PAGE_SIZE / sizeof(*hw);
for (t = tbl; t->name; t++) {
int dw = find_offset(hw, t->reg);
if (dw != t->offset) {
pr_err("%s: Offset for %s [0x%x] mismatch, found %x, expected %x\n",
engine->name,
t->name,
t->reg,
dw,
t->offset);
err = -EINVAL;
}
}
i915_gem_object_unpin_map(engine->default_state);
}
return err;
}
static int __live_lrc_state(struct intel_engine_cs *engine,
struct i915_vma *scratch)
{
struct intel_context *ce;
struct i915_request *rq;
enum {
RING_START_IDX = 0,
RING_TAIL_IDX,
MAX_IDX
};
u32 expected[MAX_IDX];
u32 *cs;
int err;
int n;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
err = intel_context_pin(ce);
if (err)
goto err_put;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
cs = intel_ring_begin(rq, 4 * MAX_IDX);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(rq);
goto err_unpin;
}
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_START(engine->mmio_base));
*cs++ = i915_ggtt_offset(scratch) + RING_START_IDX * sizeof(u32);
*cs++ = 0;
expected[RING_START_IDX] = i915_ggtt_offset(ce->ring->vma);
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_TAIL(engine->mmio_base));
*cs++ = i915_ggtt_offset(scratch) + RING_TAIL_IDX * sizeof(u32);
*cs++ = 0;
i915_request_get(rq);
i915_request_add(rq);
intel_engine_flush_submission(engine);
expected[RING_TAIL_IDX] = ce->ring->tail;
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
for (n = 0; n < MAX_IDX; n++) {
if (cs[n] != expected[n]) {
pr_err("%s: Stored register[%d] value[0x%x] did not match expected[0x%x]\n",
engine->name, n, cs[n], expected[n]);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
err_rq:
i915_request_put(rq);
err_unpin:
intel_context_unpin(ce);
err_put:
intel_context_put(ce);
return err;
}
static int live_lrc_state(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *scratch;
enum intel_engine_id id;
int err = 0;
/*
* Check the live register state matches what we expect for this
* intel_context.
*/
scratch = create_scratch(gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
for_each_engine(engine, gt, id) {
err = __live_lrc_state(engine, scratch);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static int gpr_make_dirty(struct intel_engine_cs *engine)
{
struct i915_request *rq;
u32 *cs;
int n;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 2 * NUM_GPR_DW + 2);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_LOAD_REGISTER_IMM(NUM_GPR_DW);
for (n = 0; n < NUM_GPR_DW; n++) {
*cs++ = CS_GPR(engine, n);
*cs++ = STACK_MAGIC;
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
i915_request_add(rq);
return 0;
}
static int __live_gpr_clear(struct intel_engine_cs *engine,
struct i915_vma *scratch)
{
struct intel_context *ce;
struct i915_request *rq;
u32 *cs;
int err;
int n;
if (INTEL_GEN(engine->i915) < 9 && engine->class != RENDER_CLASS)
return 0; /* GPR only on rcs0 for gen8 */
err = gpr_make_dirty(engine);
if (err)
return err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_put;
}
cs = intel_ring_begin(rq, 4 * NUM_GPR_DW);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(rq);
goto err_put;
}
for (n = 0; n < NUM_GPR_DW; n++) {
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = CS_GPR(engine, n);
*cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32);
*cs++ = 0;
}
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
for (n = 0; n < NUM_GPR_DW; n++) {
if (cs[n]) {
pr_err("%s: GPR[%d].%s was not zero, found 0x%08x!\n",
engine->name,
n / 2, n & 1 ? "udw" : "ldw",
cs[n]);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
err_rq:
i915_request_put(rq);
err_put:
intel_context_put(ce);
return err;
}
static int live_gpr_clear(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *scratch;
enum intel_engine_id id;
int err = 0;
/*
* Check that GPR registers are cleared in new contexts as we need
* to avoid leaking any information from previous contexts.
*/
scratch = create_scratch(gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
for_each_engine(engine, gt, id) {
err = __live_gpr_clear(engine, scratch);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
int intel_lrc_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_lrc_layout),
SUBTEST(live_lrc_fixed),
SUBTEST(live_lrc_state),
SUBTEST(live_gpr_clear),
};
if (!HAS_LOGICAL_RING_CONTEXTS(i915))
return 0;
return intel_gt_live_subtests(tests, &i915->gt);
}