linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_irq.c
Matt Roper a3265d851e drm/i915/irq: Refactor gen11 display interrupt handling
Let's move handling and reset for gen11 display IRQs to their own
functions, similar to how we deal with GT interrupts.  This will make
the top-level functions a bit easier to read and potentially make things
easier to deal with in the future if new platforms wind up needing
different display handling logic.

Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191202171608.3361125-1-matthew.d.roper@intel.com
Reviewed-by: Radhakrishna Sripada <radhakrishna.sripada@intel.com>
2019-12-03 11:12:42 -08:00

4143 lines
114 KiB
C

/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/circ_buf.h>
#include <linux/slab.h>
#include <linux/sysrq.h>
#include <drm/drm_drv.h>
#include <drm/drm_irq.h>
#include <drm/i915_drm.h>
#include "display/intel_display_types.h"
#include "display/intel_fifo_underrun.h"
#include "display/intel_hotplug.h"
#include "display/intel_lpe_audio.h"
#include "display/intel_psr.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "gt/intel_rps.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_trace.h"
#include "intel_pm.h"
/**
* DOC: interrupt handling
*
* These functions provide the basic support for enabling and disabling the
* interrupt handling support. There's a lot more functionality in i915_irq.c
* and related files, but that will be described in separate chapters.
*/
typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
static const u32 hpd_ilk[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG,
};
static const u32 hpd_ivb[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
};
static const u32 hpd_bdw[HPD_NUM_PINS] = {
[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
};
static const u32 hpd_ibx[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG
};
static const u32 hpd_cpt[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
};
static const u32 hpd_spt[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
};
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_EN,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
};
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
};
/* BXT hpd list */
static const u32 hpd_bxt[HPD_NUM_PINS] = {
[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
};
static const u32 hpd_gen11[HPD_NUM_PINS] = {
[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
};
static const u32 hpd_gen12[HPD_NUM_PINS] = {
[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
};
static const u32 hpd_icp[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
};
static const u32 hpd_tgp[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
};
void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
i915_reg_t iir, i915_reg_t ier)
{
intel_uncore_write(uncore, imr, 0xffffffff);
intel_uncore_posting_read(uncore, imr);
intel_uncore_write(uncore, ier, 0);
/* IIR can theoretically queue up two events. Be paranoid. */
intel_uncore_write(uncore, iir, 0xffffffff);
intel_uncore_posting_read(uncore, iir);
intel_uncore_write(uncore, iir, 0xffffffff);
intel_uncore_posting_read(uncore, iir);
}
void gen2_irq_reset(struct intel_uncore *uncore)
{
intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IMR);
intel_uncore_write16(uncore, GEN2_IER, 0);
/* IIR can theoretically queue up two events. Be paranoid. */
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
}
/*
* We should clear IMR at preinstall/uninstall, and just check at postinstall.
*/
static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
{
u32 val = intel_uncore_read(uncore, reg);
if (val == 0)
return;
WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(reg), val);
intel_uncore_write(uncore, reg, 0xffffffff);
intel_uncore_posting_read(uncore, reg);
intel_uncore_write(uncore, reg, 0xffffffff);
intel_uncore_posting_read(uncore, reg);
}
static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
{
u16 val = intel_uncore_read16(uncore, GEN2_IIR);
if (val == 0)
return;
WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(GEN2_IIR), val);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
}
void gen3_irq_init(struct intel_uncore *uncore,
i915_reg_t imr, u32 imr_val,
i915_reg_t ier, u32 ier_val,
i915_reg_t iir)
{
gen3_assert_iir_is_zero(uncore, iir);
intel_uncore_write(uncore, ier, ier_val);
intel_uncore_write(uncore, imr, imr_val);
intel_uncore_posting_read(uncore, imr);
}
void gen2_irq_init(struct intel_uncore *uncore,
u32 imr_val, u32 ier_val)
{
gen2_assert_iir_is_zero(uncore);
intel_uncore_write16(uncore, GEN2_IER, ier_val);
intel_uncore_write16(uncore, GEN2_IMR, imr_val);
intel_uncore_posting_read16(uncore, GEN2_IMR);
}
/* For display hotplug interrupt */
static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
u32 mask,
u32 bits)
{
u32 val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(bits & ~mask);
val = I915_READ(PORT_HOTPLUG_EN);
val &= ~mask;
val |= bits;
I915_WRITE(PORT_HOTPLUG_EN, val);
}
/**
* i915_hotplug_interrupt_update - update hotplug interrupt enable
* @dev_priv: driver private
* @mask: bits to update
* @bits: bits to enable
* NOTE: the HPD enable bits are modified both inside and outside
* of an interrupt context. To avoid that read-modify-write cycles
* interfer, these bits are protected by a spinlock. Since this
* function is usually not called from a context where the lock is
* held already, this function acquires the lock itself. A non-locking
* version is also available.
*/
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
u32 mask,
u32 bits)
{
spin_lock_irq(&dev_priv->irq_lock);
i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
spin_unlock_irq(&dev_priv->irq_lock);
}
/**
* ilk_update_display_irq - update DEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ilk_update_display_irq(struct drm_i915_private *dev_priv,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 new_val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->irq_mask;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->irq_mask) {
dev_priv->irq_mask = new_val;
I915_WRITE(DEIMR, dev_priv->irq_mask);
POSTING_READ(DEIMR);
}
}
/**
* bdw_update_port_irq - update DE port interrupt
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 new_val;
u32 old_val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
old_val = I915_READ(GEN8_DE_PORT_IMR);
new_val = old_val;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != old_val) {
I915_WRITE(GEN8_DE_PORT_IMR, new_val);
POSTING_READ(GEN8_DE_PORT_IMR);
}
}
/**
* bdw_update_pipe_irq - update DE pipe interrupt
* @dev_priv: driver private
* @pipe: pipe whose interrupt to update
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 new_val;
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->de_irq_mask[pipe];
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->de_irq_mask[pipe]) {
dev_priv->de_irq_mask[pipe] = new_val;
I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
}
}
/**
* ibx_display_interrupt_update - update SDEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 sdeimr = I915_READ(SDEIMR);
sdeimr &= ~interrupt_mask;
sdeimr |= (~enabled_irq_mask & interrupt_mask);
WARN_ON(enabled_irq_mask & ~interrupt_mask);
lockdep_assert_held(&dev_priv->irq_lock);
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return;
I915_WRITE(SDEIMR, sdeimr);
POSTING_READ(SDEIMR);
}
u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
u32 enable_mask = status_mask << 16;
lockdep_assert_held(&dev_priv->irq_lock);
if (INTEL_GEN(dev_priv) < 5)
goto out;
/*
* On pipe A we don't support the PSR interrupt yet,
* on pipe B and C the same bit MBZ.
*/
if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
return 0;
/*
* On pipe B and C we don't support the PSR interrupt yet, on pipe
* A the same bit is for perf counters which we don't use either.
*/
if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
return 0;
enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
SPRITE0_FLIP_DONE_INT_EN_VLV |
SPRITE1_FLIP_DONE_INT_EN_VLV);
if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
out:
WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
pipe_name(pipe), enable_mask, status_mask);
return enable_mask;
}
void i915_enable_pipestat(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 enable_mask;
WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: status_mask=0x%x\n",
pipe_name(pipe), status_mask);
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(!intel_irqs_enabled(dev_priv));
if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
return;
dev_priv->pipestat_irq_mask[pipe] |= status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
I915_WRITE(reg, enable_mask | status_mask);
POSTING_READ(reg);
}
void i915_disable_pipestat(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 enable_mask;
WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: status_mask=0x%x\n",
pipe_name(pipe), status_mask);
lockdep_assert_held(&dev_priv->irq_lock);
WARN_ON(!intel_irqs_enabled(dev_priv));
if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
return;
dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
I915_WRITE(reg, enable_mask | status_mask);
POSTING_READ(reg);
}
static bool i915_has_asle(struct drm_i915_private *dev_priv)
{
if (!dev_priv->opregion.asle)
return false;
return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
/**
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
* @dev_priv: i915 device private
*/
static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
{
if (!i915_has_asle(dev_priv))
return;
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
if (INTEL_GEN(dev_priv) >= 4)
i915_enable_pipestat(dev_priv, PIPE_A,
PIPE_LEGACY_BLC_EVENT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
/*
* This timing diagram depicts the video signal in and
* around the vertical blanking period.
*
* Assumptions about the fictitious mode used in this example:
* vblank_start >= 3
* vsync_start = vblank_start + 1
* vsync_end = vblank_start + 2
* vtotal = vblank_start + 3
*
* start of vblank:
* latch double buffered registers
* increment frame counter (ctg+)
* generate start of vblank interrupt (gen4+)
* |
* | frame start:
* | generate frame start interrupt (aka. vblank interrupt) (gmch)
* | may be shifted forward 1-3 extra lines via PIPECONF
* | |
* | | start of vsync:
* | | generate vsync interrupt
* | | |
* ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
* . \hs/ . \hs/ \hs/ \hs/ . \hs/
* ----va---> <-----------------vb--------------------> <--------va-------------
* | | <----vs-----> |
* -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
* -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
* -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
* | | |
* last visible pixel first visible pixel
* | increment frame counter (gen3/4)
* pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
*
* x = horizontal active
* _ = horizontal blanking
* hs = horizontal sync
* va = vertical active
* vb = vertical blanking
* vs = vertical sync
* vbs = vblank_start (number)
*
* Summary:
* - most events happen at the start of horizontal sync
* - frame start happens at the start of horizontal blank, 1-4 lines
* (depending on PIPECONF settings) after the start of vblank
* - gen3/4 pixel and frame counter are synchronized with the start
* of horizontal active on the first line of vertical active
*/
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
*/
u32 i915_get_vblank_counter(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
const struct drm_display_mode *mode = &vblank->hwmode;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
i915_reg_t high_frame, low_frame;
u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
unsigned long irqflags;
/*
* On i965gm TV output the frame counter only works up to
* the point when we enable the TV encoder. After that the
* frame counter ceases to work and reads zero. We need a
* vblank wait before enabling the TV encoder and so we
* have to enable vblank interrupts while the frame counter
* is still in a working state. However the core vblank code
* does not like us returning non-zero frame counter values
* when we've told it that we don't have a working frame
* counter. Thus we must stop non-zero values leaking out.
*/
if (!vblank->max_vblank_count)
return 0;
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vbl_start = mode->crtc_vblank_start;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vbl_start = DIV_ROUND_UP(vbl_start, 2);
/* Convert to pixel count */
vbl_start *= htotal;
/* Start of vblank event occurs at start of hsync */
vbl_start -= htotal - hsync_start;
high_frame = PIPEFRAME(pipe);
low_frame = PIPEFRAMEPIXEL(pipe);
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/*
* High & low register fields aren't synchronized, so make sure
* we get a low value that's stable across two reads of the high
* register.
*/
do {
high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
low = I915_READ_FW(low_frame);
high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
} while (high1 != high2);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
high1 >>= PIPE_FRAME_HIGH_SHIFT;
pixel = low & PIPE_PIXEL_MASK;
low >>= PIPE_FRAME_LOW_SHIFT;
/*
* The frame counter increments at beginning of active.
* Cook up a vblank counter by also checking the pixel
* counter against vblank start.
*/
return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
}
u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
}
/*
* On certain encoders on certain platforms, pipe
* scanline register will not work to get the scanline,
* since the timings are driven from the PORT or issues
* with scanline register updates.
* This function will use Framestamp and current
* timestamp registers to calculate the scanline.
*/
static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct drm_vblank_crtc *vblank =
&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
const struct drm_display_mode *mode = &vblank->hwmode;
u32 vblank_start = mode->crtc_vblank_start;
u32 vtotal = mode->crtc_vtotal;
u32 htotal = mode->crtc_htotal;
u32 clock = mode->crtc_clock;
u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
/*
* To avoid the race condition where we might cross into the
* next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
* reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
* during the same frame.
*/
do {
/*
* This field provides read back of the display
* pipe frame time stamp. The time stamp value
* is sampled at every start of vertical blank.
*/
scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
/*
* The TIMESTAMP_CTR register has the current
* time stamp value.
*/
scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
} while (scan_post_time != scan_prev_time);
scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
clock), 1000 * htotal);
scanline = min(scanline, vtotal - 1);
scanline = (scanline + vblank_start) % vtotal;
return scanline;
}
/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct drm_display_mode *mode;
struct drm_vblank_crtc *vblank;
enum pipe pipe = crtc->pipe;
int position, vtotal;
if (!crtc->active)
return -1;
vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
mode = &vblank->hwmode;
if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
return __intel_get_crtc_scanline_from_timestamp(crtc);
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
if (IS_GEN(dev_priv, 2))
position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
else
position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
/*
* On HSW, the DSL reg (0x70000) appears to return 0 if we
* read it just before the start of vblank. So try it again
* so we don't accidentally end up spanning a vblank frame
* increment, causing the pipe_update_end() code to squak at us.
*
* The nature of this problem means we can't simply check the ISR
* bit and return the vblank start value; nor can we use the scanline
* debug register in the transcoder as it appears to have the same
* problem. We may need to extend this to include other platforms,
* but so far testing only shows the problem on HSW.
*/
if (HAS_DDI(dev_priv) && !position) {
int i, temp;
for (i = 0; i < 100; i++) {
udelay(1);
temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
if (temp != position) {
position = temp;
break;
}
}
}
/*
* See update_scanline_offset() for the details on the
* scanline_offset adjustment.
*/
return (position + crtc->scanline_offset) % vtotal;
}
bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int index,
bool in_vblank_irq, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc = to_intel_crtc(drm_crtc_from_index(dev, index));
enum pipe pipe = crtc->pipe;
int position;
int vbl_start, vbl_end, hsync_start, htotal, vtotal;
unsigned long irqflags;
bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
if (WARN_ON(!mode->crtc_clock)) {
DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
"pipe %c\n", pipe_name(pipe));
return false;
}
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vtotal = mode->crtc_vtotal;
vbl_start = mode->crtc_vblank_start;
vbl_end = mode->crtc_vblank_end;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vbl_start = DIV_ROUND_UP(vbl_start, 2);
vbl_end /= 2;
vtotal /= 2;
}
/*
* Lock uncore.lock, as we will do multiple timing critical raw
* register reads, potentially with preemption disabled, so the
* following code must not block on uncore.lock.
*/
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
if (use_scanline_counter) {
/* No obvious pixelcount register. Only query vertical
* scanout position from Display scan line register.
*/
position = __intel_get_crtc_scanline(crtc);
} else {
/* Have access to pixelcount since start of frame.
* We can split this into vertical and horizontal
* scanout position.
*/
position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
/* convert to pixel counts */
vbl_start *= htotal;
vbl_end *= htotal;
vtotal *= htotal;
/*
* In interlaced modes, the pixel counter counts all pixels,
* so one field will have htotal more pixels. In order to avoid
* the reported position from jumping backwards when the pixel
* counter is beyond the length of the shorter field, just
* clamp the position the length of the shorter field. This
* matches how the scanline counter based position works since
* the scanline counter doesn't count the two half lines.
*/
if (position >= vtotal)
position = vtotal - 1;
/*
* Start of vblank interrupt is triggered at start of hsync,
* just prior to the first active line of vblank. However we
* consider lines to start at the leading edge of horizontal
* active. So, should we get here before we've crossed into
* the horizontal active of the first line in vblank, we would
* not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
* always add htotal-hsync_start to the current pixel position.
*/
position = (position + htotal - hsync_start) % vtotal;
}
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
/*
* While in vblank, position will be negative
* counting up towards 0 at vbl_end. And outside
* vblank, position will be positive counting
* up since vbl_end.
*/
if (position >= vbl_start)
position -= vbl_end;
else
position += vtotal - vbl_end;
if (use_scanline_counter) {
*vpos = position;
*hpos = 0;
} else {
*vpos = position / htotal;
*hpos = position - (*vpos * htotal);
}
return true;
}
int intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
unsigned long irqflags;
int position;
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
position = __intel_get_crtc_scanline(crtc);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
return position;
}
/**
* ivybridge_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivybridge_parity_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), l3_parity.error_work);
struct intel_gt *gt = &dev_priv->gt;
u32 error_status, row, bank, subbank;
char *parity_event[6];
u32 misccpctl;
u8 slice = 0;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
/* If we've screwed up tracking, just let the interrupt fire again */
if (WARN_ON(!dev_priv->l3_parity.which_slice))
goto out;
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
POSTING_READ(GEN7_MISCCPCTL);
while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
i915_reg_t reg;
slice--;
if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
break;
dev_priv->l3_parity.which_slice &= ~(1<<slice);
reg = GEN7_L3CDERRST1(slice);
error_status = I915_READ(reg);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
POSTING_READ(reg);
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
parity_event[5] = NULL;
kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
KOBJ_CHANGE, parity_event);
DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
slice, row, bank, subbank);
kfree(parity_event[4]);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
out:
WARN_ON(dev_priv->l3_parity.which_slice);
spin_lock_irq(&gt->irq_lock);
gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
spin_unlock_irq(&gt->irq_lock);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_C:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
case HPD_PORT_D:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
case HPD_PORT_E:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
case HPD_PORT_F:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
default:
return false;
}
}
static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_D:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
case HPD_PORT_E:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
case HPD_PORT_F:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
case HPD_PORT_G:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
case HPD_PORT_H:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
case HPD_PORT_I:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
default:
return false;
}
}
static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case HPD_PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
case HPD_PORT_B:
return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
case HPD_PORT_C:
return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
default:
return false;
}
}
static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_C:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
case HPD_PORT_D:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
case HPD_PORT_E:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
case HPD_PORT_F:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
default:
return false;
}
}
static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_D:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
case HPD_PORT_E:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
case HPD_PORT_F:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
case HPD_PORT_G:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
case HPD_PORT_H:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
case HPD_PORT_I:
return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
default:
return false;
}
}
static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_E:
return val & PORTE_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case HPD_PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case HPD_PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case HPD_PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_B:
return val & PORTB_HOTPLUG_INT_LONG_PULSE;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_INT_LONG_PULSE;
case HPD_PORT_D:
return val & PORTD_HOTPLUG_INT_LONG_PULSE;
default:
return false;
}
}
/*
* Get a bit mask of pins that have triggered, and which ones may be long.
* This can be called multiple times with the same masks to accumulate
* hotplug detection results from several registers.
*
* Note that the caller is expected to zero out the masks initially.
*/
static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
u32 *pin_mask, u32 *long_mask,
u32 hotplug_trigger, u32 dig_hotplug_reg,
const u32 hpd[HPD_NUM_PINS],
bool long_pulse_detect(enum hpd_pin pin, u32 val))
{
enum hpd_pin pin;
BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
for_each_hpd_pin(pin) {
if ((hpd[pin] & hotplug_trigger) == 0)
continue;
*pin_mask |= BIT(pin);
if (long_pulse_detect(pin, dig_hotplug_reg))
*long_mask |= BIT(pin);
}
DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
}
static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
#if defined(CONFIG_DEBUG_FS)
static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
u32 crc0, u32 crc1,
u32 crc2, u32 crc3,
u32 crc4)
{
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
trace_intel_pipe_crc(crtc, crcs);
spin_lock(&pipe_crc->lock);
/*
* For some not yet identified reason, the first CRC is
* bonkers. So let's just wait for the next vblank and read
* out the buggy result.
*
* On GEN8+ sometimes the second CRC is bonkers as well, so
* don't trust that one either.
*/
if (pipe_crc->skipped <= 0 ||
(INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
pipe_crc->skipped++;
spin_unlock(&pipe_crc->lock);
return;
}
spin_unlock(&pipe_crc->lock);
drm_crtc_add_crc_entry(&crtc->base, true,
drm_crtc_accurate_vblank_count(&crtc->base),
crcs);
}
#else
static inline void
display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
u32 crc0, u32 crc1,
u32 crc2, u32 crc3,
u32 crc4) {}
#endif
static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
0, 0, 0, 0);
}
static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
}
static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 res1, res2;
if (INTEL_GEN(dev_priv) >= 3)
res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
else
res1 = 0;
if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
else
res2 = 0;
display_pipe_crc_irq_handler(dev_priv, pipe,
I915_READ(PIPE_CRC_RES_RED(pipe)),
I915_READ(PIPE_CRC_RES_GREEN(pipe)),
I915_READ(PIPE_CRC_RES_BLUE(pipe)),
res1, res2);
}
static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
I915_WRITE(PIPESTAT(pipe),
PIPESTAT_INT_STATUS_MASK |
PIPE_FIFO_UNDERRUN_STATUS);
dev_priv->pipestat_irq_mask[pipe] = 0;
}
}
static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
spin_lock(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled) {
spin_unlock(&dev_priv->irq_lock);
return;
}
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg;
u32 status_mask, enable_mask, iir_bit = 0;
/*
* PIPESTAT bits get signalled even when the interrupt is
* disabled with the mask bits, and some of the status bits do
* not generate interrupts at all (like the underrun bit). Hence
* we need to be careful that we only handle what we want to
* handle.
*/
/* fifo underruns are filterered in the underrun handler. */
status_mask = PIPE_FIFO_UNDERRUN_STATUS;
switch (pipe) {
default:
case PIPE_A:
iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
break;
case PIPE_B:
iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
break;
case PIPE_C:
iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
break;
}
if (iir & iir_bit)
status_mask |= dev_priv->pipestat_irq_mask[pipe];
if (!status_mask)
continue;
reg = PIPESTAT(pipe);
pipe_stats[pipe] = I915_READ(reg) & status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
/*
* Clear the PIPE*STAT regs before the IIR
*
* Toggle the enable bits to make sure we get an
* edge in the ISR pipe event bit if we don't clear
* all the enabled status bits. Otherwise the edge
* triggered IIR on i965/g4x wouldn't notice that
* an interrupt is still pending.
*/
if (pipe_stats[pipe]) {
I915_WRITE(reg, pipe_stats[pipe]);
I915_WRITE(reg, enable_mask);
}
}
spin_unlock(&dev_priv->irq_lock);
}
static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u16 iir, u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
}
static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
bool blc_event = false;
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
}
static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
bool blc_event = false;
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
drm_handle_vblank(&dev_priv->drm, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
{
u32 hotplug_status = 0, hotplug_status_mask;
int i;
if (IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
else
hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
/*
* We absolutely have to clear all the pending interrupt
* bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
* interrupt bit won't have an edge, and the i965/g4x
* edge triggered IIR will not notice that an interrupt
* is still pending. We can't use PORT_HOTPLUG_EN to
* guarantee the edge as the act of toggling the enable
* bits can itself generate a new hotplug interrupt :(
*/
for (i = 0; i < 10; i++) {
u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
if (tmp == 0)
return hotplug_status;
hotplug_status |= tmp;
I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
}
WARN_ONCE(1,
"PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
I915_READ(PORT_HOTPLUG_STAT));
return hotplug_status;
}
static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_status)
{
u32 pin_mask = 0, long_mask = 0;
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv)) {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
if (hotplug_trigger) {
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, hotplug_trigger,
hpd_status_g4x,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
dp_aux_irq_handler(dev_priv);
} else {
u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
if (hotplug_trigger) {
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, hotplug_trigger,
hpd_status_i915,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
}
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 iir, gt_iir, pm_iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
gt_iir = I915_READ(GTIIR);
pm_iir = I915_READ(GEN6_PMIIR);
iir = I915_READ(VLV_IIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
* (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
* bits this time around.
*/
I915_WRITE(VLV_MASTER_IER, 0);
ier = I915_READ(VLV_IER);
I915_WRITE(VLV_IER, 0);
if (gt_iir)
I915_WRITE(GTIIR, gt_iir);
if (pm_iir)
I915_WRITE(GEN6_PMIIR, pm_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
I915_WRITE(VLV_IIR, iir);
I915_WRITE(VLV_IER, ier);
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
if (gt_iir)
gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
if (pm_iir)
gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 master_ctl, iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 gt_iir[4];
u32 ier = 0;
master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
iir = I915_READ(VLV_IIR);
if (master_ctl == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
* (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
* bits this time around.
*/
I915_WRITE(GEN8_MASTER_IRQ, 0);
ier = I915_READ(VLV_IER);
I915_WRITE(VLV_IER, 0);
gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
I915_WRITE(VLV_IIR, iir);
I915_WRITE(VLV_IER, ier);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
/*
* Somehow the PCH doesn't seem to really ack the interrupt to the CPU
* unless we touch the hotplug register, even if hotplug_trigger is
* zero. Not acking leads to "The master control interrupt lied (SDE)!"
* errors.
*/
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
if (!hotplug_trigger) {
u32 mask = PORTA_HOTPLUG_STATUS_MASK |
PORTD_HOTPLUG_STATUS_MASK |
PORTC_HOTPLUG_STATUS_MASK |
PORTB_HOTPLUG_STATUS_MASK;
dig_hotplug_reg &= ~mask;
}
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
if (!hotplug_trigger)
return;
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
pch_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
enum pipe pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_HDCP_MASK)
DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
if (pch_iir & SDE_AUDIO_TRANS_MASK)
DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
if (pch_iir & SDE_POISON)
DRM_ERROR("PCH poison interrupt\n");
if (pch_iir & SDE_FDI_MASK)
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
}
static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
{
u32 err_int = I915_READ(GEN7_ERR_INT);
enum pipe pipe;
if (err_int & ERR_INT_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
if (IS_IVYBRIDGE(dev_priv))
ivb_pipe_crc_irq_handler(dev_priv, pipe);
else
hsw_pipe_crc_irq_handler(dev_priv, pipe);
}
}
I915_WRITE(GEN7_ERR_INT, err_int);
}
static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
{
u32 serr_int = I915_READ(SERR_INT);
enum pipe pipe;
if (serr_int & SERR_INT_POISON)
DRM_ERROR("PCH poison interrupt\n");
for_each_pipe(dev_priv, pipe)
if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
I915_WRITE(SERR_INT, serr_int);
}
static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
enum pipe pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
if (pch_iir & SDE_FDI_MASK_CPT)
for_each_pipe(dev_priv, pipe)
DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
I915_READ(FDI_RX_IIR(pipe)));
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev_priv);
}
static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
u32 ddi_hotplug_trigger, tc_hotplug_trigger;
u32 pin_mask = 0, long_mask = 0;
bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
const u32 *pins;
if (HAS_PCH_TGP(dev_priv)) {
ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
pins = hpd_tgp;
} else if (HAS_PCH_JSP(dev_priv)) {
ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
tc_hotplug_trigger = 0;
pins = hpd_tgp;
} else if (HAS_PCH_MCC(dev_priv)) {
ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
pins = hpd_icp;
} else {
WARN(!HAS_PCH_ICP(dev_priv),
"Unrecognized PCH type 0x%x\n", INTEL_PCH_TYPE(dev_priv));
ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
pins = hpd_icp;
}
if (ddi_hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
ddi_hotplug_trigger,
dig_hotplug_reg, pins,
icp_ddi_port_hotplug_long_detect);
}
if (tc_hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
tc_hotplug_trigger,
dig_hotplug_reg, pins,
tc_port_hotplug_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
if (pch_iir & SDE_GMBUS_ICP)
gmbus_irq_handler(dev_priv);
}
static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
~SDE_PORTE_HOTPLUG_SPT;
u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
u32 pin_mask = 0, long_mask = 0;
if (hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, dig_hotplug_reg, hpd_spt,
spt_port_hotplug_long_detect);
}
if (hotplug2_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug2_trigger, dig_hotplug_reg, hpd_spt,
spt_port_hotplug2_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
}
static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
ilk_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE)
intel_opregion_asle_intr(dev_priv);
if (de_iir & DE_POISON)
DRM_ERROR("Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (de_iir & DE_PIPE_VBLANK(pipe))
drm_handle_vblank(&dev_priv->drm, pipe);
if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (de_iir & DE_PIPE_CRC_DONE(pipe))
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
}
/* check event from PCH */
if (de_iir & DE_PCH_EVENT) {
u32 pch_iir = I915_READ(SDEIIR);
if (HAS_PCH_CPT(dev_priv))
cpt_irq_handler(dev_priv, pch_iir);
else
ibx_irq_handler(dev_priv, pch_iir);
/* should clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
gen5_rps_irq_handler(&dev_priv->gt.rps);
}
static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
if (de_iir & DE_ERR_INT_IVB)
ivb_err_int_handler(dev_priv);
if (de_iir & DE_EDP_PSR_INT_HSW) {
u32 psr_iir = I915_READ(EDP_PSR_IIR);
intel_psr_irq_handler(dev_priv, psr_iir);
I915_WRITE(EDP_PSR_IIR, psr_iir);
}
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev_priv);
for_each_pipe(dev_priv, pipe) {
if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
drm_handle_vblank(&dev_priv->drm, pipe);
}
/* check event from PCH */
if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = I915_READ(SDEIIR);
cpt_irq_handler(dev_priv, pch_iir);
/* clear PCH hotplug event before clear CPU irq */
I915_WRITE(SDEIIR, pch_iir);
}
}
/*
* To handle irqs with the minimum potential races with fresh interrupts, we:
* 1 - Disable Master Interrupt Control.
* 2 - Find the source(s) of the interrupt.
* 3 - Clear the Interrupt Identity bits (IIR).
* 4 - Process the interrupt(s) that had bits set in the IIRs.
* 5 - Re-enable Master Interrupt Control.
*/
static irqreturn_t ironlake_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
/* disable master interrupt before clearing iir */
de_ier = I915_READ(DEIER);
I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(dev_priv)) {
sde_ier = I915_READ(SDEIER);
I915_WRITE(SDEIER, 0);
}
/* Find, clear, then process each source of interrupt */
gt_iir = I915_READ(GTIIR);
if (gt_iir) {
I915_WRITE(GTIIR, gt_iir);
ret = IRQ_HANDLED;
if (INTEL_GEN(dev_priv) >= 6)
gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
else
gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
}
de_iir = I915_READ(DEIIR);
if (de_iir) {
I915_WRITE(DEIIR, de_iir);
ret = IRQ_HANDLED;
if (INTEL_GEN(dev_priv) >= 7)
ivb_display_irq_handler(dev_priv, de_iir);
else
ilk_display_irq_handler(dev_priv, de_iir);
}
if (INTEL_GEN(dev_priv) >= 6) {
u32 pm_iir = I915_READ(GEN6_PMIIR);
if (pm_iir) {
I915_WRITE(GEN6_PMIIR, pm_iir);
ret = IRQ_HANDLED;
gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
}
}
I915_WRITE(DEIER, de_ier);
if (!HAS_PCH_NOP(dev_priv))
I915_WRITE(SDEIER, sde_ier);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger,
const u32 hpd[HPD_NUM_PINS])
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
dig_hotplug_reg, hpd,
bxt_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
{
u32 pin_mask = 0, long_mask = 0;
u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
long_pulse_detect_func long_pulse_detect;
const u32 *hpd;
if (INTEL_GEN(dev_priv) >= 12) {
long_pulse_detect = gen12_port_hotplug_long_detect;
hpd = hpd_gen12;
} else {
long_pulse_detect = gen11_port_hotplug_long_detect;
hpd = hpd_gen11;
}
if (trigger_tc) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
dig_hotplug_reg, hpd, long_pulse_detect);
}
if (trigger_tbt) {
u32 dig_hotplug_reg;
dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
dig_hotplug_reg, hpd, long_pulse_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
else
DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
}
static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
{
u32 mask;
if (INTEL_GEN(dev_priv) >= 12)
return TGL_DE_PORT_AUX_DDIA |
TGL_DE_PORT_AUX_DDIB |
TGL_DE_PORT_AUX_DDIC |
TGL_DE_PORT_AUX_USBC1 |
TGL_DE_PORT_AUX_USBC2 |
TGL_DE_PORT_AUX_USBC3 |
TGL_DE_PORT_AUX_USBC4 |
TGL_DE_PORT_AUX_USBC5 |
TGL_DE_PORT_AUX_USBC6;
mask = GEN8_AUX_CHANNEL_A;
if (INTEL_GEN(dev_priv) >= 9)
mask |= GEN9_AUX_CHANNEL_B |
GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
mask |= CNL_AUX_CHANNEL_F;
if (IS_GEN(dev_priv, 11))
mask |= ICL_AUX_CHANNEL_E;
return mask;
}
static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 11)
return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
else if (INTEL_GEN(dev_priv) >= 9)
return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
else
return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
}
static void
gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
{
bool found = false;
if (iir & GEN8_DE_MISC_GSE) {
intel_opregion_asle_intr(dev_priv);
found = true;
}
if (iir & GEN8_DE_EDP_PSR) {
u32 psr_iir;
i915_reg_t iir_reg;
if (INTEL_GEN(dev_priv) >= 12)
iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
else
iir_reg = EDP_PSR_IIR;
psr_iir = I915_READ(iir_reg);
I915_WRITE(iir_reg, psr_iir);
if (psr_iir)
found = true;
intel_psr_irq_handler(dev_priv, psr_iir);
}
if (!found)
DRM_ERROR("Unexpected DE Misc interrupt\n");
}
static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
{
irqreturn_t ret = IRQ_NONE;
u32 iir;
enum pipe pipe;
if (master_ctl & GEN8_DE_MISC_IRQ) {
iir = I915_READ(GEN8_DE_MISC_IIR);
if (iir) {
I915_WRITE(GEN8_DE_MISC_IIR, iir);
ret = IRQ_HANDLED;
gen8_de_misc_irq_handler(dev_priv, iir);
} else {
DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
}
}
if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
iir = I915_READ(GEN11_DE_HPD_IIR);
if (iir) {
I915_WRITE(GEN11_DE_HPD_IIR, iir);
ret = IRQ_HANDLED;
gen11_hpd_irq_handler(dev_priv, iir);
} else {
DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
}
}
if (master_ctl & GEN8_DE_PORT_IRQ) {
iir = I915_READ(GEN8_DE_PORT_IIR);
if (iir) {
u32 tmp_mask;
bool found = false;
I915_WRITE(GEN8_DE_PORT_IIR, iir);
ret = IRQ_HANDLED;
if (iir & gen8_de_port_aux_mask(dev_priv)) {
dp_aux_irq_handler(dev_priv);
found = true;
}
if (IS_GEN9_LP(dev_priv)) {
tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
if (tmp_mask) {
bxt_hpd_irq_handler(dev_priv, tmp_mask,
hpd_bxt);
found = true;
}
} else if (IS_BROADWELL(dev_priv)) {
tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
if (tmp_mask) {
ilk_hpd_irq_handler(dev_priv,
tmp_mask, hpd_bdw);
found = true;
}
}
if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
gmbus_irq_handler(dev_priv);
found = true;
}
if (!found)
DRM_ERROR("Unexpected DE Port interrupt\n");
}
else
DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
}
for_each_pipe(dev_priv, pipe) {
u32 fault_errors;
if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
continue;
iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
if (!iir) {
DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
continue;
}
ret = IRQ_HANDLED;
I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
if (iir & GEN8_PIPE_VBLANK)
drm_handle_vblank(&dev_priv->drm, pipe);
if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
hsw_pipe_crc_irq_handler(dev_priv, pipe);
if (iir & GEN8_PIPE_FIFO_UNDERRUN)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
if (fault_errors)
DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
pipe_name(pipe),
fault_errors);
}
if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
master_ctl & GEN8_DE_PCH_IRQ) {
/*
* FIXME(BDW): Assume for now that the new interrupt handling
* scheme also closed the SDE interrupt handling race we've seen
* on older pch-split platforms. But this needs testing.
*/
iir = I915_READ(SDEIIR);
if (iir) {
I915_WRITE(SDEIIR, iir);
ret = IRQ_HANDLED;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_irq_handler(dev_priv, iir);
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
spt_irq_handler(dev_priv, iir);
else
cpt_irq_handler(dev_priv, iir);
} else {
/*
* Like on previous PCH there seems to be something
* fishy going on with forwarding PCH interrupts.
*/
DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
}
}
return ret;
}
static inline u32 gen8_master_intr_disable(void __iomem * const regs)
{
raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return raw_reg_read(regs, GEN8_MASTER_IRQ);
}
static inline void gen8_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
}
static irqreturn_t gen8_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
void __iomem * const regs = dev_priv->uncore.regs;
u32 master_ctl;
u32 gt_iir[4];
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
master_ctl = gen8_master_intr_disable(regs);
if (!master_ctl) {
gen8_master_intr_enable(regs);
return IRQ_NONE;
}
/* Find, clear, then process each source of interrupt */
gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & ~GEN8_GT_IRQS) {
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
gen8_de_irq_handler(dev_priv, master_ctl);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
}
gen8_master_intr_enable(regs);
gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
return IRQ_HANDLED;
}
static u32
gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
{
void __iomem * const regs = gt->uncore->regs;
u32 iir;
if (!(master_ctl & GEN11_GU_MISC_IRQ))
return 0;
iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
if (likely(iir))
raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
return iir;
}
static void
gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
{
if (iir & GEN11_GU_MISC_GSE)
intel_opregion_asle_intr(gt->i915);
}
static inline u32 gen11_master_intr_disable(void __iomem * const regs)
{
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
}
static inline void gen11_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
}
static void
gen11_display_irq_handler(struct drm_i915_private *i915)
{
void __iomem * const regs = i915->uncore.regs;
const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
disable_rpm_wakeref_asserts(&i915->runtime_pm);
/*
* GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
* for the display related bits.
*/
raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
gen8_de_irq_handler(i915, disp_ctl);
raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
GEN11_DISPLAY_IRQ_ENABLE);
enable_rpm_wakeref_asserts(&i915->runtime_pm);
}
static __always_inline irqreturn_t
__gen11_irq_handler(struct drm_i915_private * const i915,
u32 (*intr_disable)(void __iomem * const regs),
void (*intr_enable)(void __iomem * const regs))
{
void __iomem * const regs = i915->uncore.regs;
struct intel_gt *gt = &i915->gt;
u32 master_ctl;
u32 gu_misc_iir;
if (!intel_irqs_enabled(i915))
return IRQ_NONE;
master_ctl = intr_disable(regs);
if (!master_ctl) {
intr_enable(regs);
return IRQ_NONE;
}
/* Find, clear, then process each source of interrupt. */
gen11_gt_irq_handler(gt, master_ctl);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & GEN11_DISPLAY_IRQ)
gen11_display_irq_handler(i915);
gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
intr_enable(regs);
gen11_gu_misc_irq_handler(gt, gu_misc_iir);
return IRQ_HANDLED;
}
static irqreturn_t gen11_irq_handler(int irq, void *arg)
{
return __gen11_irq_handler(arg,
gen11_master_intr_disable,
gen11_master_intr_enable);
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
int i8xx_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
int i915gm_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
/*
* Vblank interrupts fail to wake the device up from C2+.
* Disabling render clock gating during C-states avoids
* the problem. There is a small power cost so we do this
* only when vblank interrupts are actually enabled.
*/
if (dev_priv->vblank_enabled++ == 0)
I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
return i8xx_enable_vblank(crtc);
}
int i965_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
int ilk_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
u32 bit = INTEL_GEN(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_enable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/* Even though there is no DMC, frame counter can get stuck when
* PSR is active as no frames are generated.
*/
if (HAS_PSR(dev_priv))
drm_crtc_vblank_restore(crtc);
return 0;
}
int bdw_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/* Even if there is no DMC, frame counter can get stuck when
* PSR is active as no frames are generated, so check only for PSR.
*/
if (HAS_PSR(dev_priv))
drm_crtc_vblank_restore(crtc);
return 0;
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
void i8xx_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void i915gm_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
i8xx_disable_vblank(crtc);
if (--dev_priv->vblank_enabled == 0)
I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
}
void i965_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void ilk_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
u32 bit = INTEL_GEN(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_disable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void bdw_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ibx_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (HAS_PCH_NOP(dev_priv))
return;
GEN3_IRQ_RESET(uncore, SDE);
if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
I915_WRITE(SERR_INT, 0xffffffff);
}
/*
* SDEIER is also touched by the interrupt handler to work around missed PCH
* interrupts. Hence we can't update it after the interrupt handler is enabled -
* instead we unconditionally enable all PCH interrupt sources here, but then
* only unmask them as needed with SDEIMR.
*
* This function needs to be called before interrupts are enabled.
*/
static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_NOP(dev_priv))
return;
WARN_ON(I915_READ(SDEIER) != 0);
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
}
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (IS_CHERRYVIEW(dev_priv))
intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
else
intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, VLV_);
dev_priv->irq_mask = ~0u;
}
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 pipestat_mask;
u32 enable_mask;
enum pipe pipe;
pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
for_each_pipe(dev_priv, pipe)
i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
enable_mask = I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT;
if (IS_CHERRYVIEW(dev_priv))
enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT;
WARN_ON(dev_priv->irq_mask != ~0u);
dev_priv->irq_mask = ~enable_mask;
GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
}
/* drm_dma.h hooks
*/
static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
GEN3_IRQ_RESET(uncore, DE);
if (IS_GEN(dev_priv, 7))
intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
if (IS_HASWELL(dev_priv)) {
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
}
gen5_gt_irq_reset(&dev_priv->gt);
ibx_irq_reset(dev_priv);
}
static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
{
I915_WRITE(VLV_MASTER_IER, 0);
POSTING_READ(VLV_MASTER_IER);
gen5_gt_irq_reset(&dev_priv->gt);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void gen8_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
enum pipe pipe;
gen8_master_intr_disable(dev_priv->uncore.regs);
gen8_gt_irq_reset(&dev_priv->gt);
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_reset(dev_priv);
}
static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
enum pipe pipe;
intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
if (INTEL_GEN(dev_priv) >= 12) {
enum transcoder trans;
for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
enum intel_display_power_domain domain;
domain = POWER_DOMAIN_TRANSCODER(trans);
if (!intel_display_power_is_enabled(dev_priv, domain))
continue;
intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
}
} else {
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
}
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
GEN3_IRQ_RESET(uncore, SDE);
}
static void gen11_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
gen11_master_intr_disable(dev_priv->uncore.regs);
gen11_gt_irq_reset(&dev_priv->gt);
gen11_display_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
}
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
u8 pipe_mask)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
if (!intel_irqs_enabled(dev_priv)) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
~dev_priv->de_irq_mask[pipe] | extra_ier);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
u8 pipe_mask)
{
struct intel_uncore *uncore = &dev_priv->uncore;
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
if (!intel_irqs_enabled(dev_priv)) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
intel_synchronize_irq(dev_priv);
}
static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
I915_WRITE(GEN8_MASTER_IRQ, 0);
POSTING_READ(GEN8_MASTER_IRQ);
gen8_gt_irq_reset(&dev_priv->gt);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
const u32 hpd[HPD_NUM_PINS])
{
struct intel_encoder *encoder;
u32 enabled_irqs = 0;
for_each_intel_encoder(&dev_priv->drm, encoder)
if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
enabled_irqs |= hpd[encoder->hpd_pin];
return enabled_irqs;
}
static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec).
* The pulse duration bits are reserved on LPT+.
*/
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug &= ~(PORTB_PULSE_DURATION_MASK |
PORTC_PULSE_DURATION_MASK |
PORTD_PULSE_DURATION_MASK);
hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
/*
* When CPU and PCH are on the same package, port A
* HPD must be enabled in both north and south.
*/
if (HAS_PCH_LPT_LP(dev_priv))
hotplug |= PORTA_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
if (HAS_PCH_IBX(dev_priv)) {
hotplug_irqs = SDE_HOTPLUG_MASK;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
} else {
hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
}
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
ibx_hpd_detection_setup(dev_priv);
}
static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
u32 ddi_hotplug_enable_mask,
u32 tc_hotplug_enable_mask)
{
u32 hotplug;
hotplug = I915_READ(SHOTPLUG_CTL_DDI);
hotplug |= ddi_hotplug_enable_mask;
I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
if (tc_hotplug_enable_mask) {
hotplug = I915_READ(SHOTPLUG_CTL_TC);
hotplug |= tc_hotplug_enable_mask;
I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
}
}
static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
u32 sde_ddi_mask, u32 sde_tc_mask,
u32 ddi_enable_mask, u32 tc_enable_mask,
const u32 *pins)
{
u32 hotplug_irqs, enabled_irqs;
hotplug_irqs = sde_ddi_mask | sde_tc_mask;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, pins);
I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
}
/*
* EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
* equivalent of SDE.
*/
static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
icp_hpd_irq_setup(dev_priv,
SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1),
hpd_icp);
}
/*
* JSP behaves exactly the same as MCC above except that port C is mapped to
* the DDI-C pins instead of the TC1 pins. This means we should follow TGP's
* masks & tables rather than ICP's masks & tables.
*/
static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
icp_hpd_irq_setup(dev_priv,
SDE_DDI_MASK_TGP, 0,
TGP_DDI_HPD_ENABLE_MASK, 0,
hpd_tgp);
}
static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
}
static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
const u32 *hpd;
u32 val;
hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
val = I915_READ(GEN11_DE_HPD_IMR);
val &= ~hotplug_irqs;
I915_WRITE(GEN11_DE_HPD_IMR, val);
POSTING_READ(GEN11_DE_HPD_IMR);
gen11_hpd_detection_setup(dev_priv);
if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
TGP_DDI_HPD_ENABLE_MASK,
TGP_TC_HPD_ENABLE_MASK, hpd_tgp);
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
ICP_DDI_HPD_ENABLE_MASK,
ICP_TC_HPD_ENABLE_MASK, hpd_icp);
}
static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 val, hotplug;
/* Display WA #1179 WaHardHangonHotPlug: cnp */
if (HAS_PCH_CNP(dev_priv)) {
val = I915_READ(SOUTH_CHICKEN1);
val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
val |= CHASSIS_CLK_REQ_DURATION(0xf);
I915_WRITE(SOUTH_CHICKEN1, val);
}
/* Enable digital hotplug on the PCH */
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug |= PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE |
PORTD_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
hotplug = I915_READ(PCH_PORT_HOTPLUG2);
hotplug |= PORTE_HOTPLUG_ENABLE;
I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
}
static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
spt_hpd_detection_setup(dev_priv);
}
static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
/*
* Enable digital hotplug on the CPU, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec)
* The pulse duration bits are reserved on HSW+.
*/
hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
DIGITAL_PORTA_PULSE_DURATION_2ms;
I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
}
static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
if (INTEL_GEN(dev_priv) >= 8) {
hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
} else if (INTEL_GEN(dev_priv) >= 7) {
hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
} else {
hotplug_irqs = DE_DP_A_HOTPLUG;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
}
ilk_hpd_detection_setup(dev_priv);
ibx_hpd_irq_setup(dev_priv);
}
static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
u32 enabled_irqs)
{
u32 hotplug;
hotplug = I915_READ(PCH_PORT_HOTPLUG);
hotplug |= PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE;
DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
hotplug, enabled_irqs);
hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
/*
* For BXT invert bit has to be set based on AOB design
* for HPD detection logic, update it based on VBT fields.
*/
if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
hotplug |= BXT_DDIA_HPD_INVERT;
if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
hotplug |= BXT_DDIB_HPD_INVERT;
if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
hotplug |= BXT_DDIC_HPD_INVERT;
I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
}
static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
}
static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
}
static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
{
u32 mask;
if (HAS_PCH_NOP(dev_priv))
return;
if (HAS_PCH_IBX(dev_priv))
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
else
mask = SDE_GMBUS_CPT;
gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
I915_WRITE(SDEIMR, ~mask);
if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
HAS_PCH_LPT(dev_priv))
ibx_hpd_detection_setup(dev_priv);
else
spt_hpd_detection_setup(dev_priv);
}
static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 display_mask, extra_mask;
if (INTEL_GEN(dev_priv) >= 7) {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
DE_DP_A_HOTPLUG_IVB);
} else {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
DE_PIPEA_CRC_DONE | DE_POISON);
extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
DE_DP_A_HOTPLUG);
}
if (IS_HASWELL(dev_priv)) {
gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
display_mask |= DE_EDP_PSR_INT_HSW;
}
dev_priv->irq_mask = ~display_mask;
ibx_irq_pre_postinstall(dev_priv);
GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
display_mask | extra_mask);
gen5_gt_irq_postinstall(&dev_priv->gt);
ilk_hpd_detection_setup(dev_priv);
ibx_irq_postinstall(dev_priv);
if (IS_IRONLAKE_M(dev_priv)) {
/* Enable PCU event interrupts
*
* spinlocking not required here for correctness since interrupt
* setup is guaranteed to run in single-threaded context. But we
* need it to make the assert_spin_locked happy. */
spin_lock_irq(&dev_priv->irq_lock);
ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
spin_unlock_irq(&dev_priv->irq_lock);
}
}
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = true;
if (intel_irqs_enabled(dev_priv)) {
vlv_display_irq_reset(dev_priv);
vlv_display_irq_postinstall(dev_priv);
}
}
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = false;
if (intel_irqs_enabled(dev_priv))
vlv_display_irq_reset(dev_priv);
}
static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen5_gt_irq_postinstall(&dev_priv->gt);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
POSTING_READ(VLV_MASTER_IER);
}
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
u32 de_pipe_enables;
u32 de_port_masked = GEN8_AUX_CHANNEL_A;
u32 de_port_enables;
u32 de_misc_masked = GEN8_DE_EDP_PSR;
enum pipe pipe;
if (INTEL_GEN(dev_priv) <= 10)
de_misc_masked |= GEN8_DE_MISC_GSE;
if (INTEL_GEN(dev_priv) >= 9) {
de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (IS_GEN9_LP(dev_priv))
de_port_masked |= BXT_DE_PORT_GMBUS;
} else {
de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
}
if (INTEL_GEN(dev_priv) >= 11)
de_port_masked |= ICL_AUX_CHANNEL_E;
if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
de_port_masked |= CNL_AUX_CHANNEL_F;
de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
GEN8_PIPE_FIFO_UNDERRUN;
de_port_enables = de_port_masked;
if (IS_GEN9_LP(dev_priv))
de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
else if (IS_BROADWELL(dev_priv))
de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
if (INTEL_GEN(dev_priv) >= 12) {
enum transcoder trans;
for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
enum intel_display_power_domain domain;
domain = POWER_DOMAIN_TRANSCODER(trans);
if (!intel_display_power_is_enabled(dev_priv, domain))
continue;
gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
}
} else {
gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
}
for_each_pipe(dev_priv, pipe) {
dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
de_pipe_enables);
}
GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
if (INTEL_GEN(dev_priv) >= 11) {
u32 de_hpd_masked = 0;
u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
GEN11_DE_TBT_HOTPLUG_MASK;
GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
de_hpd_enables);
gen11_hpd_detection_setup(dev_priv);
} else if (IS_GEN9_LP(dev_priv)) {
bxt_hpd_detection_setup(dev_priv);
} else if (IS_BROADWELL(dev_priv)) {
ilk_hpd_detection_setup(dev_priv);
}
}
static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_pre_postinstall(dev_priv);
gen8_gt_irq_postinstall(&dev_priv->gt);
gen8_de_irq_postinstall(dev_priv);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_postinstall(dev_priv);
gen8_master_intr_enable(dev_priv->uncore.regs);
}
static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
{
u32 mask = SDE_GMBUS_ICP;
WARN_ON(I915_READ(SDEIER) != 0);
I915_WRITE(SDEIER, 0xffffffff);
POSTING_READ(SDEIER);
gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
I915_WRITE(SDEIMR, ~mask);
if (HAS_PCH_TGP(dev_priv))
icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
TGP_TC_HPD_ENABLE_MASK);
else if (HAS_PCH_JSP(dev_priv))
icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
else if (HAS_PCH_MCC(dev_priv))
icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
ICP_TC_HPD_ENABLE(PORT_TC1));
else
icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
ICP_TC_HPD_ENABLE_MASK);
}
static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 gu_misc_masked = GEN11_GU_MISC_GSE;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_irq_postinstall(dev_priv);
gen11_gt_irq_postinstall(&dev_priv->gt);
gen8_de_irq_postinstall(dev_priv);
GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
gen11_master_intr_enable(uncore->regs);
POSTING_READ(GEN11_GFX_MSTR_IRQ);
}
static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen8_gt_irq_postinstall(&dev_priv->gt);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
POSTING_READ(GEN8_MASTER_IRQ);
}
static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
i9xx_pipestat_irq_reset(dev_priv);
GEN2_IRQ_RESET(uncore);
}
static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u16 enable_mask;
intel_uncore_write16(uncore,
EMR,
~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void i8xx_error_irq_ack(struct drm_i915_private *i915,
u16 *eir, u16 *eir_stuck)
{
struct intel_uncore *uncore = &i915->uncore;
u16 emr;
*eir = intel_uncore_read16(uncore, EIR);
if (*eir)
intel_uncore_write16(uncore, EIR, *eir);
*eir_stuck = intel_uncore_read16(uncore, EIR);
if (*eir_stuck == 0)
return;
/*
* Toggle all EMR bits to make sure we get an edge
* in the ISR master error bit if we don't clear
* all the EIR bits. Otherwise the edge triggered
* IIR on i965/g4x wouldn't notice that an interrupt
* is still pending. Also some EIR bits can't be
* cleared except by handling the underlying error
* (or by a GPU reset) so we mask any bit that
* remains set.
*/
emr = intel_uncore_read16(uncore, EMR);
intel_uncore_write16(uncore, EMR, 0xffff);
intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
}
static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
u16 eir, u16 eir_stuck)
{
DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
if (eir_stuck)
DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
}
static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
u32 *eir, u32 *eir_stuck)
{
u32 emr;
*eir = I915_READ(EIR);
I915_WRITE(EIR, *eir);
*eir_stuck = I915_READ(EIR);
if (*eir_stuck == 0)
return;
/*
* Toggle all EMR bits to make sure we get an edge
* in the ISR master error bit if we don't clear
* all the EIR bits. Otherwise the edge triggered
* IIR on i965/g4x wouldn't notice that an interrupt
* is still pending. Also some EIR bits can't be
* cleared except by handling the underlying error
* (or by a GPU reset) so we mask any bit that
* remains set.
*/
emr = I915_READ(EMR);
I915_WRITE(EMR, 0xffffffff);
I915_WRITE(EMR, emr | *eir_stuck);
}
static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
u32 eir, u32 eir_stuck)
{
DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
if (eir_stuck)
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u16 eir = 0, eir_stuck = 0;
u16 iir;
iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void i915_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
}
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN2_);
}
static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 enable_mask;
I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev_priv)) {
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 eir = 0, eir_stuck = 0;
u32 hotplug_status = 0;
u32 iir;
iir = I915_READ(GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (I915_HAS_HOTPLUG(dev_priv) &&
iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
I915_WRITE(GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void i965_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN2_);
}
static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 enable_mask;
u32 error_mask;
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*/
if (IS_G4X(dev_priv)) {
error_mask = ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
} else {
error_mask = ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
I915_WRITE(EMR, error_mask);
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (IS_G4X(dev_priv))
enable_mask |= I915_BSD_USER_INTERRUPT;
GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
}
static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_en;
lockdep_assert_held(&dev_priv->irq_lock);
/* Note HDMI and DP share hotplug bits */
/* enable bits are the same for all generations */
hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
/* Programming the CRT detection parameters tends
to generate a spurious hotplug event about three
seconds later. So just do it once.
*/
if (IS_G4X(dev_priv))
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
/* Ignore TV since it's buggy */
i915_hotplug_interrupt_update_locked(dev_priv,
HOTPLUG_INT_EN_MASK |
CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
CRT_HOTPLUG_ACTIVATION_PERIOD_64,
hotplug_en);
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 eir = 0, eir_stuck = 0;
u32 hotplug_status = 0;
u32 iir;
iir = I915_READ(GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
I915_WRITE(GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
if (iir & I915_BSD_USER_INTERRUPT)
intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
/**
* intel_irq_init - initializes irq support
* @dev_priv: i915 device instance
*
* This function initializes all the irq support including work items, timers
* and all the vtables. It does not setup the interrupt itself though.
*/
void intel_irq_init(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
int i;
intel_hpd_init_work(dev_priv);
INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
for (i = 0; i < MAX_L3_SLICES; ++i)
dev_priv->l3_parity.remap_info[i] = NULL;
/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
dev->vblank_disable_immediate = true;
/* Most platforms treat the display irq block as an always-on
* power domain. vlv/chv can disable it at runtime and need
* special care to avoid writing any of the display block registers
* outside of the power domain. We defer setting up the display irqs
* in this case to the runtime pm.
*/
dev_priv->display_irqs_enabled = true;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->display_irqs_enabled = false;
dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
/* If we have MST support, we want to avoid doing short HPD IRQ storm
* detection, as short HPD storms will occur as a natural part of
* sideband messaging with MST.
* On older platforms however, IRQ storms can occur with both long and
* short pulses, as seen on some G4x systems.
*/
dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
if (HAS_GMCH(dev_priv)) {
if (I915_HAS_HOTPLUG(dev_priv))
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else {
if (HAS_PCH_JSP(dev_priv))
dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
else if (HAS_PCH_MCC(dev_priv))
dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
else if (INTEL_GEN(dev_priv) >= 11)
dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
else if (IS_GEN9_LP(dev_priv))
dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
else
dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
}
}
/**
* intel_irq_fini - deinitializes IRQ support
* @i915: i915 device instance
*
* This function deinitializes all the IRQ support.
*/
void intel_irq_fini(struct drm_i915_private *i915)
{
int i;
for (i = 0; i < MAX_L3_SLICES; ++i)
kfree(i915->l3_parity.remap_info[i]);
}
static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
return cherryview_irq_handler;
else if (IS_VALLEYVIEW(dev_priv))
return valleyview_irq_handler;
else if (IS_GEN(dev_priv, 4))
return i965_irq_handler;
else if (IS_GEN(dev_priv, 3))
return i915_irq_handler;
else
return i8xx_irq_handler;
} else {
if (INTEL_GEN(dev_priv) >= 11)
return gen11_irq_handler;
else if (INTEL_GEN(dev_priv) >= 8)
return gen8_irq_handler;
else
return ironlake_irq_handler;
}
}
static void intel_irq_reset(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_irq_reset(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_irq_reset(dev_priv);
else if (IS_GEN(dev_priv, 4))
i965_irq_reset(dev_priv);
else if (IS_GEN(dev_priv, 3))
i915_irq_reset(dev_priv);
else
i8xx_irq_reset(dev_priv);
} else {
if (INTEL_GEN(dev_priv) >= 11)
gen11_irq_reset(dev_priv);
else if (INTEL_GEN(dev_priv) >= 8)
gen8_irq_reset(dev_priv);
else
ironlake_irq_reset(dev_priv);
}
}
static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_irq_postinstall(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_irq_postinstall(dev_priv);
else if (IS_GEN(dev_priv, 4))
i965_irq_postinstall(dev_priv);
else if (IS_GEN(dev_priv, 3))
i915_irq_postinstall(dev_priv);
else
i8xx_irq_postinstall(dev_priv);
} else {
if (INTEL_GEN(dev_priv) >= 11)
gen11_irq_postinstall(dev_priv);
else if (INTEL_GEN(dev_priv) >= 8)
gen8_irq_postinstall(dev_priv);
else
ironlake_irq_postinstall(dev_priv);
}
}
/**
* intel_irq_install - enables the hardware interrupt
* @dev_priv: i915 device instance
*
* This function enables the hardware interrupt handling, but leaves the hotplug
* handling still disabled. It is called after intel_irq_init().
*
* In the driver load and resume code we need working interrupts in a few places
* but don't want to deal with the hassle of concurrent probe and hotplug
* workers. Hence the split into this two-stage approach.
*/
int intel_irq_install(struct drm_i915_private *dev_priv)
{
int irq = dev_priv->drm.pdev->irq;
int ret;
/*
* We enable some interrupt sources in our postinstall hooks, so mark
* interrupts as enabled _before_ actually enabling them to avoid
* special cases in our ordering checks.
*/
dev_priv->runtime_pm.irqs_enabled = true;
dev_priv->drm.irq_enabled = true;
intel_irq_reset(dev_priv);
ret = request_irq(irq, intel_irq_handler(dev_priv),
IRQF_SHARED, DRIVER_NAME, dev_priv);
if (ret < 0) {
dev_priv->drm.irq_enabled = false;
return ret;
}
intel_irq_postinstall(dev_priv);
return ret;
}
/**
* intel_irq_uninstall - finilizes all irq handling
* @dev_priv: i915 device instance
*
* This stops interrupt and hotplug handling and unregisters and frees all
* resources acquired in the init functions.
*/
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
{
int irq = dev_priv->drm.pdev->irq;
/*
* FIXME we can get called twice during driver probe
* error handling as well as during driver remove due to
* intel_modeset_driver_remove() calling us out of sequence.
* Would be nice if it didn't do that...
*/
if (!dev_priv->drm.irq_enabled)
return;
dev_priv->drm.irq_enabled = false;
intel_irq_reset(dev_priv);
free_irq(irq, dev_priv);
intel_hpd_cancel_work(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
}
/**
* intel_runtime_pm_disable_interrupts - runtime interrupt disabling
* @dev_priv: i915 device instance
*
* This function is used to disable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
{
intel_irq_reset(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
intel_synchronize_irq(dev_priv);
}
/**
* intel_runtime_pm_enable_interrupts - runtime interrupt enabling
* @dev_priv: i915 device instance
*
* This function is used to enable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->runtime_pm.irqs_enabled = true;
intel_irq_reset(dev_priv);
intel_irq_postinstall(dev_priv);
}
bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
{
/*
* We only use drm_irq_uninstall() at unload and VT switch, so
* this is the only thing we need to check.
*/
return dev_priv->runtime_pm.irqs_enabled;
}
void intel_synchronize_irq(struct drm_i915_private *i915)
{
synchronize_irq(i915->drm.pdev->irq);
}