mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 01:09:48 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
460 lines
9.8 KiB
C
460 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* ptrace.c: Sparc process tracing support.
|
|
*
|
|
* Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
|
|
*
|
|
* Based upon code written by Ross Biro, Linus Torvalds, Bob Manson,
|
|
* and David Mosberger.
|
|
*
|
|
* Added Linux support -miguel (weird, eh?, the original code was meant
|
|
* to emulate SunOS).
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/security.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/tracehook.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "kernel.h"
|
|
|
|
/* #define ALLOW_INIT_TRACING */
|
|
|
|
/*
|
|
* Called by kernel/ptrace.c when detaching..
|
|
*
|
|
* Make sure single step bits etc are not set.
|
|
*/
|
|
void ptrace_disable(struct task_struct *child)
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
enum sparc_regset {
|
|
REGSET_GENERAL,
|
|
REGSET_FP,
|
|
};
|
|
|
|
static int genregs32_get(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
const struct pt_regs *regs = target->thread.kregs;
|
|
unsigned long __user *reg_window;
|
|
unsigned long *k = kbuf;
|
|
unsigned long __user *u = ubuf;
|
|
unsigned long reg;
|
|
|
|
if (target == current)
|
|
flush_user_windows();
|
|
|
|
pos /= sizeof(reg);
|
|
count /= sizeof(reg);
|
|
|
|
if (kbuf) {
|
|
for (; count > 0 && pos < 16; count--)
|
|
*k++ = regs->u_regs[pos++];
|
|
|
|
reg_window = (unsigned long __user *) regs->u_regs[UREG_I6];
|
|
reg_window -= 16;
|
|
for (; count > 0 && pos < 32; count--) {
|
|
if (get_user(*k++, ®_window[pos++]))
|
|
return -EFAULT;
|
|
}
|
|
} else {
|
|
for (; count > 0 && pos < 16; count--) {
|
|
if (put_user(regs->u_regs[pos++], u++))
|
|
return -EFAULT;
|
|
}
|
|
|
|
reg_window = (unsigned long __user *) regs->u_regs[UREG_I6];
|
|
reg_window -= 16;
|
|
for (; count > 0 && pos < 32; count--) {
|
|
if (get_user(reg, ®_window[pos++]) ||
|
|
put_user(reg, u++))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
while (count > 0) {
|
|
switch (pos) {
|
|
case 32: /* PSR */
|
|
reg = regs->psr;
|
|
break;
|
|
case 33: /* PC */
|
|
reg = regs->pc;
|
|
break;
|
|
case 34: /* NPC */
|
|
reg = regs->npc;
|
|
break;
|
|
case 35: /* Y */
|
|
reg = regs->y;
|
|
break;
|
|
case 36: /* WIM */
|
|
case 37: /* TBR */
|
|
reg = 0;
|
|
break;
|
|
default:
|
|
goto finish;
|
|
}
|
|
|
|
if (kbuf)
|
|
*k++ = reg;
|
|
else if (put_user(reg, u++))
|
|
return -EFAULT;
|
|
pos++;
|
|
count--;
|
|
}
|
|
finish:
|
|
pos *= sizeof(reg);
|
|
count *= sizeof(reg);
|
|
|
|
return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
|
|
38 * sizeof(reg), -1);
|
|
}
|
|
|
|
static int genregs32_set(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct pt_regs *regs = target->thread.kregs;
|
|
unsigned long __user *reg_window;
|
|
const unsigned long *k = kbuf;
|
|
const unsigned long __user *u = ubuf;
|
|
unsigned long reg;
|
|
|
|
if (target == current)
|
|
flush_user_windows();
|
|
|
|
pos /= sizeof(reg);
|
|
count /= sizeof(reg);
|
|
|
|
if (kbuf) {
|
|
for (; count > 0 && pos < 16; count--)
|
|
regs->u_regs[pos++] = *k++;
|
|
|
|
reg_window = (unsigned long __user *) regs->u_regs[UREG_I6];
|
|
reg_window -= 16;
|
|
for (; count > 0 && pos < 32; count--) {
|
|
if (put_user(*k++, ®_window[pos++]))
|
|
return -EFAULT;
|
|
}
|
|
} else {
|
|
for (; count > 0 && pos < 16; count--) {
|
|
if (get_user(reg, u++))
|
|
return -EFAULT;
|
|
regs->u_regs[pos++] = reg;
|
|
}
|
|
|
|
reg_window = (unsigned long __user *) regs->u_regs[UREG_I6];
|
|
reg_window -= 16;
|
|
for (; count > 0 && pos < 32; count--) {
|
|
if (get_user(reg, u++) ||
|
|
put_user(reg, ®_window[pos++]))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
while (count > 0) {
|
|
unsigned long psr;
|
|
|
|
if (kbuf)
|
|
reg = *k++;
|
|
else if (get_user(reg, u++))
|
|
return -EFAULT;
|
|
|
|
switch (pos) {
|
|
case 32: /* PSR */
|
|
psr = regs->psr;
|
|
psr &= ~(PSR_ICC | PSR_SYSCALL);
|
|
psr |= (reg & (PSR_ICC | PSR_SYSCALL));
|
|
regs->psr = psr;
|
|
break;
|
|
case 33: /* PC */
|
|
regs->pc = reg;
|
|
break;
|
|
case 34: /* NPC */
|
|
regs->npc = reg;
|
|
break;
|
|
case 35: /* Y */
|
|
regs->y = reg;
|
|
break;
|
|
case 36: /* WIM */
|
|
case 37: /* TBR */
|
|
break;
|
|
default:
|
|
goto finish;
|
|
}
|
|
|
|
pos++;
|
|
count--;
|
|
}
|
|
finish:
|
|
pos *= sizeof(reg);
|
|
count *= sizeof(reg);
|
|
|
|
return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
|
|
38 * sizeof(reg), -1);
|
|
}
|
|
|
|
static int fpregs32_get(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
const unsigned long *fpregs = target->thread.float_regs;
|
|
int ret = 0;
|
|
|
|
#if 0
|
|
if (target == current)
|
|
save_and_clear_fpu();
|
|
#endif
|
|
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
fpregs,
|
|
0, 32 * sizeof(u32));
|
|
|
|
if (!ret)
|
|
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
|
|
32 * sizeof(u32),
|
|
33 * sizeof(u32));
|
|
if (!ret)
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fsr,
|
|
33 * sizeof(u32),
|
|
34 * sizeof(u32));
|
|
|
|
if (!ret) {
|
|
unsigned long val;
|
|
|
|
val = (1 << 8) | (8 << 16);
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&val,
|
|
34 * sizeof(u32),
|
|
35 * sizeof(u32));
|
|
}
|
|
|
|
if (!ret)
|
|
ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
|
|
35 * sizeof(u32), -1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fpregs32_set(struct task_struct *target,
|
|
const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
unsigned long *fpregs = target->thread.float_regs;
|
|
int ret;
|
|
|
|
#if 0
|
|
if (target == current)
|
|
save_and_clear_fpu();
|
|
#endif
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
fpregs,
|
|
0, 32 * sizeof(u32));
|
|
if (!ret)
|
|
user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
|
|
32 * sizeof(u32),
|
|
33 * sizeof(u32));
|
|
if (!ret && count > 0) {
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fsr,
|
|
33 * sizeof(u32),
|
|
34 * sizeof(u32));
|
|
}
|
|
|
|
if (!ret)
|
|
ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
|
|
34 * sizeof(u32), -1);
|
|
return ret;
|
|
}
|
|
|
|
static const struct user_regset sparc32_regsets[] = {
|
|
/* Format is:
|
|
* G0 --> G7
|
|
* O0 --> O7
|
|
* L0 --> L7
|
|
* I0 --> I7
|
|
* PSR, PC, nPC, Y, WIM, TBR
|
|
*/
|
|
[REGSET_GENERAL] = {
|
|
.core_note_type = NT_PRSTATUS,
|
|
.n = 38,
|
|
.size = sizeof(u32), .align = sizeof(u32),
|
|
.get = genregs32_get, .set = genregs32_set
|
|
},
|
|
/* Format is:
|
|
* F0 --> F31
|
|
* empty 32-bit word
|
|
* FSR (32--bit word)
|
|
* FPU QUEUE COUNT (8-bit char)
|
|
* FPU QUEUE ENTRYSIZE (8-bit char)
|
|
* FPU ENABLED (8-bit char)
|
|
* empty 8-bit char
|
|
* FPU QUEUE (64 32-bit ints)
|
|
*/
|
|
[REGSET_FP] = {
|
|
.core_note_type = NT_PRFPREG,
|
|
.n = 99,
|
|
.size = sizeof(u32), .align = sizeof(u32),
|
|
.get = fpregs32_get, .set = fpregs32_set
|
|
},
|
|
};
|
|
|
|
static const struct user_regset_view user_sparc32_view = {
|
|
.name = "sparc", .e_machine = EM_SPARC,
|
|
.regsets = sparc32_regsets, .n = ARRAY_SIZE(sparc32_regsets)
|
|
};
|
|
|
|
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
|
|
{
|
|
return &user_sparc32_view;
|
|
}
|
|
|
|
struct fps {
|
|
unsigned long regs[32];
|
|
unsigned long fsr;
|
|
unsigned long flags;
|
|
unsigned long extra;
|
|
unsigned long fpqd;
|
|
struct fq {
|
|
unsigned long *insnaddr;
|
|
unsigned long insn;
|
|
} fpq[16];
|
|
};
|
|
|
|
long arch_ptrace(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
unsigned long addr2 = current->thread.kregs->u_regs[UREG_I4];
|
|
void __user *addr2p;
|
|
const struct user_regset_view *view;
|
|
struct pt_regs __user *pregs;
|
|
struct fps __user *fps;
|
|
int ret;
|
|
|
|
view = task_user_regset_view(current);
|
|
addr2p = (void __user *) addr2;
|
|
pregs = (struct pt_regs __user *) addr;
|
|
fps = (struct fps __user *) addr;
|
|
|
|
switch(request) {
|
|
case PTRACE_GETREGS: {
|
|
ret = copy_regset_to_user(child, view, REGSET_GENERAL,
|
|
32 * sizeof(u32),
|
|
4 * sizeof(u32),
|
|
&pregs->psr);
|
|
if (!ret)
|
|
copy_regset_to_user(child, view, REGSET_GENERAL,
|
|
1 * sizeof(u32),
|
|
15 * sizeof(u32),
|
|
&pregs->u_regs[0]);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETREGS: {
|
|
ret = copy_regset_from_user(child, view, REGSET_GENERAL,
|
|
32 * sizeof(u32),
|
|
4 * sizeof(u32),
|
|
&pregs->psr);
|
|
if (!ret)
|
|
copy_regset_from_user(child, view, REGSET_GENERAL,
|
|
1 * sizeof(u32),
|
|
15 * sizeof(u32),
|
|
&pregs->u_regs[0]);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GETFPREGS: {
|
|
ret = copy_regset_to_user(child, view, REGSET_FP,
|
|
0 * sizeof(u32),
|
|
32 * sizeof(u32),
|
|
&fps->regs[0]);
|
|
if (!ret)
|
|
ret = copy_regset_to_user(child, view, REGSET_FP,
|
|
33 * sizeof(u32),
|
|
1 * sizeof(u32),
|
|
&fps->fsr);
|
|
|
|
if (!ret) {
|
|
if (__put_user(0, &fps->fpqd) ||
|
|
__put_user(0, &fps->flags) ||
|
|
__put_user(0, &fps->extra) ||
|
|
clear_user(fps->fpq, sizeof(fps->fpq)))
|
|
ret = -EFAULT;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETFPREGS: {
|
|
ret = copy_regset_from_user(child, view, REGSET_FP,
|
|
0 * sizeof(u32),
|
|
32 * sizeof(u32),
|
|
&fps->regs[0]);
|
|
if (!ret)
|
|
ret = copy_regset_from_user(child, view, REGSET_FP,
|
|
33 * sizeof(u32),
|
|
1 * sizeof(u32),
|
|
&fps->fsr);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_READTEXT:
|
|
case PTRACE_READDATA:
|
|
ret = ptrace_readdata(child, addr, addr2p, data);
|
|
|
|
if (ret == data)
|
|
ret = 0;
|
|
else if (ret >= 0)
|
|
ret = -EIO;
|
|
break;
|
|
|
|
case PTRACE_WRITETEXT:
|
|
case PTRACE_WRITEDATA:
|
|
ret = ptrace_writedata(child, addr2p, addr, data);
|
|
|
|
if (ret == data)
|
|
ret = 0;
|
|
else if (ret >= 0)
|
|
ret = -EIO;
|
|
break;
|
|
|
|
default:
|
|
if (request == PTRACE_SPARC_DETACH)
|
|
request = PTRACE_DETACH;
|
|
ret = ptrace_request(child, request, addr, data);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage int syscall_trace(struct pt_regs *regs, int syscall_exit_p)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (test_thread_flag(TIF_SYSCALL_TRACE)) {
|
|
if (syscall_exit_p)
|
|
tracehook_report_syscall_exit(regs, 0);
|
|
else
|
|
ret = tracehook_report_syscall_entry(regs);
|
|
}
|
|
|
|
return ret;
|
|
}
|