mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 09:06:44 +07:00
1a78cedb99
Thanks to tip form ARM folks and Russell King. If flush_dcache_page() occurs on a swapin it will have a mapping and we'll try to defer the flush by setting the dirty bit. But when it hits update_dcache_page() we won't flush because the page won't have a mapping any more. So remove the mapping requirement in flush_dcache(). Signed-off-by: David S. Miller <davem@davemloft.net>
2378 lines
58 KiB
C
2378 lines
58 KiB
C
/*
|
|
* arch/sparc64/mm/init.c
|
|
*
|
|
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/lmb.h>
|
|
#include <linux/mmzone.h>
|
|
|
|
#include <asm/head.h>
|
|
#include <asm/system.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/starfire.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/spitfire.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tsb.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/mdesc.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/irq.h>
|
|
|
|
#include "init_64.h"
|
|
|
|
unsigned long kern_linear_pte_xor[2] __read_mostly;
|
|
|
|
/* A bitmap, one bit for every 256MB of physical memory. If the bit
|
|
* is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
|
|
* if set we should use a 256MB page (via kern_linear_pte_xor[1]).
|
|
*/
|
|
unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
|
|
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
/* A special kernel TSB for 4MB and 256MB linear mappings.
|
|
* Space is allocated for this right after the trap table
|
|
* in arch/sparc64/kernel/head.S
|
|
*/
|
|
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
|
|
#endif
|
|
|
|
#define MAX_BANKS 32
|
|
|
|
static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
|
|
static int pavail_ents __devinitdata;
|
|
|
|
static int cmp_p64(const void *a, const void *b)
|
|
{
|
|
const struct linux_prom64_registers *x = a, *y = b;
|
|
|
|
if (x->phys_addr > y->phys_addr)
|
|
return 1;
|
|
if (x->phys_addr < y->phys_addr)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void __init read_obp_memory(const char *property,
|
|
struct linux_prom64_registers *regs,
|
|
int *num_ents)
|
|
{
|
|
int node = prom_finddevice("/memory");
|
|
int prop_size = prom_getproplen(node, property);
|
|
int ents, ret, i;
|
|
|
|
ents = prop_size / sizeof(struct linux_prom64_registers);
|
|
if (ents > MAX_BANKS) {
|
|
prom_printf("The machine has more %s property entries than "
|
|
"this kernel can support (%d).\n",
|
|
property, MAX_BANKS);
|
|
prom_halt();
|
|
}
|
|
|
|
ret = prom_getproperty(node, property, (char *) regs, prop_size);
|
|
if (ret == -1) {
|
|
prom_printf("Couldn't get %s property from /memory.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
/* Sanitize what we got from the firmware, by page aligning
|
|
* everything.
|
|
*/
|
|
for (i = 0; i < ents; i++) {
|
|
unsigned long base, size;
|
|
|
|
base = regs[i].phys_addr;
|
|
size = regs[i].reg_size;
|
|
|
|
size &= PAGE_MASK;
|
|
if (base & ~PAGE_MASK) {
|
|
unsigned long new_base = PAGE_ALIGN(base);
|
|
|
|
size -= new_base - base;
|
|
if ((long) size < 0L)
|
|
size = 0UL;
|
|
base = new_base;
|
|
}
|
|
if (size == 0UL) {
|
|
/* If it is empty, simply get rid of it.
|
|
* This simplifies the logic of the other
|
|
* functions that process these arrays.
|
|
*/
|
|
memmove(®s[i], ®s[i + 1],
|
|
(ents - i - 1) * sizeof(regs[0]));
|
|
i--;
|
|
ents--;
|
|
continue;
|
|
}
|
|
regs[i].phys_addr = base;
|
|
regs[i].reg_size = size;
|
|
}
|
|
|
|
*num_ents = ents;
|
|
|
|
sort(regs, ents, sizeof(struct linux_prom64_registers),
|
|
cmp_p64, NULL);
|
|
}
|
|
|
|
unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
|
|
sizeof(unsigned long)];
|
|
EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
|
|
|
|
/* Kernel physical address base and size in bytes. */
|
|
unsigned long kern_base __read_mostly;
|
|
unsigned long kern_size __read_mostly;
|
|
|
|
/* Initial ramdisk setup */
|
|
extern unsigned long sparc_ramdisk_image64;
|
|
extern unsigned int sparc_ramdisk_image;
|
|
extern unsigned int sparc_ramdisk_size;
|
|
|
|
struct page *mem_map_zero __read_mostly;
|
|
EXPORT_SYMBOL(mem_map_zero);
|
|
|
|
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
|
|
|
|
unsigned long sparc64_kern_pri_context __read_mostly;
|
|
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
|
|
unsigned long sparc64_kern_sec_context __read_mostly;
|
|
|
|
int num_kernel_image_mappings;
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_t dcpage_flushes = ATOMIC_INIT(0);
|
|
#ifdef CONFIG_SMP
|
|
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
|
|
#endif
|
|
#endif
|
|
|
|
inline void flush_dcache_page_impl(struct page *page)
|
|
{
|
|
BUG_ON(tlb_type == hypervisor);
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
atomic_inc(&dcpage_flushes);
|
|
#endif
|
|
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
__flush_dcache_page(page_address(page),
|
|
((tlb_type == spitfire) &&
|
|
page_mapping(page) != NULL));
|
|
#else
|
|
if (page_mapping(page) != NULL &&
|
|
tlb_type == spitfire)
|
|
__flush_icache_page(__pa(page_address(page)));
|
|
#endif
|
|
}
|
|
|
|
#define PG_dcache_dirty PG_arch_1
|
|
#define PG_dcache_cpu_shift 32UL
|
|
#define PG_dcache_cpu_mask \
|
|
((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
|
|
|
|
#define dcache_dirty_cpu(page) \
|
|
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
|
|
|
|
static inline void set_dcache_dirty(struct page *page, int this_cpu)
|
|
{
|
|
unsigned long mask = this_cpu;
|
|
unsigned long non_cpu_bits;
|
|
|
|
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
|
|
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
|
|
|
|
__asm__ __volatile__("1:\n\t"
|
|
"ldx [%2], %%g7\n\t"
|
|
"and %%g7, %1, %%g1\n\t"
|
|
"or %%g1, %0, %%g1\n\t"
|
|
"casx [%2], %%g7, %%g1\n\t"
|
|
"cmp %%g7, %%g1\n\t"
|
|
"bne,pn %%xcc, 1b\n\t"
|
|
" nop"
|
|
: /* no outputs */
|
|
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
|
|
: "g1", "g7");
|
|
}
|
|
|
|
static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
|
|
{
|
|
unsigned long mask = (1UL << PG_dcache_dirty);
|
|
|
|
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
|
|
"1:\n\t"
|
|
"ldx [%2], %%g7\n\t"
|
|
"srlx %%g7, %4, %%g1\n\t"
|
|
"and %%g1, %3, %%g1\n\t"
|
|
"cmp %%g1, %0\n\t"
|
|
"bne,pn %%icc, 2f\n\t"
|
|
" andn %%g7, %1, %%g1\n\t"
|
|
"casx [%2], %%g7, %%g1\n\t"
|
|
"cmp %%g7, %%g1\n\t"
|
|
"bne,pn %%xcc, 1b\n\t"
|
|
" nop\n"
|
|
"2:"
|
|
: /* no outputs */
|
|
: "r" (cpu), "r" (mask), "r" (&page->flags),
|
|
"i" (PG_dcache_cpu_mask),
|
|
"i" (PG_dcache_cpu_shift)
|
|
: "g1", "g7");
|
|
}
|
|
|
|
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
|
|
{
|
|
unsigned long tsb_addr = (unsigned long) ent;
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
tsb_addr = __pa(tsb_addr);
|
|
|
|
__tsb_insert(tsb_addr, tag, pte);
|
|
}
|
|
|
|
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
|
|
unsigned long _PAGE_SZBITS __read_mostly;
|
|
|
|
static void flush_dcache(unsigned long pfn)
|
|
{
|
|
struct page *page;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (page) {
|
|
unsigned long pg_flags;
|
|
|
|
pg_flags = page->flags;
|
|
if (pg_flags & (1UL << PG_dcache_dirty)) {
|
|
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
|
|
PG_dcache_cpu_mask);
|
|
int this_cpu = get_cpu();
|
|
|
|
/* This is just to optimize away some function calls
|
|
* in the SMP case.
|
|
*/
|
|
if (cpu == this_cpu)
|
|
flush_dcache_page_impl(page);
|
|
else
|
|
smp_flush_dcache_page_impl(page, cpu);
|
|
|
|
clear_dcache_dirty_cpu(page, cpu);
|
|
|
|
put_cpu();
|
|
}
|
|
}
|
|
}
|
|
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
|
|
{
|
|
struct mm_struct *mm;
|
|
struct tsb *tsb;
|
|
unsigned long tag, flags;
|
|
unsigned long tsb_index, tsb_hash_shift;
|
|
|
|
if (tlb_type != hypervisor) {
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
if (pfn_valid(pfn))
|
|
flush_dcache(pfn);
|
|
}
|
|
|
|
mm = vma->vm_mm;
|
|
|
|
tsb_index = MM_TSB_BASE;
|
|
tsb_hash_shift = PAGE_SHIFT;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
|
|
if ((tlb_type == hypervisor &&
|
|
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
|
|
(tlb_type != hypervisor &&
|
|
(pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
|
|
tsb_index = MM_TSB_HUGE;
|
|
tsb_hash_shift = HPAGE_SHIFT;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
tsb = mm->context.tsb_block[tsb_index].tsb;
|
|
tsb += ((address >> tsb_hash_shift) &
|
|
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
|
|
tag = (address >> 22UL);
|
|
tsb_insert(tsb, tag, pte_val(pte));
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
int this_cpu;
|
|
|
|
if (tlb_type == hypervisor)
|
|
return;
|
|
|
|
/* Do not bother with the expensive D-cache flush if it
|
|
* is merely the zero page. The 'bigcore' testcase in GDB
|
|
* causes this case to run millions of times.
|
|
*/
|
|
if (page == ZERO_PAGE(0))
|
|
return;
|
|
|
|
this_cpu = get_cpu();
|
|
|
|
mapping = page_mapping(page);
|
|
if (mapping && !mapping_mapped(mapping)) {
|
|
int dirty = test_bit(PG_dcache_dirty, &page->flags);
|
|
if (dirty) {
|
|
int dirty_cpu = dcache_dirty_cpu(page);
|
|
|
|
if (dirty_cpu == this_cpu)
|
|
goto out;
|
|
smp_flush_dcache_page_impl(page, dirty_cpu);
|
|
}
|
|
set_dcache_dirty(page, this_cpu);
|
|
} else {
|
|
/* We could delay the flush for the !page_mapping
|
|
* case too. But that case is for exec env/arg
|
|
* pages and those are %99 certainly going to get
|
|
* faulted into the tlb (and thus flushed) anyways.
|
|
*/
|
|
flush_dcache_page_impl(page);
|
|
}
|
|
|
|
out:
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
|
|
{
|
|
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
|
|
if (tlb_type == spitfire) {
|
|
unsigned long kaddr;
|
|
|
|
/* This code only runs on Spitfire cpus so this is
|
|
* why we can assume _PAGE_PADDR_4U.
|
|
*/
|
|
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
|
|
unsigned long paddr, mask = _PAGE_PADDR_4U;
|
|
|
|
if (kaddr >= PAGE_OFFSET)
|
|
paddr = kaddr & mask;
|
|
else {
|
|
pgd_t *pgdp = pgd_offset_k(kaddr);
|
|
pud_t *pudp = pud_offset(pgdp, kaddr);
|
|
pmd_t *pmdp = pmd_offset(pudp, kaddr);
|
|
pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
|
|
|
|
paddr = pte_val(*ptep) & mask;
|
|
}
|
|
__flush_icache_page(paddr);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(flush_icache_range);
|
|
|
|
void mmu_info(struct seq_file *m)
|
|
{
|
|
if (tlb_type == cheetah)
|
|
seq_printf(m, "MMU Type\t: Cheetah\n");
|
|
else if (tlb_type == cheetah_plus)
|
|
seq_printf(m, "MMU Type\t: Cheetah+\n");
|
|
else if (tlb_type == spitfire)
|
|
seq_printf(m, "MMU Type\t: Spitfire\n");
|
|
else if (tlb_type == hypervisor)
|
|
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
|
|
else
|
|
seq_printf(m, "MMU Type\t: ???\n");
|
|
|
|
#ifdef CONFIG_DEBUG_DCFLUSH
|
|
seq_printf(m, "DCPageFlushes\t: %d\n",
|
|
atomic_read(&dcpage_flushes));
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(m, "DCPageFlushesXC\t: %d\n",
|
|
atomic_read(&dcpage_flushes_xcall));
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* CONFIG_DEBUG_DCFLUSH */
|
|
}
|
|
|
|
struct linux_prom_translation prom_trans[512] __read_mostly;
|
|
unsigned int prom_trans_ents __read_mostly;
|
|
|
|
unsigned long kern_locked_tte_data;
|
|
|
|
/* The obp translations are saved based on 8k pagesize, since obp can
|
|
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
|
|
* HI_OBP_ADDRESS range are handled in ktlb.S.
|
|
*/
|
|
static inline int in_obp_range(unsigned long vaddr)
|
|
{
|
|
return (vaddr >= LOW_OBP_ADDRESS &&
|
|
vaddr < HI_OBP_ADDRESS);
|
|
}
|
|
|
|
static int cmp_ptrans(const void *a, const void *b)
|
|
{
|
|
const struct linux_prom_translation *x = a, *y = b;
|
|
|
|
if (x->virt > y->virt)
|
|
return 1;
|
|
if (x->virt < y->virt)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Read OBP translations property into 'prom_trans[]'. */
|
|
static void __init read_obp_translations(void)
|
|
{
|
|
int n, node, ents, first, last, i;
|
|
|
|
node = prom_finddevice("/virtual-memory");
|
|
n = prom_getproplen(node, "translations");
|
|
if (unlikely(n == 0 || n == -1)) {
|
|
prom_printf("prom_mappings: Couldn't get size.\n");
|
|
prom_halt();
|
|
}
|
|
if (unlikely(n > sizeof(prom_trans))) {
|
|
prom_printf("prom_mappings: Size %Zd is too big.\n", n);
|
|
prom_halt();
|
|
}
|
|
|
|
if ((n = prom_getproperty(node, "translations",
|
|
(char *)&prom_trans[0],
|
|
sizeof(prom_trans))) == -1) {
|
|
prom_printf("prom_mappings: Couldn't get property.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
n = n / sizeof(struct linux_prom_translation);
|
|
|
|
ents = n;
|
|
|
|
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
|
|
cmp_ptrans, NULL);
|
|
|
|
/* Now kick out all the non-OBP entries. */
|
|
for (i = 0; i < ents; i++) {
|
|
if (in_obp_range(prom_trans[i].virt))
|
|
break;
|
|
}
|
|
first = i;
|
|
for (; i < ents; i++) {
|
|
if (!in_obp_range(prom_trans[i].virt))
|
|
break;
|
|
}
|
|
last = i;
|
|
|
|
for (i = 0; i < (last - first); i++) {
|
|
struct linux_prom_translation *src = &prom_trans[i + first];
|
|
struct linux_prom_translation *dest = &prom_trans[i];
|
|
|
|
*dest = *src;
|
|
}
|
|
for (; i < ents; i++) {
|
|
struct linux_prom_translation *dest = &prom_trans[i];
|
|
dest->virt = dest->size = dest->data = 0x0UL;
|
|
}
|
|
|
|
prom_trans_ents = last - first;
|
|
|
|
if (tlb_type == spitfire) {
|
|
/* Clear diag TTE bits. */
|
|
for (i = 0; i < prom_trans_ents; i++)
|
|
prom_trans[i].data &= ~0x0003fe0000000000UL;
|
|
}
|
|
}
|
|
|
|
static void __init hypervisor_tlb_lock(unsigned long vaddr,
|
|
unsigned long pte,
|
|
unsigned long mmu)
|
|
{
|
|
unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
|
|
|
|
if (ret != 0) {
|
|
prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
|
|
"errors with %lx\n", vaddr, 0, pte, mmu, ret);
|
|
prom_halt();
|
|
}
|
|
}
|
|
|
|
static unsigned long kern_large_tte(unsigned long paddr);
|
|
|
|
static void __init remap_kernel(void)
|
|
{
|
|
unsigned long phys_page, tte_vaddr, tte_data;
|
|
int i, tlb_ent = sparc64_highest_locked_tlbent();
|
|
|
|
tte_vaddr = (unsigned long) KERNBASE;
|
|
phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
|
|
tte_data = kern_large_tte(phys_page);
|
|
|
|
kern_locked_tte_data = tte_data;
|
|
|
|
/* Now lock us into the TLBs via Hypervisor or OBP. */
|
|
if (tlb_type == hypervisor) {
|
|
for (i = 0; i < num_kernel_image_mappings; i++) {
|
|
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
|
|
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
|
|
tte_vaddr += 0x400000;
|
|
tte_data += 0x400000;
|
|
}
|
|
} else {
|
|
for (i = 0; i < num_kernel_image_mappings; i++) {
|
|
prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
|
|
prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
|
|
tte_vaddr += 0x400000;
|
|
tte_data += 0x400000;
|
|
}
|
|
sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
|
|
}
|
|
if (tlb_type == cheetah_plus) {
|
|
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
|
|
CTX_CHEETAH_PLUS_NUC);
|
|
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
|
|
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
|
|
}
|
|
}
|
|
|
|
|
|
static void __init inherit_prom_mappings(void)
|
|
{
|
|
/* Now fixup OBP's idea about where we really are mapped. */
|
|
printk("Remapping the kernel... ");
|
|
remap_kernel();
|
|
printk("done.\n");
|
|
}
|
|
|
|
void prom_world(int enter)
|
|
{
|
|
if (!enter)
|
|
set_fs((mm_segment_t) { get_thread_current_ds() });
|
|
|
|
__asm__ __volatile__("flushw");
|
|
}
|
|
|
|
void __flush_dcache_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long va;
|
|
|
|
if (tlb_type == spitfire) {
|
|
int n = 0;
|
|
|
|
for (va = start; va < end; va += 32) {
|
|
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
|
|
if (++n >= 512)
|
|
break;
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
start = __pa(start);
|
|
end = __pa(end);
|
|
for (va = start; va < end; va += 32)
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (va),
|
|
"i" (ASI_DCACHE_INVALIDATE));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__flush_dcache_range);
|
|
|
|
/* get_new_mmu_context() uses "cache + 1". */
|
|
DEFINE_SPINLOCK(ctx_alloc_lock);
|
|
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
|
|
#define MAX_CTX_NR (1UL << CTX_NR_BITS)
|
|
#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
|
|
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
|
|
|
|
/* Caller does TLB context flushing on local CPU if necessary.
|
|
* The caller also ensures that CTX_VALID(mm->context) is false.
|
|
*
|
|
* We must be careful about boundary cases so that we never
|
|
* let the user have CTX 0 (nucleus) or we ever use a CTX
|
|
* version of zero (and thus NO_CONTEXT would not be caught
|
|
* by version mis-match tests in mmu_context.h).
|
|
*
|
|
* Always invoked with interrupts disabled.
|
|
*/
|
|
void get_new_mmu_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long ctx, new_ctx;
|
|
unsigned long orig_pgsz_bits;
|
|
unsigned long flags;
|
|
int new_version;
|
|
|
|
spin_lock_irqsave(&ctx_alloc_lock, flags);
|
|
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
|
|
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
|
|
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
|
|
new_version = 0;
|
|
if (new_ctx >= (1 << CTX_NR_BITS)) {
|
|
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
|
|
if (new_ctx >= ctx) {
|
|
int i;
|
|
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
|
|
CTX_FIRST_VERSION;
|
|
if (new_ctx == 1)
|
|
new_ctx = CTX_FIRST_VERSION;
|
|
|
|
/* Don't call memset, for 16 entries that's just
|
|
* plain silly...
|
|
*/
|
|
mmu_context_bmap[0] = 3;
|
|
mmu_context_bmap[1] = 0;
|
|
mmu_context_bmap[2] = 0;
|
|
mmu_context_bmap[3] = 0;
|
|
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
|
|
mmu_context_bmap[i + 0] = 0;
|
|
mmu_context_bmap[i + 1] = 0;
|
|
mmu_context_bmap[i + 2] = 0;
|
|
mmu_context_bmap[i + 3] = 0;
|
|
}
|
|
new_version = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
|
|
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
|
|
out:
|
|
tlb_context_cache = new_ctx;
|
|
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
|
|
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
|
|
|
|
if (unlikely(new_version))
|
|
smp_new_mmu_context_version();
|
|
}
|
|
|
|
static int numa_enabled = 1;
|
|
static int numa_debug;
|
|
|
|
static int __init early_numa(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (strstr(p, "off"))
|
|
numa_enabled = 0;
|
|
|
|
if (strstr(p, "debug"))
|
|
numa_debug = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("numa", early_numa);
|
|
|
|
#define numadbg(f, a...) \
|
|
do { if (numa_debug) \
|
|
printk(KERN_INFO f, ## a); \
|
|
} while (0)
|
|
|
|
static void __init find_ramdisk(unsigned long phys_base)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
|
|
unsigned long ramdisk_image;
|
|
|
|
/* Older versions of the bootloader only supported a
|
|
* 32-bit physical address for the ramdisk image
|
|
* location, stored at sparc_ramdisk_image. Newer
|
|
* SILO versions set sparc_ramdisk_image to zero and
|
|
* provide a full 64-bit physical address at
|
|
* sparc_ramdisk_image64.
|
|
*/
|
|
ramdisk_image = sparc_ramdisk_image;
|
|
if (!ramdisk_image)
|
|
ramdisk_image = sparc_ramdisk_image64;
|
|
|
|
/* Another bootloader quirk. The bootloader normalizes
|
|
* the physical address to KERNBASE, so we have to
|
|
* factor that back out and add in the lowest valid
|
|
* physical page address to get the true physical address.
|
|
*/
|
|
ramdisk_image -= KERNBASE;
|
|
ramdisk_image += phys_base;
|
|
|
|
numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
|
|
ramdisk_image, sparc_ramdisk_size);
|
|
|
|
initrd_start = ramdisk_image;
|
|
initrd_end = ramdisk_image + sparc_ramdisk_size;
|
|
|
|
lmb_reserve(initrd_start, sparc_ramdisk_size);
|
|
|
|
initrd_start += PAGE_OFFSET;
|
|
initrd_end += PAGE_OFFSET;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
struct node_mem_mask {
|
|
unsigned long mask;
|
|
unsigned long val;
|
|
unsigned long bootmem_paddr;
|
|
};
|
|
static struct node_mem_mask node_masks[MAX_NUMNODES];
|
|
static int num_node_masks;
|
|
|
|
int numa_cpu_lookup_table[NR_CPUS];
|
|
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
|
|
struct mdesc_mblock {
|
|
u64 base;
|
|
u64 size;
|
|
u64 offset; /* RA-to-PA */
|
|
};
|
|
static struct mdesc_mblock *mblocks;
|
|
static int num_mblocks;
|
|
|
|
static unsigned long ra_to_pa(unsigned long addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_mblocks; i++) {
|
|
struct mdesc_mblock *m = &mblocks[i];
|
|
|
|
if (addr >= m->base &&
|
|
addr < (m->base + m->size)) {
|
|
addr += m->offset;
|
|
break;
|
|
}
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static int find_node(unsigned long addr)
|
|
{
|
|
int i;
|
|
|
|
addr = ra_to_pa(addr);
|
|
for (i = 0; i < num_node_masks; i++) {
|
|
struct node_mem_mask *p = &node_masks[i];
|
|
|
|
if ((addr & p->mask) == p->val)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static unsigned long long nid_range(unsigned long long start,
|
|
unsigned long long end, int *nid)
|
|
{
|
|
*nid = find_node(start);
|
|
start += PAGE_SIZE;
|
|
while (start < end) {
|
|
int n = find_node(start);
|
|
|
|
if (n != *nid)
|
|
break;
|
|
start += PAGE_SIZE;
|
|
}
|
|
|
|
if (start > end)
|
|
start = end;
|
|
|
|
return start;
|
|
}
|
|
#else
|
|
static unsigned long long nid_range(unsigned long long start,
|
|
unsigned long long end, int *nid)
|
|
{
|
|
*nid = 0;
|
|
return end;
|
|
}
|
|
#endif
|
|
|
|
/* This must be invoked after performing all of the necessary
|
|
* add_active_range() calls for 'nid'. We need to be able to get
|
|
* correct data from get_pfn_range_for_nid().
|
|
*/
|
|
static void __init allocate_node_data(int nid)
|
|
{
|
|
unsigned long paddr, num_pages, start_pfn, end_pfn;
|
|
struct pglist_data *p;
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
paddr = lmb_alloc_nid(sizeof(struct pglist_data),
|
|
SMP_CACHE_BYTES, nid, nid_range);
|
|
if (!paddr) {
|
|
prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
|
|
prom_halt();
|
|
}
|
|
NODE_DATA(nid) = __va(paddr);
|
|
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
|
|
|
|
NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
|
|
#endif
|
|
|
|
p = NODE_DATA(nid);
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
p->node_start_pfn = start_pfn;
|
|
p->node_spanned_pages = end_pfn - start_pfn;
|
|
|
|
if (p->node_spanned_pages) {
|
|
num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
|
|
|
|
paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
|
|
nid_range);
|
|
if (!paddr) {
|
|
prom_printf("Cannot allocate bootmap for nid[%d]\n",
|
|
nid);
|
|
prom_halt();
|
|
}
|
|
node_masks[nid].bootmem_paddr = paddr;
|
|
}
|
|
}
|
|
|
|
static void init_node_masks_nonnuma(void)
|
|
{
|
|
int i;
|
|
|
|
numadbg("Initializing tables for non-numa.\n");
|
|
|
|
node_masks[0].mask = node_masks[0].val = 0;
|
|
num_node_masks = 1;
|
|
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
numa_cpu_lookup_table[i] = 0;
|
|
|
|
numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
|
|
}
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
struct pglist_data *node_data[MAX_NUMNODES];
|
|
|
|
EXPORT_SYMBOL(numa_cpu_lookup_table);
|
|
EXPORT_SYMBOL(numa_cpumask_lookup_table);
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
struct mdesc_mlgroup {
|
|
u64 node;
|
|
u64 latency;
|
|
u64 match;
|
|
u64 mask;
|
|
};
|
|
static struct mdesc_mlgroup *mlgroups;
|
|
static int num_mlgroups;
|
|
|
|
static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
|
|
u32 cfg_handle)
|
|
{
|
|
u64 arc;
|
|
|
|
mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
const u64 *val;
|
|
|
|
val = mdesc_get_property(md, target,
|
|
"cfg-handle", NULL);
|
|
if (val && *val == cfg_handle)
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
|
|
u32 cfg_handle)
|
|
{
|
|
u64 arc, candidate, best_latency = ~(u64)0;
|
|
|
|
candidate = MDESC_NODE_NULL;
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
const char *name = mdesc_node_name(md, target);
|
|
const u64 *val;
|
|
|
|
if (strcmp(name, "pio-latency-group"))
|
|
continue;
|
|
|
|
val = mdesc_get_property(md, target, "latency", NULL);
|
|
if (!val)
|
|
continue;
|
|
|
|
if (*val < best_latency) {
|
|
candidate = target;
|
|
best_latency = *val;
|
|
}
|
|
}
|
|
|
|
if (candidate == MDESC_NODE_NULL)
|
|
return -ENODEV;
|
|
|
|
return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
|
|
}
|
|
|
|
int of_node_to_nid(struct device_node *dp)
|
|
{
|
|
const struct linux_prom64_registers *regs;
|
|
struct mdesc_handle *md;
|
|
u32 cfg_handle;
|
|
int count, nid;
|
|
u64 grp;
|
|
|
|
/* This is the right thing to do on currently supported
|
|
* SUN4U NUMA platforms as well, as the PCI controller does
|
|
* not sit behind any particular memory controller.
|
|
*/
|
|
if (!mlgroups)
|
|
return -1;
|
|
|
|
regs = of_get_property(dp, "reg", NULL);
|
|
if (!regs)
|
|
return -1;
|
|
|
|
cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
|
|
|
|
md = mdesc_grab();
|
|
|
|
count = 0;
|
|
nid = -1;
|
|
mdesc_for_each_node_by_name(md, grp, "group") {
|
|
if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
|
|
nid = count;
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
mdesc_release(md);
|
|
|
|
return nid;
|
|
}
|
|
|
|
static void __init add_node_ranges(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < lmb.memory.cnt; i++) {
|
|
unsigned long size = lmb_size_bytes(&lmb.memory, i);
|
|
unsigned long start, end;
|
|
|
|
start = lmb.memory.region[i].base;
|
|
end = start + size;
|
|
while (start < end) {
|
|
unsigned long this_end;
|
|
int nid;
|
|
|
|
this_end = nid_range(start, end, &nid);
|
|
|
|
numadbg("Adding active range nid[%d] "
|
|
"start[%lx] end[%lx]\n",
|
|
nid, start, this_end);
|
|
|
|
add_active_range(nid,
|
|
start >> PAGE_SHIFT,
|
|
this_end >> PAGE_SHIFT);
|
|
|
|
start = this_end;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init grab_mlgroups(struct mdesc_handle *md)
|
|
{
|
|
unsigned long paddr;
|
|
int count = 0;
|
|
u64 node;
|
|
|
|
mdesc_for_each_node_by_name(md, node, "memory-latency-group")
|
|
count++;
|
|
if (!count)
|
|
return -ENOENT;
|
|
|
|
paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
|
|
SMP_CACHE_BYTES);
|
|
if (!paddr)
|
|
return -ENOMEM;
|
|
|
|
mlgroups = __va(paddr);
|
|
num_mlgroups = count;
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
|
|
struct mdesc_mlgroup *m = &mlgroups[count++];
|
|
const u64 *val;
|
|
|
|
m->node = node;
|
|
|
|
val = mdesc_get_property(md, node, "latency", NULL);
|
|
m->latency = *val;
|
|
val = mdesc_get_property(md, node, "address-match", NULL);
|
|
m->match = *val;
|
|
val = mdesc_get_property(md, node, "address-mask", NULL);
|
|
m->mask = *val;
|
|
|
|
numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
|
|
"match[%llx] mask[%llx]\n",
|
|
count - 1, m->node, m->latency, m->match, m->mask);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init grab_mblocks(struct mdesc_handle *md)
|
|
{
|
|
unsigned long paddr;
|
|
int count = 0;
|
|
u64 node;
|
|
|
|
mdesc_for_each_node_by_name(md, node, "mblock")
|
|
count++;
|
|
if (!count)
|
|
return -ENOENT;
|
|
|
|
paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
|
|
SMP_CACHE_BYTES);
|
|
if (!paddr)
|
|
return -ENOMEM;
|
|
|
|
mblocks = __va(paddr);
|
|
num_mblocks = count;
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "mblock") {
|
|
struct mdesc_mblock *m = &mblocks[count++];
|
|
const u64 *val;
|
|
|
|
val = mdesc_get_property(md, node, "base", NULL);
|
|
m->base = *val;
|
|
val = mdesc_get_property(md, node, "size", NULL);
|
|
m->size = *val;
|
|
val = mdesc_get_property(md, node,
|
|
"address-congruence-offset", NULL);
|
|
m->offset = *val;
|
|
|
|
numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
|
|
count - 1, m->base, m->size, m->offset);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
|
|
u64 grp, cpumask_t *mask)
|
|
{
|
|
u64 arc;
|
|
|
|
cpus_clear(*mask);
|
|
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
const char *name = mdesc_node_name(md, target);
|
|
const u64 *id;
|
|
|
|
if (strcmp(name, "cpu"))
|
|
continue;
|
|
id = mdesc_get_property(md, target, "id", NULL);
|
|
if (*id < nr_cpu_ids)
|
|
cpu_set(*id, *mask);
|
|
}
|
|
}
|
|
|
|
static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_mlgroups; i++) {
|
|
struct mdesc_mlgroup *m = &mlgroups[i];
|
|
if (m->node == node)
|
|
return m;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
|
|
int index)
|
|
{
|
|
struct mdesc_mlgroup *candidate = NULL;
|
|
u64 arc, best_latency = ~(u64)0;
|
|
struct node_mem_mask *n;
|
|
|
|
mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
|
|
u64 target = mdesc_arc_target(md, arc);
|
|
struct mdesc_mlgroup *m = find_mlgroup(target);
|
|
if (!m)
|
|
continue;
|
|
if (m->latency < best_latency) {
|
|
candidate = m;
|
|
best_latency = m->latency;
|
|
}
|
|
}
|
|
if (!candidate)
|
|
return -ENOENT;
|
|
|
|
if (num_node_masks != index) {
|
|
printk(KERN_ERR "Inconsistent NUMA state, "
|
|
"index[%d] != num_node_masks[%d]\n",
|
|
index, num_node_masks);
|
|
return -EINVAL;
|
|
}
|
|
|
|
n = &node_masks[num_node_masks++];
|
|
|
|
n->mask = candidate->mask;
|
|
n->val = candidate->match;
|
|
|
|
numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
|
|
index, n->mask, n->val, candidate->latency);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
|
|
int index)
|
|
{
|
|
cpumask_t mask;
|
|
int cpu;
|
|
|
|
numa_parse_mdesc_group_cpus(md, grp, &mask);
|
|
|
|
for_each_cpu_mask(cpu, mask)
|
|
numa_cpu_lookup_table[cpu] = index;
|
|
numa_cpumask_lookup_table[index] = mask;
|
|
|
|
if (numa_debug) {
|
|
printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
|
|
for_each_cpu_mask(cpu, mask)
|
|
printk("%d ", cpu);
|
|
printk("]\n");
|
|
}
|
|
|
|
return numa_attach_mlgroup(md, grp, index);
|
|
}
|
|
|
|
static int __init numa_parse_mdesc(void)
|
|
{
|
|
struct mdesc_handle *md = mdesc_grab();
|
|
int i, err, count;
|
|
u64 node;
|
|
|
|
node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
|
|
if (node == MDESC_NODE_NULL) {
|
|
mdesc_release(md);
|
|
return -ENOENT;
|
|
}
|
|
|
|
err = grab_mblocks(md);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = grab_mlgroups(md);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
count = 0;
|
|
mdesc_for_each_node_by_name(md, node, "group") {
|
|
err = numa_parse_mdesc_group(md, node, count);
|
|
if (err < 0)
|
|
break;
|
|
count++;
|
|
}
|
|
|
|
add_node_ranges();
|
|
|
|
for (i = 0; i < num_node_masks; i++) {
|
|
allocate_node_data(i);
|
|
node_set_online(i);
|
|
}
|
|
|
|
err = 0;
|
|
out:
|
|
mdesc_release(md);
|
|
return err;
|
|
}
|
|
|
|
static int __init numa_parse_jbus(void)
|
|
{
|
|
unsigned long cpu, index;
|
|
|
|
/* NUMA node id is encoded in bits 36 and higher, and there is
|
|
* a 1-to-1 mapping from CPU ID to NUMA node ID.
|
|
*/
|
|
index = 0;
|
|
for_each_present_cpu(cpu) {
|
|
numa_cpu_lookup_table[cpu] = index;
|
|
numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
|
|
node_masks[index].mask = ~((1UL << 36UL) - 1UL);
|
|
node_masks[index].val = cpu << 36UL;
|
|
|
|
index++;
|
|
}
|
|
num_node_masks = index;
|
|
|
|
add_node_ranges();
|
|
|
|
for (index = 0; index < num_node_masks; index++) {
|
|
allocate_node_data(index);
|
|
node_set_online(index);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init numa_parse_sun4u(void)
|
|
{
|
|
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
unsigned long ver;
|
|
|
|
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
|
|
if ((ver >> 32UL) == __JALAPENO_ID ||
|
|
(ver >> 32UL) == __SERRANO_ID)
|
|
return numa_parse_jbus();
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int __init bootmem_init_numa(void)
|
|
{
|
|
int err = -1;
|
|
|
|
numadbg("bootmem_init_numa()\n");
|
|
|
|
if (numa_enabled) {
|
|
if (tlb_type == hypervisor)
|
|
err = numa_parse_mdesc();
|
|
else
|
|
err = numa_parse_sun4u();
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#else
|
|
|
|
static int bootmem_init_numa(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void __init bootmem_init_nonnuma(void)
|
|
{
|
|
unsigned long top_of_ram = lmb_end_of_DRAM();
|
|
unsigned long total_ram = lmb_phys_mem_size();
|
|
unsigned int i;
|
|
|
|
numadbg("bootmem_init_nonnuma()\n");
|
|
|
|
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_INFO "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
|
|
init_node_masks_nonnuma();
|
|
|
|
for (i = 0; i < lmb.memory.cnt; i++) {
|
|
unsigned long size = lmb_size_bytes(&lmb.memory, i);
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
if (!size)
|
|
continue;
|
|
|
|
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
|
|
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
|
|
add_active_range(0, start_pfn, end_pfn);
|
|
}
|
|
|
|
allocate_node_data(0);
|
|
|
|
node_set_online(0);
|
|
}
|
|
|
|
static void __init reserve_range_in_node(int nid, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
|
|
nid, start, end);
|
|
while (start < end) {
|
|
unsigned long this_end;
|
|
int n;
|
|
|
|
this_end = nid_range(start, end, &n);
|
|
if (n == nid) {
|
|
numadbg(" MATCH reserving range [%lx:%lx]\n",
|
|
start, this_end);
|
|
reserve_bootmem_node(NODE_DATA(nid), start,
|
|
(this_end - start), BOOTMEM_DEFAULT);
|
|
} else
|
|
numadbg(" NO MATCH, advancing start to %lx\n",
|
|
this_end);
|
|
|
|
start = this_end;
|
|
}
|
|
}
|
|
|
|
static void __init trim_reserved_in_node(int nid)
|
|
{
|
|
int i;
|
|
|
|
numadbg(" trim_reserved_in_node(%d)\n", nid);
|
|
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
unsigned long start = lmb.reserved.region[i].base;
|
|
unsigned long size = lmb_size_bytes(&lmb.reserved, i);
|
|
unsigned long end = start + size;
|
|
|
|
reserve_range_in_node(nid, start, end);
|
|
}
|
|
}
|
|
|
|
static void __init bootmem_init_one_node(int nid)
|
|
{
|
|
struct pglist_data *p;
|
|
|
|
numadbg("bootmem_init_one_node(%d)\n", nid);
|
|
|
|
p = NODE_DATA(nid);
|
|
|
|
if (p->node_spanned_pages) {
|
|
unsigned long paddr = node_masks[nid].bootmem_paddr;
|
|
unsigned long end_pfn;
|
|
|
|
end_pfn = p->node_start_pfn + p->node_spanned_pages;
|
|
|
|
numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
|
|
nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
|
|
|
|
init_bootmem_node(p, paddr >> PAGE_SHIFT,
|
|
p->node_start_pfn, end_pfn);
|
|
|
|
numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
|
|
nid, end_pfn);
|
|
free_bootmem_with_active_regions(nid, end_pfn);
|
|
|
|
trim_reserved_in_node(nid);
|
|
|
|
numadbg(" sparse_memory_present_with_active_regions(%d)\n",
|
|
nid);
|
|
sparse_memory_present_with_active_regions(nid);
|
|
}
|
|
}
|
|
|
|
static unsigned long __init bootmem_init(unsigned long phys_base)
|
|
{
|
|
unsigned long end_pfn;
|
|
int nid;
|
|
|
|
end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn = end_pfn;
|
|
min_low_pfn = (phys_base >> PAGE_SHIFT);
|
|
|
|
if (bootmem_init_numa() < 0)
|
|
bootmem_init_nonnuma();
|
|
|
|
/* XXX cpu notifier XXX */
|
|
|
|
for_each_online_node(nid)
|
|
bootmem_init_one_node(nid);
|
|
|
|
sparse_init();
|
|
|
|
return end_pfn;
|
|
}
|
|
|
|
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
|
|
static int pall_ents __initdata;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
static unsigned long __ref kernel_map_range(unsigned long pstart,
|
|
unsigned long pend, pgprot_t prot)
|
|
{
|
|
unsigned long vstart = PAGE_OFFSET + pstart;
|
|
unsigned long vend = PAGE_OFFSET + pend;
|
|
unsigned long alloc_bytes = 0UL;
|
|
|
|
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
|
|
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
|
|
vstart, vend);
|
|
prom_halt();
|
|
}
|
|
|
|
while (vstart < vend) {
|
|
unsigned long this_end, paddr = __pa(vstart);
|
|
pgd_t *pgd = pgd_offset_k(vstart);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pud = pud_offset(pgd, vstart);
|
|
if (pud_none(*pud)) {
|
|
pmd_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pud_populate(&init_mm, pud, new);
|
|
}
|
|
|
|
pmd = pmd_offset(pud, vstart);
|
|
if (!pmd_present(*pmd)) {
|
|
pte_t *new;
|
|
|
|
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
|
|
alloc_bytes += PAGE_SIZE;
|
|
pmd_populate_kernel(&init_mm, pmd, new);
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, vstart);
|
|
this_end = (vstart + PMD_SIZE) & PMD_MASK;
|
|
if (this_end > vend)
|
|
this_end = vend;
|
|
|
|
while (vstart < this_end) {
|
|
pte_val(*pte) = (paddr | pgprot_val(prot));
|
|
|
|
vstart += PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
pte++;
|
|
}
|
|
}
|
|
|
|
return alloc_bytes;
|
|
}
|
|
|
|
extern unsigned int kvmap_linear_patch[1];
|
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
|
|
|
static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
|
|
{
|
|
const unsigned long shift_256MB = 28;
|
|
const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
|
|
const unsigned long size_256MB = (1UL << shift_256MB);
|
|
|
|
while (start < end) {
|
|
long remains;
|
|
|
|
remains = end - start;
|
|
if (remains < size_256MB)
|
|
break;
|
|
|
|
if (start & mask_256MB) {
|
|
start = (start + size_256MB) & ~mask_256MB;
|
|
continue;
|
|
}
|
|
|
|
while (remains >= size_256MB) {
|
|
unsigned long index = start >> shift_256MB;
|
|
|
|
__set_bit(index, kpte_linear_bitmap);
|
|
|
|
start += size_256MB;
|
|
remains -= size_256MB;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init init_kpte_bitmap(void)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < pall_ents; i++) {
|
|
unsigned long phys_start, phys_end;
|
|
|
|
phys_start = pall[i].phys_addr;
|
|
phys_end = phys_start + pall[i].reg_size;
|
|
|
|
mark_kpte_bitmap(phys_start, phys_end);
|
|
}
|
|
}
|
|
|
|
static void __init kernel_physical_mapping_init(void)
|
|
{
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
unsigned long i, mem_alloced = 0UL;
|
|
|
|
for (i = 0; i < pall_ents; i++) {
|
|
unsigned long phys_start, phys_end;
|
|
|
|
phys_start = pall[i].phys_addr;
|
|
phys_end = phys_start + pall[i].reg_size;
|
|
|
|
mem_alloced += kernel_map_range(phys_start, phys_end,
|
|
PAGE_KERNEL);
|
|
}
|
|
|
|
printk("Allocated %ld bytes for kernel page tables.\n",
|
|
mem_alloced);
|
|
|
|
kvmap_linear_patch[0] = 0x01000000; /* nop */
|
|
flushi(&kvmap_linear_patch[0]);
|
|
|
|
__flush_tlb_all();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
|
|
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
|
|
|
|
kernel_map_range(phys_start, phys_end,
|
|
(enable ? PAGE_KERNEL : __pgprot(0)));
|
|
|
|
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
|
|
PAGE_OFFSET + phys_end);
|
|
|
|
/* we should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu.
|
|
*/
|
|
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
|
|
PAGE_OFFSET + phys_end);
|
|
}
|
|
#endif
|
|
|
|
unsigned long __init find_ecache_flush_span(unsigned long size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
if (pavail[i].reg_size >= size)
|
|
return pavail[i].phys_addr;
|
|
}
|
|
|
|
return ~0UL;
|
|
}
|
|
|
|
static void __init tsb_phys_patch(void)
|
|
{
|
|
struct tsb_ldquad_phys_patch_entry *pquad;
|
|
struct tsb_phys_patch_entry *p;
|
|
|
|
pquad = &__tsb_ldquad_phys_patch;
|
|
while (pquad < &__tsb_ldquad_phys_patch_end) {
|
|
unsigned long addr = pquad->addr;
|
|
|
|
if (tlb_type == hypervisor)
|
|
*(unsigned int *) addr = pquad->sun4v_insn;
|
|
else
|
|
*(unsigned int *) addr = pquad->sun4u_insn;
|
|
wmb();
|
|
__asm__ __volatile__("flush %0"
|
|
: /* no outputs */
|
|
: "r" (addr));
|
|
|
|
pquad++;
|
|
}
|
|
|
|
p = &__tsb_phys_patch;
|
|
while (p < &__tsb_phys_patch_end) {
|
|
unsigned long addr = p->addr;
|
|
|
|
*(unsigned int *) addr = p->insn;
|
|
wmb();
|
|
__asm__ __volatile__("flush %0"
|
|
: /* no outputs */
|
|
: "r" (addr));
|
|
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Don't mark as init, we give this to the Hypervisor. */
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
#define NUM_KTSB_DESCR 2
|
|
#else
|
|
#define NUM_KTSB_DESCR 1
|
|
#endif
|
|
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
|
|
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
|
|
|
|
static void __init sun4v_ktsb_init(void)
|
|
{
|
|
unsigned long ktsb_pa;
|
|
|
|
/* First KTSB for PAGE_SIZE mappings. */
|
|
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
|
|
|
|
switch (PAGE_SIZE) {
|
|
case 8 * 1024:
|
|
default:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
|
|
break;
|
|
|
|
case 64 * 1024:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
|
|
break;
|
|
|
|
case 512 * 1024:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
|
|
break;
|
|
|
|
case 4 * 1024 * 1024:
|
|
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
|
|
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
|
|
break;
|
|
};
|
|
|
|
ktsb_descr[0].assoc = 1;
|
|
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
|
|
ktsb_descr[0].ctx_idx = 0;
|
|
ktsb_descr[0].tsb_base = ktsb_pa;
|
|
ktsb_descr[0].resv = 0;
|
|
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
/* Second KTSB for 4MB/256MB mappings. */
|
|
ktsb_pa = (kern_base +
|
|
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
|
|
|
|
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
|
|
ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
|
|
HV_PGSZ_MASK_256MB);
|
|
ktsb_descr[1].assoc = 1;
|
|
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
|
|
ktsb_descr[1].ctx_idx = 0;
|
|
ktsb_descr[1].tsb_base = ktsb_pa;
|
|
ktsb_descr[1].resv = 0;
|
|
#endif
|
|
}
|
|
|
|
void __cpuinit sun4v_ktsb_register(void)
|
|
{
|
|
unsigned long pa, ret;
|
|
|
|
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
|
|
|
|
ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
|
|
if (ret != 0) {
|
|
prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
|
|
"errors with %lx\n", pa, ret);
|
|
prom_halt();
|
|
}
|
|
}
|
|
|
|
/* paging_init() sets up the page tables */
|
|
|
|
static unsigned long last_valid_pfn;
|
|
pgd_t swapper_pg_dir[2048];
|
|
|
|
static void sun4u_pgprot_init(void);
|
|
static void sun4v_pgprot_init(void);
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long end_pfn, shift, phys_base;
|
|
unsigned long real_end, i;
|
|
|
|
/* These build time checkes make sure that the dcache_dirty_cpu()
|
|
* page->flags usage will work.
|
|
*
|
|
* When a page gets marked as dcache-dirty, we store the
|
|
* cpu number starting at bit 32 in the page->flags. Also,
|
|
* functions like clear_dcache_dirty_cpu use the cpu mask
|
|
* in 13-bit signed-immediate instruction fields.
|
|
*/
|
|
|
|
/*
|
|
* Page flags must not reach into upper 32 bits that are used
|
|
* for the cpu number
|
|
*/
|
|
BUILD_BUG_ON(NR_PAGEFLAGS > 32);
|
|
|
|
/*
|
|
* The bit fields placed in the high range must not reach below
|
|
* the 32 bit boundary. Otherwise we cannot place the cpu field
|
|
* at the 32 bit boundary.
|
|
*/
|
|
BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
|
|
ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
|
|
|
|
BUILD_BUG_ON(NR_CPUS > 4096);
|
|
|
|
kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
|
|
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
|
|
|
|
/* Invalidate both kernel TSBs. */
|
|
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
|
|
#ifndef CONFIG_DEBUG_PAGEALLOC
|
|
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
|
|
#endif
|
|
|
|
if (tlb_type == hypervisor)
|
|
sun4v_pgprot_init();
|
|
else
|
|
sun4u_pgprot_init();
|
|
|
|
if (tlb_type == cheetah_plus ||
|
|
tlb_type == hypervisor)
|
|
tsb_phys_patch();
|
|
|
|
if (tlb_type == hypervisor) {
|
|
sun4v_patch_tlb_handlers();
|
|
sun4v_ktsb_init();
|
|
}
|
|
|
|
lmb_init();
|
|
|
|
/* Find available physical memory...
|
|
*
|
|
* Read it twice in order to work around a bug in openfirmware.
|
|
* The call to grab this table itself can cause openfirmware to
|
|
* allocate memory, which in turn can take away some space from
|
|
* the list of available memory. Reading it twice makes sure
|
|
* we really do get the final value.
|
|
*/
|
|
read_obp_translations();
|
|
read_obp_memory("reg", &pall[0], &pall_ents);
|
|
read_obp_memory("available", &pavail[0], &pavail_ents);
|
|
read_obp_memory("available", &pavail[0], &pavail_ents);
|
|
|
|
phys_base = 0xffffffffffffffffUL;
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
phys_base = min(phys_base, pavail[i].phys_addr);
|
|
lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
|
|
}
|
|
|
|
lmb_reserve(kern_base, kern_size);
|
|
|
|
find_ramdisk(phys_base);
|
|
|
|
lmb_enforce_memory_limit(cmdline_memory_size);
|
|
|
|
lmb_analyze();
|
|
lmb_dump_all();
|
|
|
|
set_bit(0, mmu_context_bmap);
|
|
|
|
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
|
|
|
|
real_end = (unsigned long)_end;
|
|
num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
|
|
printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
|
|
num_kernel_image_mappings);
|
|
|
|
/* Set kernel pgd to upper alias so physical page computations
|
|
* work.
|
|
*/
|
|
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
|
|
|
|
memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
|
|
|
|
/* Now can init the kernel/bad page tables. */
|
|
pud_set(pud_offset(&swapper_pg_dir[0], 0),
|
|
swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
|
|
|
|
inherit_prom_mappings();
|
|
|
|
init_kpte_bitmap();
|
|
|
|
/* Ok, we can use our TLB miss and window trap handlers safely. */
|
|
setup_tba();
|
|
|
|
__flush_tlb_all();
|
|
|
|
if (tlb_type == hypervisor)
|
|
sun4v_ktsb_register();
|
|
|
|
prom_build_devicetree();
|
|
of_populate_present_mask();
|
|
#ifndef CONFIG_SMP
|
|
of_fill_in_cpu_data();
|
|
#endif
|
|
|
|
if (tlb_type == hypervisor) {
|
|
sun4v_mdesc_init();
|
|
mdesc_populate_present_mask(cpu_all_mask);
|
|
#ifndef CONFIG_SMP
|
|
mdesc_fill_in_cpu_data(cpu_all_mask);
|
|
#endif
|
|
}
|
|
|
|
/* Once the OF device tree and MDESC have been setup, we know
|
|
* the list of possible cpus. Therefore we can allocate the
|
|
* IRQ stacks.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
/* XXX Use node local allocations... XXX */
|
|
softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
|
|
hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
|
|
}
|
|
|
|
/* Setup bootmem... */
|
|
last_valid_pfn = end_pfn = bootmem_init(phys_base);
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
max_mapnr = last_valid_pfn;
|
|
#endif
|
|
kernel_physical_mapping_init();
|
|
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
|
|
max_zone_pfns[ZONE_NORMAL] = end_pfn;
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
printk("Booting Linux...\n");
|
|
}
|
|
|
|
int __devinit page_in_phys_avail(unsigned long paddr)
|
|
{
|
|
int i;
|
|
|
|
paddr &= PAGE_MASK;
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
unsigned long start, end;
|
|
|
|
start = pavail[i].phys_addr;
|
|
end = start + pavail[i].reg_size;
|
|
|
|
if (paddr >= start && paddr < end)
|
|
return 1;
|
|
}
|
|
if (paddr >= kern_base && paddr < (kern_base + kern_size))
|
|
return 1;
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (paddr >= __pa(initrd_start) &&
|
|
paddr < __pa(PAGE_ALIGN(initrd_end)))
|
|
return 1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
|
|
static int pavail_rescan_ents __initdata;
|
|
|
|
/* Certain OBP calls, such as fetching "available" properties, can
|
|
* claim physical memory. So, along with initializing the valid
|
|
* address bitmap, what we do here is refetch the physical available
|
|
* memory list again, and make sure it provides at least as much
|
|
* memory as 'pavail' does.
|
|
*/
|
|
static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
|
|
{
|
|
int i;
|
|
|
|
read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
|
|
|
|
for (i = 0; i < pavail_ents; i++) {
|
|
unsigned long old_start, old_end;
|
|
|
|
old_start = pavail[i].phys_addr;
|
|
old_end = old_start + pavail[i].reg_size;
|
|
while (old_start < old_end) {
|
|
int n;
|
|
|
|
for (n = 0; n < pavail_rescan_ents; n++) {
|
|
unsigned long new_start, new_end;
|
|
|
|
new_start = pavail_rescan[n].phys_addr;
|
|
new_end = new_start +
|
|
pavail_rescan[n].reg_size;
|
|
|
|
if (new_start <= old_start &&
|
|
new_end >= (old_start + PAGE_SIZE)) {
|
|
set_bit(old_start >> 22, bitmap);
|
|
goto do_next_page;
|
|
}
|
|
}
|
|
|
|
prom_printf("mem_init: Lost memory in pavail\n");
|
|
prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
|
|
pavail[i].phys_addr,
|
|
pavail[i].reg_size);
|
|
prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
|
|
pavail_rescan[i].phys_addr,
|
|
pavail_rescan[i].reg_size);
|
|
prom_printf("mem_init: Cannot continue, aborting.\n");
|
|
prom_halt();
|
|
|
|
do_next_page:
|
|
old_start += PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init patch_tlb_miss_handler_bitmap(void)
|
|
{
|
|
extern unsigned int valid_addr_bitmap_insn[];
|
|
extern unsigned int valid_addr_bitmap_patch[];
|
|
|
|
valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
|
|
mb();
|
|
valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
|
|
flushi(&valid_addr_bitmap_insn[0]);
|
|
}
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
unsigned long codepages, datapages, initpages;
|
|
unsigned long addr, last;
|
|
|
|
addr = PAGE_OFFSET + kern_base;
|
|
last = PAGE_ALIGN(kern_size) + addr;
|
|
while (addr < last) {
|
|
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
|
|
setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
|
|
patch_tlb_miss_handler_bitmap();
|
|
|
|
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
{
|
|
int i;
|
|
for_each_online_node(i) {
|
|
if (NODE_DATA(i)->node_spanned_pages != 0) {
|
|
totalram_pages +=
|
|
free_all_bootmem_node(NODE_DATA(i));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
totalram_pages = free_all_bootmem();
|
|
#endif
|
|
|
|
/* We subtract one to account for the mem_map_zero page
|
|
* allocated below.
|
|
*/
|
|
totalram_pages -= 1;
|
|
num_physpages = totalram_pages;
|
|
|
|
/*
|
|
* Set up the zero page, mark it reserved, so that page count
|
|
* is not manipulated when freeing the page from user ptes.
|
|
*/
|
|
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
|
|
if (mem_map_zero == NULL) {
|
|
prom_printf("paging_init: Cannot alloc zero page.\n");
|
|
prom_halt();
|
|
}
|
|
SetPageReserved(mem_map_zero);
|
|
|
|
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
|
|
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
|
|
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
|
|
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
|
|
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
|
|
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
|
|
|
|
printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
|
|
nr_free_pages() << (PAGE_SHIFT-10),
|
|
codepages << (PAGE_SHIFT-10),
|
|
datapages << (PAGE_SHIFT-10),
|
|
initpages << (PAGE_SHIFT-10),
|
|
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
|
|
|
|
if (tlb_type == cheetah || tlb_type == cheetah_plus)
|
|
cheetah_ecache_flush_init();
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
unsigned long addr, initend;
|
|
int do_free = 1;
|
|
|
|
/* If the physical memory maps were trimmed by kernel command
|
|
* line options, don't even try freeing this initmem stuff up.
|
|
* The kernel image could have been in the trimmed out region
|
|
* and if so the freeing below will free invalid page structs.
|
|
*/
|
|
if (cmdline_memory_size)
|
|
do_free = 0;
|
|
|
|
/*
|
|
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
|
|
*/
|
|
addr = PAGE_ALIGN((unsigned long)(__init_begin));
|
|
initend = (unsigned long)(__init_end) & PAGE_MASK;
|
|
for (; addr < initend; addr += PAGE_SIZE) {
|
|
unsigned long page;
|
|
struct page *p;
|
|
|
|
page = (addr +
|
|
((unsigned long) __va(kern_base)) -
|
|
((unsigned long) KERNBASE));
|
|
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
|
|
|
|
if (do_free) {
|
|
p = virt_to_page(page);
|
|
|
|
ClearPageReserved(p);
|
|
init_page_count(p);
|
|
__free_page(p);
|
|
num_physpages++;
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (start < end)
|
|
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
struct page *p = virt_to_page(start);
|
|
|
|
ClearPageReserved(p);
|
|
init_page_count(p);
|
|
__free_page(p);
|
|
num_physpages++;
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
|
|
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
|
|
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
|
|
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
|
|
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
|
|
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
|
|
|
|
pgprot_t PAGE_KERNEL __read_mostly;
|
|
EXPORT_SYMBOL(PAGE_KERNEL);
|
|
|
|
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
|
|
pgprot_t PAGE_COPY __read_mostly;
|
|
|
|
pgprot_t PAGE_SHARED __read_mostly;
|
|
EXPORT_SYMBOL(PAGE_SHARED);
|
|
|
|
unsigned long pg_iobits __read_mostly;
|
|
|
|
unsigned long _PAGE_IE __read_mostly;
|
|
EXPORT_SYMBOL(_PAGE_IE);
|
|
|
|
unsigned long _PAGE_E __read_mostly;
|
|
EXPORT_SYMBOL(_PAGE_E);
|
|
|
|
unsigned long _PAGE_CACHE __read_mostly;
|
|
EXPORT_SYMBOL(_PAGE_CACHE);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
unsigned long vmemmap_table[VMEMMAP_SIZE];
|
|
|
|
int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
|
|
{
|
|
unsigned long vstart = (unsigned long) start;
|
|
unsigned long vend = (unsigned long) (start + nr);
|
|
unsigned long phys_start = (vstart - VMEMMAP_BASE);
|
|
unsigned long phys_end = (vend - VMEMMAP_BASE);
|
|
unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
|
|
unsigned long end = VMEMMAP_ALIGN(phys_end);
|
|
unsigned long pte_base;
|
|
|
|
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
|
|
_PAGE_CP_4U | _PAGE_CV_4U |
|
|
_PAGE_P_4U | _PAGE_W_4U);
|
|
if (tlb_type == hypervisor)
|
|
pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
|
|
_PAGE_CP_4V | _PAGE_CV_4V |
|
|
_PAGE_P_4V | _PAGE_W_4V);
|
|
|
|
for (; addr < end; addr += VMEMMAP_CHUNK) {
|
|
unsigned long *vmem_pp =
|
|
vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
|
|
void *block;
|
|
|
|
if (!(*vmem_pp & _PAGE_VALID)) {
|
|
block = vmemmap_alloc_block(1UL << 22, node);
|
|
if (!block)
|
|
return -ENOMEM;
|
|
|
|
*vmem_pp = pte_base | __pa(block);
|
|
|
|
printk(KERN_INFO "[%p-%p] page_structs=%lu "
|
|
"node=%d entry=%lu/%lu\n", start, block, nr,
|
|
node,
|
|
addr >> VMEMMAP_CHUNK_SHIFT,
|
|
VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
static void prot_init_common(unsigned long page_none,
|
|
unsigned long page_shared,
|
|
unsigned long page_copy,
|
|
unsigned long page_readonly,
|
|
unsigned long page_exec_bit)
|
|
{
|
|
PAGE_COPY = __pgprot(page_copy);
|
|
PAGE_SHARED = __pgprot(page_shared);
|
|
|
|
protection_map[0x0] = __pgprot(page_none);
|
|
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
|
|
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
|
|
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
|
|
protection_map[0x4] = __pgprot(page_readonly);
|
|
protection_map[0x5] = __pgprot(page_readonly);
|
|
protection_map[0x6] = __pgprot(page_copy);
|
|
protection_map[0x7] = __pgprot(page_copy);
|
|
protection_map[0x8] = __pgprot(page_none);
|
|
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
|
|
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
|
|
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
|
|
protection_map[0xc] = __pgprot(page_readonly);
|
|
protection_map[0xd] = __pgprot(page_readonly);
|
|
protection_map[0xe] = __pgprot(page_shared);
|
|
protection_map[0xf] = __pgprot(page_shared);
|
|
}
|
|
|
|
static void __init sun4u_pgprot_init(void)
|
|
{
|
|
unsigned long page_none, page_shared, page_copy, page_readonly;
|
|
unsigned long page_exec_bit;
|
|
|
|
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
|
|
_PAGE_CACHE_4U | _PAGE_P_4U |
|
|
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
|
|
_PAGE_EXEC_4U);
|
|
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
|
|
_PAGE_CACHE_4U | _PAGE_P_4U |
|
|
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
|
|
_PAGE_EXEC_4U | _PAGE_L_4U);
|
|
|
|
_PAGE_IE = _PAGE_IE_4U;
|
|
_PAGE_E = _PAGE_E_4U;
|
|
_PAGE_CACHE = _PAGE_CACHE_4U;
|
|
|
|
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
|
|
__ACCESS_BITS_4U | _PAGE_E_4U);
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
|
|
0xfffff80000000000UL;
|
|
#else
|
|
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
|
|
0xfffff80000000000UL;
|
|
#endif
|
|
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
|
|
_PAGE_P_4U | _PAGE_W_4U);
|
|
|
|
/* XXX Should use 256MB on Panther. XXX */
|
|
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
|
|
|
|
_PAGE_SZBITS = _PAGE_SZBITS_4U;
|
|
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
|
|
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
|
|
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
|
|
|
|
|
|
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
|
|
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
|
|
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
|
|
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
|
|
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
|
|
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
|
|
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
|
|
|
|
page_exec_bit = _PAGE_EXEC_4U;
|
|
|
|
prot_init_common(page_none, page_shared, page_copy, page_readonly,
|
|
page_exec_bit);
|
|
}
|
|
|
|
static void __init sun4v_pgprot_init(void)
|
|
{
|
|
unsigned long page_none, page_shared, page_copy, page_readonly;
|
|
unsigned long page_exec_bit;
|
|
|
|
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
|
|
_PAGE_CACHE_4V | _PAGE_P_4V |
|
|
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
|
|
_PAGE_EXEC_4V);
|
|
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
|
|
|
|
_PAGE_IE = _PAGE_IE_4V;
|
|
_PAGE_E = _PAGE_E_4V;
|
|
_PAGE_CACHE = _PAGE_CACHE_4V;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
|
|
0xfffff80000000000UL;
|
|
#else
|
|
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
|
|
0xfffff80000000000UL;
|
|
#endif
|
|
kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
|
|
_PAGE_P_4V | _PAGE_W_4V);
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
|
|
0xfffff80000000000UL;
|
|
#else
|
|
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
|
|
0xfffff80000000000UL;
|
|
#endif
|
|
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
|
|
_PAGE_P_4V | _PAGE_W_4V);
|
|
|
|
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
|
|
__ACCESS_BITS_4V | _PAGE_E_4V);
|
|
|
|
_PAGE_SZBITS = _PAGE_SZBITS_4V;
|
|
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
|
|
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
|
|
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
|
|
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
|
|
|
|
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
|
|
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
|
|
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
|
|
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
|
|
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
|
|
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
|
|
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
|
|
|
|
page_exec_bit = _PAGE_EXEC_4V;
|
|
|
|
prot_init_common(page_none, page_shared, page_copy, page_readonly,
|
|
page_exec_bit);
|
|
}
|
|
|
|
unsigned long pte_sz_bits(unsigned long sz)
|
|
{
|
|
if (tlb_type == hypervisor) {
|
|
switch (sz) {
|
|
case 8 * 1024:
|
|
default:
|
|
return _PAGE_SZ8K_4V;
|
|
case 64 * 1024:
|
|
return _PAGE_SZ64K_4V;
|
|
case 512 * 1024:
|
|
return _PAGE_SZ512K_4V;
|
|
case 4 * 1024 * 1024:
|
|
return _PAGE_SZ4MB_4V;
|
|
};
|
|
} else {
|
|
switch (sz) {
|
|
case 8 * 1024:
|
|
default:
|
|
return _PAGE_SZ8K_4U;
|
|
case 64 * 1024:
|
|
return _PAGE_SZ64K_4U;
|
|
case 512 * 1024:
|
|
return _PAGE_SZ512K_4U;
|
|
case 4 * 1024 * 1024:
|
|
return _PAGE_SZ4MB_4U;
|
|
};
|
|
}
|
|
}
|
|
|
|
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
|
|
{
|
|
pte_t pte;
|
|
|
|
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
|
|
pte_val(pte) |= (((unsigned long)space) << 32);
|
|
pte_val(pte) |= pte_sz_bits(page_size);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static unsigned long kern_large_tte(unsigned long paddr)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
|
|
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
|
|
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
|
|
if (tlb_type == hypervisor)
|
|
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
|
|
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
|
|
_PAGE_EXEC_4V | _PAGE_W_4V);
|
|
|
|
return val | paddr;
|
|
}
|
|
|
|
/* If not locked, zap it. */
|
|
void __flush_tlb_all(void)
|
|
{
|
|
unsigned long pstate;
|
|
int i;
|
|
|
|
__asm__ __volatile__("flushw\n\t"
|
|
"rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
if (tlb_type == hypervisor) {
|
|
sun4v_mmu_demap_all();
|
|
} else if (tlb_type == spitfire) {
|
|
for (i = 0; i < 64; i++) {
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
|
|
spitfire_put_dtlb_data(i, 0x0UL);
|
|
}
|
|
|
|
/* Spitfire Errata #32 workaround */
|
|
/* NOTE: Always runs on spitfire, so no
|
|
* cheetah+ page size encodings.
|
|
*/
|
|
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
|
|
"flush %%g6"
|
|
: /* No outputs */
|
|
: "r" (0),
|
|
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
|
|
|
|
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
|
|
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
|
|
"membar #Sync"
|
|
: /* no outputs */
|
|
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
|
|
spitfire_put_itlb_data(i, 0x0UL);
|
|
}
|
|
}
|
|
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
|
|
cheetah_flush_dtlb_all();
|
|
cheetah_flush_itlb_all();
|
|
}
|
|
__asm__ __volatile__("wrpr %0, 0, %%pstate"
|
|
: : "r" (pstate));
|
|
}
|