linux_dsm_epyc7002/drivers/gpu/drm/i915/gt/intel_lrc.c
Chris Wilson 7b02b23e5d drm/i915/gt: Avoid using tag 0 for the very first submission
Assume that the HW starts off with tag 0 "active" and so avoid using tag
0 for our own first ELSP submission.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191229183153.3719869-2-chris@chris-wilson.co.uk
2019-12-30 13:44:25 +00:00

4800 lines
133 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <linux/interrupt.h>
#include "i915_drv.h"
#include "i915_perf.h"
#include "i915_trace.h"
#include "i915_vgpu.h"
#include "intel_context.h"
#include "intel_engine_pm.h"
#include "intel_gt.h"
#include "intel_gt_pm.h"
#include "intel_gt_requests.h"
#include "intel_lrc_reg.h"
#include "intel_mocs.h"
#include "intel_reset.h"
#include "intel_ring.h"
#include "intel_workarounds.h"
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define GEN8_CTX_STATUS_COMPLETED_MASK \
(GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
#define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
#define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
#define GEN12_IDLE_CTX_ID 0x7FF
#define GEN12_CSB_CTX_VALID(csb_dw) \
(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
#define WA_TAIL_DWORDS 2
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
struct virtual_engine {
struct intel_engine_cs base;
struct intel_context context;
/*
* We allow only a single request through the virtual engine at a time
* (each request in the timeline waits for the completion fence of
* the previous before being submitted). By restricting ourselves to
* only submitting a single request, each request is placed on to a
* physical to maximise load spreading (by virtue of the late greedy
* scheduling -- each real engine takes the next available request
* upon idling).
*/
struct i915_request *request;
/*
* We keep a rbtree of available virtual engines inside each physical
* engine, sorted by priority. Here we preallocate the nodes we need
* for the virtual engine, indexed by physical_engine->id.
*/
struct ve_node {
struct rb_node rb;
int prio;
} nodes[I915_NUM_ENGINES];
/*
* Keep track of bonded pairs -- restrictions upon on our selection
* of physical engines any particular request may be submitted to.
* If we receive a submit-fence from a master engine, we will only
* use one of sibling_mask physical engines.
*/
struct ve_bond {
const struct intel_engine_cs *master;
intel_engine_mask_t sibling_mask;
} *bonds;
unsigned int num_bonds;
/* And finally, which physical engines this virtual engine maps onto. */
unsigned int num_siblings;
struct intel_engine_cs *siblings[0];
};
static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
GEM_BUG_ON(!intel_engine_is_virtual(engine));
return container_of(engine, struct virtual_engine, base);
}
static int __execlists_context_alloc(struct intel_context *ce,
struct intel_engine_cs *engine);
static void execlists_init_reg_state(u32 *reg_state,
const struct intel_context *ce,
const struct intel_engine_cs *engine,
const struct intel_ring *ring,
bool close);
static void
__execlists_update_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine);
static void mark_eio(struct i915_request *rq)
{
if (i915_request_completed(rq))
return;
GEM_BUG_ON(i915_request_signaled(rq));
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
static struct i915_request *
active_request(const struct intel_timeline * const tl, struct i915_request *rq)
{
struct i915_request *active = rq;
rcu_read_lock();
list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
if (i915_request_completed(rq))
break;
active = rq;
}
rcu_read_unlock();
return active;
}
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
return (i915_ggtt_offset(engine->status_page.vma) +
I915_GEM_HWS_PREEMPT_ADDR);
}
static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
/*
* We inspect HWS_PREEMPT with a semaphore inside
* engine->emit_fini_breadcrumb. If the dword is true,
* the ring is paused as the semaphore will busywait
* until the dword is false.
*/
engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
if (state)
wmb();
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority;
}
static int effective_prio(const struct i915_request *rq)
{
int prio = rq_prio(rq);
/*
* If this request is special and must not be interrupted at any
* cost, so be it. Note we are only checking the most recent request
* in the context and so may be masking an earlier vip request. It
* is hoped that under the conditions where nopreempt is used, this
* will not matter (i.e. all requests to that context will be
* nopreempt for as long as desired).
*/
if (i915_request_has_nopreempt(rq))
prio = I915_PRIORITY_UNPREEMPTABLE;
/*
* On unwinding the active request, we give it a priority bump
* if it has completed waiting on any semaphore. If we know that
* the request has already started, we can prevent an unwanted
* preempt-to-idle cycle by taking that into account now.
*/
if (__i915_request_has_started(rq))
prio |= I915_PRIORITY_NOSEMAPHORE;
/* Restrict mere WAIT boosts from triggering preemption */
BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
return prio | __NO_PREEMPTION;
}
static int queue_prio(const struct intel_engine_execlists *execlists)
{
struct i915_priolist *p;
struct rb_node *rb;
rb = rb_first_cached(&execlists->queue);
if (!rb)
return INT_MIN;
/*
* As the priolist[] are inverted, with the highest priority in [0],
* we have to flip the index value to become priority.
*/
p = to_priolist(rb);
return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}
static inline bool need_preempt(const struct intel_engine_cs *engine,
const struct i915_request *rq,
struct rb_node *rb)
{
int last_prio;
if (!intel_engine_has_semaphores(engine))
return false;
/*
* Check if the current priority hint merits a preemption attempt.
*
* We record the highest value priority we saw during rescheduling
* prior to this dequeue, therefore we know that if it is strictly
* less than the current tail of ESLP[0], we do not need to force
* a preempt-to-idle cycle.
*
* However, the priority hint is a mere hint that we may need to
* preempt. If that hint is stale or we may be trying to preempt
* ourselves, ignore the request.
*
* More naturally we would write
* prio >= max(0, last);
* except that we wish to prevent triggering preemption at the same
* priority level: the task that is running should remain running
* to preserve FIFO ordering of dependencies.
*/
last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
if (engine->execlists.queue_priority_hint <= last_prio)
return false;
/*
* Check against the first request in ELSP[1], it will, thanks to the
* power of PI, be the highest priority of that context.
*/
if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
rq_prio(list_next_entry(rq, sched.link)) > last_prio)
return true;
if (rb) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
bool preempt = false;
if (engine == ve->siblings[0]) { /* only preempt one sibling */
struct i915_request *next;
rcu_read_lock();
next = READ_ONCE(ve->request);
if (next)
preempt = rq_prio(next) > last_prio;
rcu_read_unlock();
}
if (preempt)
return preempt;
}
/*
* If the inflight context did not trigger the preemption, then maybe
* it was the set of queued requests? Pick the highest priority in
* the queue (the first active priolist) and see if it deserves to be
* running instead of ELSP[0].
*
* The highest priority request in the queue can not be either
* ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
* context, it's priority would not exceed ELSP[0] aka last_prio.
*/
return queue_prio(&engine->execlists) > last_prio;
}
__maybe_unused static inline bool
assert_priority_queue(const struct i915_request *prev,
const struct i915_request *next)
{
/*
* Without preemption, the prev may refer to the still active element
* which we refuse to let go.
*
* Even with preemption, there are times when we think it is better not
* to preempt and leave an ostensibly lower priority request in flight.
*/
if (i915_request_is_active(prev))
return true;
return rq_prio(prev) >= rq_prio(next);
}
/*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB::
*
* bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
* bits 53-54: mbz, reserved for use by hardware
* bits 55-63: group ID, currently unused and set to 0
*
* Starting from Gen11, the upper dword of the descriptor has a new format:
*
* bits 32-36: reserved
* bits 37-47: SW context ID
* bits 48:53: engine instance
* bit 54: mbz, reserved for use by hardware
* bits 55-60: SW counter
* bits 61-63: engine class
*
* engine info, SW context ID and SW counter need to form a unique number
* (Context ID) per lrc.
*/
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
{
u64 desc;
desc = INTEL_LEGACY_32B_CONTEXT;
if (i915_vm_is_4lvl(ce->vm))
desc = INTEL_LEGACY_64B_CONTEXT;
desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
if (IS_GEN(engine->i915, 8))
desc |= GEN8_CTX_L3LLC_COHERENT;
desc |= i915_ggtt_offset(ce->state); /* bits 12-31 */
/*
* The following 32bits are copied into the OA reports (dword 2).
* Consider updating oa_get_render_ctx_id in i915_perf.c when changing
* anything below.
*/
if (INTEL_GEN(engine->i915) >= 11) {
desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
/* bits 48-53 */
desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
/* bits 61-63 */
}
return desc;
}
static u32 *set_offsets(u32 *regs,
const u8 *data,
const struct intel_engine_cs *engine)
#define NOP(x) (BIT(7) | (x))
#define LRI(count, flags) ((flags) << 6 | (count))
#define POSTED BIT(0)
#define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
#define REG16(x) \
(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
(((x) >> 2) & 0x7f)
#define END() 0
{
const u32 base = engine->mmio_base;
while (*data) {
u8 count, flags;
if (*data & BIT(7)) { /* skip */
regs += *data++ & ~BIT(7);
continue;
}
count = *data & 0x3f;
flags = *data >> 6;
data++;
*regs = MI_LOAD_REGISTER_IMM(count);
if (flags & POSTED)
*regs |= MI_LRI_FORCE_POSTED;
if (INTEL_GEN(engine->i915) >= 11)
*regs |= MI_LRI_CS_MMIO;
regs++;
GEM_BUG_ON(!count);
do {
u32 offset = 0;
u8 v;
do {
v = *data++;
offset <<= 7;
offset |= v & ~BIT(7);
} while (v & BIT(7));
*regs = base + (offset << 2);
regs += 2;
} while (--count);
}
return regs;
}
static const u8 gen8_xcs_offsets[] = {
NOP(1),
LRI(11, 0),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
NOP(9),
LRI(9, 0),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(2, 0),
REG16(0x200),
REG(0x028),
END(),
};
static const u8 gen9_xcs_offsets[] = {
NOP(1),
LRI(14, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
NOP(3),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(1, POSTED),
REG16(0x200),
NOP(13),
LRI(44, POSTED),
REG(0x028),
REG(0x09c),
REG(0x0c0),
REG(0x178),
REG(0x17c),
REG16(0x358),
REG(0x170),
REG(0x150),
REG(0x154),
REG(0x158),
REG16(0x41c),
REG16(0x600),
REG16(0x604),
REG16(0x608),
REG16(0x60c),
REG16(0x610),
REG16(0x614),
REG16(0x618),
REG16(0x61c),
REG16(0x620),
REG16(0x624),
REG16(0x628),
REG16(0x62c),
REG16(0x630),
REG16(0x634),
REG16(0x638),
REG16(0x63c),
REG16(0x640),
REG16(0x644),
REG16(0x648),
REG16(0x64c),
REG16(0x650),
REG16(0x654),
REG16(0x658),
REG16(0x65c),
REG16(0x660),
REG16(0x664),
REG16(0x668),
REG16(0x66c),
REG16(0x670),
REG16(0x674),
REG16(0x678),
REG16(0x67c),
REG(0x068),
END(),
};
static const u8 gen12_xcs_offsets[] = {
NOP(1),
LRI(13, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
REG(0x180),
REG16(0x2b4),
NOP(5),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
END(),
};
static const u8 gen8_rcs_offsets[] = {
NOP(1),
LRI(14, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
NOP(3),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(1, 0),
REG(0x0c8),
END(),
};
static const u8 gen11_rcs_offsets[] = {
NOP(1),
LRI(15, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
REG(0x180),
NOP(1),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
LRI(1, POSTED),
REG(0x1b0),
NOP(10),
LRI(1, 0),
REG(0x0c8),
END(),
};
static const u8 gen12_rcs_offsets[] = {
NOP(1),
LRI(13, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
REG(0x180),
REG16(0x2b4),
NOP(5),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
LRI(3, POSTED),
REG(0x1b0),
REG16(0x5a8),
REG16(0x5ac),
NOP(6),
LRI(1, 0),
REG(0x0c8),
END(),
};
#undef END
#undef REG16
#undef REG
#undef LRI
#undef NOP
static const u8 *reg_offsets(const struct intel_engine_cs *engine)
{
/*
* The gen12+ lists only have the registers we program in the basic
* default state. We rely on the context image using relative
* addressing to automatic fixup the register state between the
* physical engines for virtual engine.
*/
GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
!intel_engine_has_relative_mmio(engine));
if (engine->class == RENDER_CLASS) {
if (INTEL_GEN(engine->i915) >= 12)
return gen12_rcs_offsets;
else if (INTEL_GEN(engine->i915) >= 11)
return gen11_rcs_offsets;
else
return gen8_rcs_offsets;
} else {
if (INTEL_GEN(engine->i915) >= 12)
return gen12_xcs_offsets;
else if (INTEL_GEN(engine->i915) >= 9)
return gen9_xcs_offsets;
else
return gen8_xcs_offsets;
}
}
static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs *engine)
{
struct i915_request *rq, *rn, *active = NULL;
struct list_head *uninitialized_var(pl);
int prio = I915_PRIORITY_INVALID;
lockdep_assert_held(&engine->active.lock);
list_for_each_entry_safe_reverse(rq, rn,
&engine->active.requests,
sched.link) {
if (i915_request_completed(rq))
continue; /* XXX */
__i915_request_unsubmit(rq);
/*
* Push the request back into the queue for later resubmission.
* If this request is not native to this physical engine (i.e.
* it came from a virtual source), push it back onto the virtual
* engine so that it can be moved across onto another physical
* engine as load dictates.
*/
if (likely(rq->execution_mask == engine->mask)) {
GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
if (rq_prio(rq) != prio) {
prio = rq_prio(rq);
pl = i915_sched_lookup_priolist(engine, prio);
}
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
list_move(&rq->sched.link, pl);
active = rq;
} else {
struct intel_engine_cs *owner = rq->context->engine;
/*
* Decouple the virtual breadcrumb before moving it
* back to the virtual engine -- we don't want the
* request to complete in the background and try
* and cancel the breadcrumb on the virtual engine
* (instead of the old engine where it is linked)!
*/
if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&rq->fence.flags)) {
spin_lock_nested(&rq->lock,
SINGLE_DEPTH_NESTING);
i915_request_cancel_breadcrumb(rq);
spin_unlock(&rq->lock);
}
rq->engine = owner;
owner->submit_request(rq);
active = NULL;
}
}
return active;
}
struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
struct intel_engine_cs *engine =
container_of(execlists, typeof(*engine), execlists);
return __unwind_incomplete_requests(engine);
}
static inline void
execlists_context_status_change(struct i915_request *rq, unsigned long status)
{
/*
* Only used when GVT-g is enabled now. When GVT-g is disabled,
* The compiler should eliminate this function as dead-code.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
return;
atomic_notifier_call_chain(&rq->engine->context_status_notifier,
status, rq);
}
static void intel_engine_context_in(struct intel_engine_cs *engine)
{
unsigned long flags;
if (READ_ONCE(engine->stats.enabled) == 0)
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
if (engine->stats.enabled > 0) {
if (engine->stats.active++ == 0)
engine->stats.start = ktime_get();
GEM_BUG_ON(engine->stats.active == 0);
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
static void intel_engine_context_out(struct intel_engine_cs *engine)
{
unsigned long flags;
if (READ_ONCE(engine->stats.enabled) == 0)
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
if (engine->stats.enabled > 0) {
ktime_t last;
if (engine->stats.active && --engine->stats.active == 0) {
/*
* Decrement the active context count and in case GPU
* is now idle add up to the running total.
*/
last = ktime_sub(ktime_get(), engine->stats.start);
engine->stats.total = ktime_add(engine->stats.total,
last);
} else if (engine->stats.active == 0) {
/*
* After turning on engine stats, context out might be
* the first event in which case we account from the
* time stats gathering was turned on.
*/
last = ktime_sub(ktime_get(), engine->stats.enabled_at);
engine->stats.total = ktime_add(engine->stats.total,
last);
}
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
{
if (INTEL_GEN(engine->i915) >= 12)
return 0x60;
else if (INTEL_GEN(engine->i915) >= 9)
return 0x54;
else if (engine->class == RENDER_CLASS)
return 0x58;
else
return -1;
}
static void
execlists_check_context(const struct intel_context *ce,
const struct intel_engine_cs *engine)
{
const struct intel_ring *ring = ce->ring;
u32 *regs = ce->lrc_reg_state;
bool valid = true;
int x;
if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
engine->name,
regs[CTX_RING_START],
i915_ggtt_offset(ring->vma));
regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
valid = false;
}
if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
(RING_CTL_SIZE(ring->size) | RING_VALID)) {
pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
engine->name,
regs[CTX_RING_CTL],
(u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
valid = false;
}
x = lrc_ring_mi_mode(engine);
if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
engine->name, regs[x + 1]);
regs[x + 1] &= ~STOP_RING;
regs[x + 1] |= STOP_RING << 16;
valid = false;
}
WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
}
static void restore_default_state(struct intel_context *ce,
struct intel_engine_cs *engine)
{
u32 *regs = ce->lrc_reg_state;
if (engine->pinned_default_state)
memcpy(regs, /* skip restoring the vanilla PPHWSP */
engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
engine->context_size - PAGE_SIZE);
execlists_init_reg_state(regs, ce, engine, ce->ring, false);
}
static void reset_active(struct i915_request *rq,
struct intel_engine_cs *engine)
{
struct intel_context * const ce = rq->context;
u32 head;
/*
* The executing context has been cancelled. We want to prevent
* further execution along this context and propagate the error on
* to anything depending on its results.
*
* In __i915_request_submit(), we apply the -EIO and remove the
* requests' payloads for any banned requests. But first, we must
* rewind the context back to the start of the incomplete request so
* that we do not jump back into the middle of the batch.
*
* We preserve the breadcrumbs and semaphores of the incomplete
* requests so that inter-timeline dependencies (i.e other timelines)
* remain correctly ordered. And we defer to __i915_request_submit()
* so that all asynchronous waits are correctly handled.
*/
ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
rq->fence.context, rq->fence.seqno);
/* On resubmission of the active request, payload will be scrubbed */
if (i915_request_completed(rq))
head = rq->tail;
else
head = active_request(ce->timeline, rq)->head;
ce->ring->head = intel_ring_wrap(ce->ring, head);
intel_ring_update_space(ce->ring);
/* Scrub the context image to prevent replaying the previous batch */
restore_default_state(ce, engine);
__execlists_update_reg_state(ce, engine);
/* We've switched away, so this should be a no-op, but intent matters */
ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
}
static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request *rq)
{
struct intel_engine_cs * const engine = rq->engine;
struct intel_context * const ce = rq->context;
intel_context_get(ce);
if (unlikely(intel_context_is_banned(ce)))
reset_active(rq, engine);
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
execlists_check_context(ce, engine);
if (ce->tag) {
/* Use a fixed tag for OA and friends */
ce->lrc_desc |= (u64)ce->tag << 32;
} else {
/* We don't need a strict matching tag, just different values */
ce->lrc_desc &= ~GENMASK_ULL(47, 37);
ce->lrc_desc |=
(u64)(++engine->context_tag % NUM_CONTEXT_TAG) <<
GEN11_SW_CTX_ID_SHIFT;
BUILD_BUG_ON(NUM_CONTEXT_TAG > GEN12_MAX_CONTEXT_HW_ID);
}
__intel_gt_pm_get(engine->gt);
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
intel_engine_context_in(engine);
return engine;
}
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
{
struct intel_context * const ce = rq->context;
struct intel_engine_cs *old;
GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
trace_i915_request_in(rq, idx);
old = READ_ONCE(ce->inflight);
do {
if (!old) {
WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
break;
}
} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
return i915_request_get(rq);
}
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
struct i915_request *next = READ_ONCE(ve->request);
if (next && next->execution_mask & ~rq->execution_mask)
tasklet_schedule(&ve->base.execlists.tasklet);
}
static inline void
__execlists_schedule_out(struct i915_request *rq,
struct intel_engine_cs * const engine)
{
struct intel_context * const ce = rq->context;
/*
* NB process_csb() is not under the engine->active.lock and hence
* schedule_out can race with schedule_in meaning that we should
* refrain from doing non-trivial work here.
*/
/*
* If we have just completed this context, the engine may now be
* idle and we want to re-enter powersaving.
*/
if (list_is_last(&rq->link, &ce->timeline->requests) &&
i915_request_completed(rq))
intel_engine_add_retire(engine, ce->timeline);
intel_engine_context_out(engine);
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
intel_gt_pm_put_async(engine->gt);
/*
* If this is part of a virtual engine, its next request may
* have been blocked waiting for access to the active context.
* We have to kick all the siblings again in case we need to
* switch (e.g. the next request is not runnable on this
* engine). Hopefully, we will already have submitted the next
* request before the tasklet runs and do not need to rebuild
* each virtual tree and kick everyone again.
*/
if (ce->engine != engine)
kick_siblings(rq, ce);
intel_context_put(ce);
}
static inline void
execlists_schedule_out(struct i915_request *rq)
{
struct intel_context * const ce = rq->context;
struct intel_engine_cs *cur, *old;
trace_i915_request_out(rq);
old = READ_ONCE(ce->inflight);
do
cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
while (!try_cmpxchg(&ce->inflight, &old, cur));
if (!cur)
__execlists_schedule_out(rq, old);
i915_request_put(rq);
}
static u64 execlists_update_context(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
u64 desc = ce->lrc_desc;
u32 tail;
/*
* WaIdleLiteRestore:bdw,skl
*
* We should never submit the context with the same RING_TAIL twice
* just in case we submit an empty ring, which confuses the HW.
*
* We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
* the normal request to be able to always advance the RING_TAIL on
* subsequent resubmissions (for lite restore). Should that fail us,
* and we try and submit the same tail again, force the context
* reload.
*/
tail = intel_ring_set_tail(rq->ring, rq->tail);
if (unlikely(ce->lrc_reg_state[CTX_RING_TAIL] == tail))
desc |= CTX_DESC_FORCE_RESTORE;
ce->lrc_reg_state[CTX_RING_TAIL] = tail;
rq->tail = rq->wa_tail;
/*
* Make sure the context image is complete before we submit it to HW.
*
* Ostensibly, writes (including the WCB) should be flushed prior to
* an uncached write such as our mmio register access, the empirical
* evidence (esp. on Braswell) suggests that the WC write into memory
* may not be visible to the HW prior to the completion of the UC
* register write and that we may begin execution from the context
* before its image is complete leading to invalid PD chasing.
*/
wmb();
/* Wa_1607138340:tgl */
if (IS_TGL_REVID(rq->i915, TGL_REVID_A0, TGL_REVID_A0))
desc |= CTX_DESC_FORCE_RESTORE;
ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
return desc;
}
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
{
if (execlists->ctrl_reg) {
writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
} else {
writel(upper_32_bits(desc), execlists->submit_reg);
writel(lower_32_bits(desc), execlists->submit_reg);
}
}
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
const char *msg,
struct i915_request * const *ports)
{
const struct intel_engine_cs *engine =
container_of(execlists, typeof(*engine), execlists);
if (!ports[0])
return;
ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg,
ports[0]->fence.context,
ports[0]->fence.seqno,
i915_request_completed(ports[0]) ? "!" :
i915_request_started(ports[0]) ? "*" :
"",
ports[1] ? ports[1]->fence.context : 0,
ports[1] ? ports[1]->fence.seqno : 0);
}
static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
const char *msg)
{
struct i915_request * const *port, *rq;
struct intel_context *ce = NULL;
trace_ports(execlists, msg, execlists->pending);
if (!execlists->pending[0]) {
GEM_TRACE_ERR("Nothing pending for promotion!\n");
return false;
}
if (execlists->pending[execlists_num_ports(execlists)]) {
GEM_TRACE_ERR("Excess pending[%d] for promotion!\n",
execlists_num_ports(execlists));
return false;
}
for (port = execlists->pending; (rq = *port); port++) {
unsigned long flags;
bool ok = true;
GEM_BUG_ON(!kref_read(&rq->fence.refcount));
GEM_BUG_ON(!i915_request_is_active(rq));
if (ce == rq->context) {
GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
return false;
}
ce = rq->context;
/* Hold tightly onto the lock to prevent concurrent retires! */
if (!spin_trylock_irqsave(&rq->lock, flags))
continue;
if (i915_request_completed(rq))
goto unlock;
if (i915_active_is_idle(&ce->active) &&
!intel_context_is_barrier(ce)) {
GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
ok = false;
goto unlock;
}
if (!i915_vma_is_pinned(ce->state)) {
GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
ok = false;
goto unlock;
}
if (!i915_vma_is_pinned(ce->ring->vma)) {
GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
ok = false;
goto unlock;
}
unlock:
spin_unlock_irqrestore(&rq->lock, flags);
if (!ok)
return false;
}
return ce;
}
static void execlists_submit_ports(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
unsigned int n;
GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
/*
* We can skip acquiring intel_runtime_pm_get() here as it was taken
* on our behalf by the request (see i915_gem_mark_busy()) and it will
* not be relinquished until the device is idle (see
* i915_gem_idle_work_handler()). As a precaution, we make sure
* that all ELSP are drained i.e. we have processed the CSB,
* before allowing ourselves to idle and calling intel_runtime_pm_put().
*/
GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
/*
* ELSQ note: the submit queue is not cleared after being submitted
* to the HW so we need to make sure we always clean it up. This is
* currently ensured by the fact that we always write the same number
* of elsq entries, keep this in mind before changing the loop below.
*/
for (n = execlists_num_ports(execlists); n--; ) {
struct i915_request *rq = execlists->pending[n];
write_desc(execlists,
rq ? execlists_update_context(rq) : 0,
n);
}
/* we need to manually load the submit queue */
if (execlists->ctrl_reg)
writel(EL_CTRL_LOAD, execlists->ctrl_reg);
}
static bool ctx_single_port_submission(const struct intel_context *ce)
{
return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
intel_context_force_single_submission(ce));
}
static bool can_merge_ctx(const struct intel_context *prev,
const struct intel_context *next)
{
if (prev != next)
return false;
if (ctx_single_port_submission(prev))
return false;
return true;
}
static bool can_merge_rq(const struct i915_request *prev,
const struct i915_request *next)
{
GEM_BUG_ON(prev == next);
GEM_BUG_ON(!assert_priority_queue(prev, next));
/*
* We do not submit known completed requests. Therefore if the next
* request is already completed, we can pretend to merge it in
* with the previous context (and we will skip updating the ELSP
* and tracking). Thus hopefully keeping the ELSP full with active
* contexts, despite the best efforts of preempt-to-busy to confuse
* us.
*/
if (i915_request_completed(next))
return true;
if (unlikely((prev->flags ^ next->flags) &
(I915_REQUEST_NOPREEMPT | I915_REQUEST_SENTINEL)))
return false;
if (!can_merge_ctx(prev->context, next->context))
return false;
return true;
}
static void virtual_update_register_offsets(u32 *regs,
struct intel_engine_cs *engine)
{
set_offsets(regs, reg_offsets(engine), engine);
}
static bool virtual_matches(const struct virtual_engine *ve,
const struct i915_request *rq,
const struct intel_engine_cs *engine)
{
const struct intel_engine_cs *inflight;
if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
return false;
/*
* We track when the HW has completed saving the context image
* (i.e. when we have seen the final CS event switching out of
* the context) and must not overwrite the context image before
* then. This restricts us to only using the active engine
* while the previous virtualized request is inflight (so
* we reuse the register offsets). This is a very small
* hystersis on the greedy seelction algorithm.
*/
inflight = intel_context_inflight(&ve->context);
if (inflight && inflight != engine)
return false;
return true;
}
static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
struct intel_engine_cs *engine)
{
struct intel_engine_cs *old = ve->siblings[0];
/* All unattached (rq->engine == old) must already be completed */
spin_lock(&old->breadcrumbs.irq_lock);
if (!list_empty(&ve->context.signal_link)) {
list_move_tail(&ve->context.signal_link,
&engine->breadcrumbs.signalers);
intel_engine_signal_breadcrumbs(engine);
}
spin_unlock(&old->breadcrumbs.irq_lock);
}
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
struct i915_request * const *last = READ_ONCE(execlists->active);
while (*last && i915_request_completed(*last))
last++;
return *last;
}
static void defer_request(struct i915_request *rq, struct list_head * const pl)
{
LIST_HEAD(list);
/*
* We want to move the interrupted request to the back of
* the round-robin list (i.e. its priority level), but
* in doing so, we must then move all requests that were in
* flight and were waiting for the interrupted request to
* be run after it again.
*/
do {
struct i915_dependency *p;
GEM_BUG_ON(i915_request_is_active(rq));
list_move_tail(&rq->sched.link, pl);
list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
struct i915_request *w =
container_of(p->waiter, typeof(*w), sched);
/* Leave semaphores spinning on the other engines */
if (w->engine != rq->engine)
continue;
/* No waiter should start before its signaler */
GEM_BUG_ON(i915_request_started(w) &&
!i915_request_completed(rq));
GEM_BUG_ON(i915_request_is_active(w));
if (list_empty(&w->sched.link))
continue; /* Not yet submitted; unready */
if (rq_prio(w) < rq_prio(rq))
continue;
GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
list_move_tail(&w->sched.link, &list);
}
rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
} while (rq);
}
static void defer_active(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = __unwind_incomplete_requests(engine);
if (!rq)
return;
defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}
static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
int hint;
if (!intel_engine_has_timeslices(engine))
return false;
if (list_is_last(&rq->sched.link, &engine->active.requests))
return false;
hint = max(rq_prio(list_next_entry(rq, sched.link)),
engine->execlists.queue_priority_hint);
return hint >= effective_prio(rq);
}
static int
switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
{
if (list_is_last(&rq->sched.link, &engine->active.requests))
return INT_MIN;
return rq_prio(list_next_entry(rq, sched.link));
}
static inline unsigned long
timeslice(const struct intel_engine_cs *engine)
{
return READ_ONCE(engine->props.timeslice_duration_ms);
}
static unsigned long
active_timeslice(const struct intel_engine_cs *engine)
{
const struct i915_request *rq = *engine->execlists.active;
if (i915_request_completed(rq))
return 0;
if (engine->execlists.switch_priority_hint < effective_prio(rq))
return 0;
return timeslice(engine);
}
static void set_timeslice(struct intel_engine_cs *engine)
{
if (!intel_engine_has_timeslices(engine))
return;
set_timer_ms(&engine->execlists.timer, active_timeslice(engine));
}
static void record_preemption(struct intel_engine_execlists *execlists)
{
(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}
static unsigned long active_preempt_timeout(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = last_active(&engine->execlists);
if (!rq)
return 0;
/* Force a fast reset for terminated contexts (ignoring sysfs!) */
if (unlikely(intel_context_is_banned(rq->context)))
return 1;
return READ_ONCE(engine->props.preempt_timeout_ms);
}
static void set_preempt_timeout(struct intel_engine_cs *engine)
{
if (!intel_engine_has_preempt_reset(engine))
return;
set_timer_ms(&engine->execlists.preempt,
active_preempt_timeout(engine));
}
static void execlists_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **port = execlists->pending;
struct i915_request ** const last_port = port + execlists->port_mask;
struct i915_request *last;
struct rb_node *rb;
bool submit = false;
/*
* Hardware submission is through 2 ports. Conceptually each port
* has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
* static for a context, and unique to each, so we only execute
* requests belonging to a single context from each ring. RING_HEAD
* is maintained by the CS in the context image, it marks the place
* where it got up to last time, and through RING_TAIL we tell the CS
* where we want to execute up to this time.
*
* In this list the requests are in order of execution. Consecutive
* requests from the same context are adjacent in the ringbuffer. We
* can combine these requests into a single RING_TAIL update:
*
* RING_HEAD...req1...req2
* ^- RING_TAIL
* since to execute req2 the CS must first execute req1.
*
* Our goal then is to point each port to the end of a consecutive
* sequence of requests as being the most optimal (fewest wake ups
* and context switches) submission.
*/
for (rb = rb_first_cached(&execlists->virtual); rb; ) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
struct i915_request *rq = READ_ONCE(ve->request);
if (!rq) { /* lazily cleanup after another engine handled rq */
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
rb = rb_first_cached(&execlists->virtual);
continue;
}
if (!virtual_matches(ve, rq, engine)) {
rb = rb_next(rb);
continue;
}
break;
}
/*
* If the queue is higher priority than the last
* request in the currently active context, submit afresh.
* We will resubmit again afterwards in case we need to split
* the active context to interject the preemption request,
* i.e. we will retrigger preemption following the ack in case
* of trouble.
*/
last = last_active(execlists);
if (last) {
if (need_preempt(engine, last, rb)) {
ENGINE_TRACE(engine,
"preempting last=%llx:%lld, prio=%d, hint=%d\n",
last->fence.context,
last->fence.seqno,
last->sched.attr.priority,
execlists->queue_priority_hint);
record_preemption(execlists);
/*
* Don't let the RING_HEAD advance past the breadcrumb
* as we unwind (and until we resubmit) so that we do
* not accidentally tell it to go backwards.
*/
ring_set_paused(engine, 1);
/*
* Note that we have not stopped the GPU at this point,
* so we are unwinding the incomplete requests as they
* remain inflight and so by the time we do complete
* the preemption, some of the unwound requests may
* complete!
*/
__unwind_incomplete_requests(engine);
/*
* If we need to return to the preempted context, we
* need to skip the lite-restore and force it to
* reload the RING_TAIL. Otherwise, the HW has a
* tendency to ignore us rewinding the TAIL to the
* end of an earlier request.
*/
last->context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
last = NULL;
} else if (need_timeslice(engine, last) &&
timer_expired(&engine->execlists.timer)) {
ENGINE_TRACE(engine,
"expired last=%llx:%lld, prio=%d, hint=%d\n",
last->fence.context,
last->fence.seqno,
last->sched.attr.priority,
execlists->queue_priority_hint);
ring_set_paused(engine, 1);
defer_active(engine);
/*
* Unlike for preemption, if we rewind and continue
* executing the same context as previously active,
* the order of execution will remain the same and
* the tail will only advance. We do not need to
* force a full context restore, as a lite-restore
* is sufficient to resample the monotonic TAIL.
*
* If we switch to any other context, similarly we
* will not rewind TAIL of current context, and
* normal save/restore will preserve state and allow
* us to later continue executing the same request.
*/
last = NULL;
} else {
/*
* Otherwise if we already have a request pending
* for execution after the current one, we can
* just wait until the next CS event before
* queuing more. In either case we will force a
* lite-restore preemption event, but if we wait
* we hopefully coalesce several updates into a single
* submission.
*/
if (!list_is_last(&last->sched.link,
&engine->active.requests)) {
/*
* Even if ELSP[1] is occupied and not worthy
* of timeslices, our queue might be.
*/
if (!execlists->timer.expires &&
need_timeslice(engine, last))
set_timer_ms(&execlists->timer,
timeslice(engine));
return;
}
}
}
while (rb) { /* XXX virtual is always taking precedence */
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
struct i915_request *rq;
spin_lock(&ve->base.active.lock);
rq = ve->request;
if (unlikely(!rq)) { /* lost the race to a sibling */
spin_unlock(&ve->base.active.lock);
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
rb = rb_first_cached(&execlists->virtual);
continue;
}
GEM_BUG_ON(rq != ve->request);
GEM_BUG_ON(rq->engine != &ve->base);
GEM_BUG_ON(rq->context != &ve->context);
if (rq_prio(rq) >= queue_prio(execlists)) {
if (!virtual_matches(ve, rq, engine)) {
spin_unlock(&ve->base.active.lock);
rb = rb_next(rb);
continue;
}
if (last && !can_merge_rq(last, rq)) {
spin_unlock(&ve->base.active.lock);
return; /* leave this for another */
}
ENGINE_TRACE(engine,
"virtual rq=%llx:%lld%s, new engine? %s\n",
rq->fence.context,
rq->fence.seqno,
i915_request_completed(rq) ? "!" :
i915_request_started(rq) ? "*" :
"",
yesno(engine != ve->siblings[0]));
ve->request = NULL;
ve->base.execlists.queue_priority_hint = INT_MIN;
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
GEM_BUG_ON(!(rq->execution_mask & engine->mask));
rq->engine = engine;
if (engine != ve->siblings[0]) {
u32 *regs = ve->context.lrc_reg_state;
unsigned int n;
GEM_BUG_ON(READ_ONCE(ve->context.inflight));
if (!intel_engine_has_relative_mmio(engine))
virtual_update_register_offsets(regs,
engine);
if (!list_empty(&ve->context.signals))
virtual_xfer_breadcrumbs(ve, engine);
/*
* Move the bound engine to the top of the list
* for future execution. We then kick this
* tasklet first before checking others, so that
* we preferentially reuse this set of bound
* registers.
*/
for (n = 1; n < ve->num_siblings; n++) {
if (ve->siblings[n] == engine) {
swap(ve->siblings[n],
ve->siblings[0]);
break;
}
}
GEM_BUG_ON(ve->siblings[0] != engine);
}
if (__i915_request_submit(rq)) {
submit = true;
last = rq;
}
i915_request_put(rq);
/*
* Hmm, we have a bunch of virtual engine requests,
* but the first one was already completed (thanks
* preempt-to-busy!). Keep looking at the veng queue
* until we have no more relevant requests (i.e.
* the normal submit queue has higher priority).
*/
if (!submit) {
spin_unlock(&ve->base.active.lock);
rb = rb_first_cached(&execlists->virtual);
continue;
}
}
spin_unlock(&ve->base.active.lock);
break;
}
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
bool merge = true;
/*
* Can we combine this request with the current port?
* It has to be the same context/ringbuffer and not
* have any exceptions (e.g. GVT saying never to
* combine contexts).
*
* If we can combine the requests, we can execute both
* by updating the RING_TAIL to point to the end of the
* second request, and so we never need to tell the
* hardware about the first.
*/
if (last && !can_merge_rq(last, rq)) {
/*
* If we are on the second port and cannot
* combine this request with the last, then we
* are done.
*/
if (port == last_port)
goto done;
/*
* We must not populate both ELSP[] with the
* same LRCA, i.e. we must submit 2 different
* contexts if we submit 2 ELSP.
*/
if (last->context == rq->context)
goto done;
if (i915_request_has_sentinel(last))
goto done;
/*
* If GVT overrides us we only ever submit
* port[0], leaving port[1] empty. Note that we
* also have to be careful that we don't queue
* the same context (even though a different
* request) to the second port.
*/
if (ctx_single_port_submission(last->context) ||
ctx_single_port_submission(rq->context))
goto done;
merge = false;
}
if (__i915_request_submit(rq)) {
if (!merge) {
*port = execlists_schedule_in(last, port - execlists->pending);
port++;
last = NULL;
}
GEM_BUG_ON(last &&
!can_merge_ctx(last->context,
rq->context));
submit = true;
last = rq;
}
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
/*
* Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
*
* We choose the priority hint such that if we add a request of greater
* priority than this, we kick the submission tasklet to decide on
* the right order of submitting the requests to hardware. We must
* also be prepared to reorder requests as they are in-flight on the
* HW. We derive the priority hint then as the first "hole" in
* the HW submission ports and if there are no available slots,
* the priority of the lowest executing request, i.e. last.
*
* When we do receive a higher priority request ready to run from the
* user, see queue_request(), the priority hint is bumped to that
* request triggering preemption on the next dequeue (or subsequent
* interrupt for secondary ports).
*/
execlists->queue_priority_hint = queue_prio(execlists);
if (submit) {
*port = execlists_schedule_in(last, port - execlists->pending);
execlists->switch_priority_hint =
switch_prio(engine, *execlists->pending);
/*
* Skip if we ended up with exactly the same set of requests,
* e.g. trying to timeslice a pair of ordered contexts
*/
if (!memcmp(execlists->active, execlists->pending,
(port - execlists->pending + 1) * sizeof(*port))) {
do
execlists_schedule_out(fetch_and_zero(port));
while (port-- != execlists->pending);
goto skip_submit;
}
memset(port + 1, 0, (last_port - port) * sizeof(*port));
execlists_submit_ports(engine);
set_preempt_timeout(engine);
} else {
skip_submit:
ring_set_paused(engine, 0);
}
}
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
{
struct i915_request * const *port;
for (port = execlists->pending; *port; port++)
execlists_schedule_out(*port);
memset(execlists->pending, 0, sizeof(execlists->pending));
/* Mark the end of active before we overwrite *active */
for (port = xchg(&execlists->active, execlists->pending); *port; port++)
execlists_schedule_out(*port);
WRITE_ONCE(execlists->active,
memset(execlists->inflight, 0, sizeof(execlists->inflight)));
}
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
clflush((void *)first);
clflush((void *)last);
}
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}
/*
* Starting with Gen12, the status has a new format:
*
* bit 0: switched to new queue
* bit 1: reserved
* bit 2: semaphore wait mode (poll or signal), only valid when
* switch detail is set to "wait on semaphore"
* bits 3-5: engine class
* bits 6-11: engine instance
* bits 12-14: reserved
* bits 15-25: sw context id of the lrc the GT switched to
* bits 26-31: sw counter of the lrc the GT switched to
* bits 32-35: context switch detail
* - 0: ctx complete
* - 1: wait on sync flip
* - 2: wait on vblank
* - 3: wait on scanline
* - 4: wait on semaphore
* - 5: context preempted (not on SEMAPHORE_WAIT or
* WAIT_FOR_EVENT)
* bit 36: reserved
* bits 37-43: wait detail (for switch detail 1 to 4)
* bits 44-46: reserved
* bits 47-57: sw context id of the lrc the GT switched away from
* bits 58-63: sw counter of the lrc the GT switched away from
*/
static inline bool
gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
u32 lower_dw = csb[0];
u32 upper_dw = csb[1];
bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
/*
* The context switch detail is not guaranteed to be 5 when a preemption
* occurs, so we can't just check for that. The check below works for
* all the cases we care about, including preemptions of WAIT
* instructions and lite-restore. Preempt-to-idle via the CTRL register
* would require some extra handling, but we don't support that.
*/
if (!ctx_away_valid || new_queue) {
GEM_BUG_ON(!ctx_to_valid);
return true;
}
/*
* switch detail = 5 is covered by the case above and we do not expect a
* context switch on an unsuccessful wait instruction since we always
* use polling mode.
*/
GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
return false;
}
static inline bool
gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
}
static void process_csb(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
const u32 * const buf = execlists->csb_status;
const u8 num_entries = execlists->csb_size;
u8 head, tail;
/*
* As we modify our execlists state tracking we require exclusive
* access. Either we are inside the tasklet, or the tasklet is disabled
* and we assume that is only inside the reset paths and so serialised.
*/
GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
!reset_in_progress(execlists));
GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
/*
* Note that csb_write, csb_status may be either in HWSP or mmio.
* When reading from the csb_write mmio register, we have to be
* careful to only use the GEN8_CSB_WRITE_PTR portion, which is
* the low 4bits. As it happens we know the next 4bits are always
* zero and so we can simply masked off the low u8 of the register
* and treat it identically to reading from the HWSP (without having
* to use explicit shifting and masking, and probably bifurcating
* the code to handle the legacy mmio read).
*/
head = execlists->csb_head;
tail = READ_ONCE(*execlists->csb_write);
ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
if (unlikely(head == tail))
return;
/*
* Hopefully paired with a wmb() in HW!
*
* We must complete the read of the write pointer before any reads
* from the CSB, so that we do not see stale values. Without an rmb
* (lfence) the HW may speculatively perform the CSB[] reads *before*
* we perform the READ_ONCE(*csb_write).
*/
rmb();
do {
bool promote;
if (++head == num_entries)
head = 0;
/*
* We are flying near dragons again.
*
* We hold a reference to the request in execlist_port[]
* but no more than that. We are operating in softirq
* context and so cannot hold any mutex or sleep. That
* prevents us stopping the requests we are processing
* in port[] from being retired simultaneously (the
* breadcrumb will be complete before we see the
* context-switch). As we only hold the reference to the
* request, any pointer chasing underneath the request
* is subject to a potential use-after-free. Thus we
* store all of the bookkeeping within port[] as
* required, and avoid using unguarded pointers beneath
* request itself. The same applies to the atomic
* status notifier.
*/
ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
head, buf[2 * head + 0], buf[2 * head + 1]);
if (INTEL_GEN(engine->i915) >= 12)
promote = gen12_csb_parse(execlists, buf + 2 * head);
else
promote = gen8_csb_parse(execlists, buf + 2 * head);
if (promote) {
struct i915_request * const *old = execlists->active;
/* Point active to the new ELSP; prevent overwriting */
WRITE_ONCE(execlists->active, execlists->pending);
set_timeslice(engine);
if (!inject_preempt_hang(execlists))
ring_set_paused(engine, 0);
/* cancel old inflight, prepare for switch */
trace_ports(execlists, "preempted", old);
while (*old)
execlists_schedule_out(*old++);
/* switch pending to inflight */
GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
WRITE_ONCE(execlists->active,
memcpy(execlists->inflight,
execlists->pending,
execlists_num_ports(execlists) *
sizeof(*execlists->pending)));
WRITE_ONCE(execlists->pending[0], NULL);
} else {
GEM_BUG_ON(!*execlists->active);
/* port0 completed, advanced to port1 */
trace_ports(execlists, "completed", execlists->active);
/*
* We rely on the hardware being strongly
* ordered, that the breadcrumb write is
* coherent (visible from the CPU) before the
* user interrupt and CSB is processed.
*/
GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
!reset_in_progress(execlists));
execlists_schedule_out(*execlists->active++);
GEM_BUG_ON(execlists->active - execlists->inflight >
execlists_num_ports(execlists));
}
} while (head != tail);
execlists->csb_head = head;
/*
* Gen11 has proven to fail wrt global observation point between
* entry and tail update, failing on the ordering and thus
* we see an old entry in the context status buffer.
*
* Forcibly evict out entries for the next gpu csb update,
* to increase the odds that we get a fresh entries with non
* working hardware. The cost for doing so comes out mostly with
* the wash as hardware, working or not, will need to do the
* invalidation before.
*/
invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
}
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
{
lockdep_assert_held(&engine->active.lock);
if (!engine->execlists.pending[0]) {
rcu_read_lock(); /* protect peeking at execlists->active */
execlists_dequeue(engine);
rcu_read_unlock();
}
}
static noinline void preempt_reset(struct intel_engine_cs *engine)
{
const unsigned int bit = I915_RESET_ENGINE + engine->id;
unsigned long *lock = &engine->gt->reset.flags;
if (i915_modparams.reset < 3)
return;
if (test_and_set_bit(bit, lock))
return;
/* Mark this tasklet as disabled to avoid waiting for it to complete */
tasklet_disable_nosync(&engine->execlists.tasklet);
ENGINE_TRACE(engine, "preempt timeout %lu+%ums\n",
READ_ONCE(engine->props.preempt_timeout_ms),
jiffies_to_msecs(jiffies - engine->execlists.preempt.expires));
intel_engine_reset(engine, "preemption time out");
tasklet_enable(&engine->execlists.tasklet);
clear_and_wake_up_bit(bit, lock);
}
static bool preempt_timeout(const struct intel_engine_cs *const engine)
{
const struct timer_list *t = &engine->execlists.preempt;
if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
return false;
if (!timer_expired(t))
return false;
return READ_ONCE(engine->execlists.pending[0]);
}
/*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
static void execlists_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
bool timeout = preempt_timeout(engine);
process_csb(engine);
if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
__execlists_submission_tasklet(engine);
spin_unlock_irqrestore(&engine->active.lock, flags);
/* Recheck after serialising with direct-submission */
if (timeout && preempt_timeout(engine))
preempt_reset(engine);
}
}
static void __execlists_kick(struct intel_engine_execlists *execlists)
{
/* Kick the tasklet for some interrupt coalescing and reset handling */
tasklet_hi_schedule(&execlists->tasklet);
}
#define execlists_kick(t, member) \
__execlists_kick(container_of(t, struct intel_engine_execlists, member))
static void execlists_timeslice(struct timer_list *timer)
{
execlists_kick(timer, timer);
}
static void execlists_preempt(struct timer_list *timer)
{
execlists_kick(timer, preempt);
}
static void queue_request(struct intel_engine_cs *engine,
struct i915_sched_node *node,
int prio)
{
GEM_BUG_ON(!list_empty(&node->link));
list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
}
static void __submit_queue_imm(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (reset_in_progress(execlists))
return; /* defer until we restart the engine following reset */
if (execlists->tasklet.func == execlists_submission_tasklet)
__execlists_submission_tasklet(engine);
else
tasklet_hi_schedule(&execlists->tasklet);
}
static void submit_queue(struct intel_engine_cs *engine,
const struct i915_request *rq)
{
struct intel_engine_execlists *execlists = &engine->execlists;
if (rq_prio(rq) <= execlists->queue_priority_hint)
return;
execlists->queue_priority_hint = rq_prio(rq);
__submit_queue_imm(engine);
}
static void execlists_submit_request(struct i915_request *request)
{
struct intel_engine_cs *engine = request->engine;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&engine->active.lock, flags);
queue_request(engine, &request->sched, rq_prio(request));
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
GEM_BUG_ON(list_empty(&request->sched.link));
submit_queue(engine, request);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void __execlists_context_fini(struct intel_context *ce)
{
intel_ring_put(ce->ring);
i915_vma_put(ce->state);
}
static void execlists_context_destroy(struct kref *kref)
{
struct intel_context *ce = container_of(kref, typeof(*ce), ref);
GEM_BUG_ON(!i915_active_is_idle(&ce->active));
GEM_BUG_ON(intel_context_is_pinned(ce));
if (ce->state)
__execlists_context_fini(ce);
intel_context_fini(ce);
intel_context_free(ce);
}
static void
set_redzone(void *vaddr, const struct intel_engine_cs *engine)
{
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
vaddr += engine->context_size;
memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE);
}
static void
check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
{
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
vaddr += engine->context_size;
if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE))
dev_err_once(engine->i915->drm.dev,
"%s context redzone overwritten!\n",
engine->name);
}
static void execlists_context_unpin(struct intel_context *ce)
{
check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
ce->engine);
i915_gem_object_unpin_map(ce->state->obj);
intel_ring_reset(ce->ring, ce->ring->tail);
}
static void
__execlists_update_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine)
{
struct intel_ring *ring = ce->ring;
u32 *regs = ce->lrc_reg_state;
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
regs[CTX_RING_HEAD] = ring->head;
regs[CTX_RING_TAIL] = ring->tail;
/* RPCS */
if (engine->class == RENDER_CLASS) {
regs[CTX_R_PWR_CLK_STATE] =
intel_sseu_make_rpcs(engine->i915, &ce->sseu);
i915_oa_init_reg_state(ce, engine);
}
}
static int
__execlists_context_pin(struct intel_context *ce,
struct intel_engine_cs *engine)
{
void *vaddr;
int ret;
GEM_BUG_ON(!ce->state);
ret = intel_context_active_acquire(ce);
if (ret)
goto err;
GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
vaddr = i915_gem_object_pin_map(ce->state->obj,
i915_coherent_map_type(engine->i915) |
I915_MAP_OVERRIDE);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto unpin_active;
}
ce->lrc_desc = lrc_descriptor(ce, engine);
ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
__execlists_update_reg_state(ce, engine);
return 0;
unpin_active:
intel_context_active_release(ce);
err:
return ret;
}
static int execlists_context_pin(struct intel_context *ce)
{
return __execlists_context_pin(ce, ce->engine);
}
static int execlists_context_alloc(struct intel_context *ce)
{
return __execlists_context_alloc(ce, ce->engine);
}
static void execlists_context_reset(struct intel_context *ce)
{
/*
* Because we emit WA_TAIL_DWORDS there may be a disparity
* between our bookkeeping in ce->ring->head and ce->ring->tail and
* that stored in context. As we only write new commands from
* ce->ring->tail onwards, everything before that is junk. If the GPU
* starts reading from its RING_HEAD from the context, it may try to
* execute that junk and die.
*
* The contexts that are stilled pinned on resume belong to the
* kernel, and are local to each engine. All other contexts will
* have their head/tail sanitized upon pinning before use, so they
* will never see garbage,
*
* So to avoid that we reset the context images upon resume. For
* simplicity, we just zero everything out.
*/
intel_ring_reset(ce->ring, 0);
__execlists_update_reg_state(ce, ce->engine);
}
static const struct intel_context_ops execlists_context_ops = {
.alloc = execlists_context_alloc,
.pin = execlists_context_pin,
.unpin = execlists_context_unpin,
.enter = intel_context_enter_engine,
.exit = intel_context_exit_engine,
.reset = execlists_context_reset,
.destroy = execlists_context_destroy,
};
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
u32 *cs;
GEM_BUG_ON(!i915_request_timeline(rq)->has_initial_breadcrumb);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Check if we have been preempted before we even get started.
*
* After this point i915_request_started() reports true, even if
* we get preempted and so are no longer running.
*/
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_request_timeline(rq)->hwsp_offset;
*cs++ = 0;
*cs++ = rq->fence.seqno - 1;
intel_ring_advance(rq, cs);
/* Record the updated position of the request's payload */
rq->infix = intel_ring_offset(rq, cs);
return 0;
}
static int execlists_request_alloc(struct i915_request *request)
{
int ret;
GEM_BUG_ON(!intel_context_is_pinned(request->context));
/*
* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += EXECLISTS_REQUEST_SIZE;
/*
* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
/* Unconditionally invalidate GPU caches and TLBs. */
ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
if (ret)
return ret;
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
return 0;
}
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
{
/* NB no one else is allowed to scribble over scratch + 256! */
*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = intel_gt_scratch_offset(engine->gt,
INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
*batch++ = 0;
*batch++ = MI_LOAD_REGISTER_IMM(1);
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = intel_gt_scratch_offset(engine->gt,
INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
*batch++ = 0;
return batch;
}
/*
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*/
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaDisableCtxRestoreArbitration:bdw,chv */
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(engine->i915))
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_STORE_DATA_INDEX |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
LRC_PPHWSP_SCRATCH_ADDR);
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return batch;
}
struct lri {
i915_reg_t reg;
u32 value;
};
static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
{
GEM_BUG_ON(!count || count > 63);
*batch++ = MI_LOAD_REGISTER_IMM(count);
do {
*batch++ = i915_mmio_reg_offset(lri->reg);
*batch++ = lri->value;
} while (lri++, --count);
*batch++ = MI_NOOP;
return batch;
}
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
static const struct lri lri[] = {
/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
{
COMMON_SLICE_CHICKEN2,
__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
0),
},
/* BSpec: 11391 */
{
FF_SLICE_CHICKEN,
__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
},
/* BSpec: 11299 */
{
_3D_CHICKEN3,
__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
}
};
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
/* WaMediaPoolStateCmdInWABB:bxt,glk */
if (HAS_POOLED_EU(engine->i915)) {
/*
* EU pool configuration is setup along with golden context
* during context initialization. This value depends on
* device type (2x6 or 3x6) and needs to be updated based
* on which subslice is disabled especially for 2x6
* devices, however it is safe to load default
* configuration of 3x6 device instead of masking off
* corresponding bits because HW ignores bits of a disabled
* subslice and drops down to appropriate config. Please
* see render_state_setup() in i915_gem_render_state.c for
* possible configurations, to avoid duplication they are
* not shown here again.
*/
*batch++ = GEN9_MEDIA_POOL_STATE;
*batch++ = GEN9_MEDIA_POOL_ENABLE;
*batch++ = 0x00777000;
*batch++ = 0;
*batch++ = 0;
*batch++ = 0;
}
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
int i;
/*
* WaPipeControlBefore3DStateSamplePattern: cnl
*
* Ensure the engine is idle prior to programming a
* 3DSTATE_SAMPLE_PATTERN during a context restore.
*/
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL,
0);
/*
* WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
* the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
* total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
* confusing. Since gen8_emit_pipe_control() already advances the
* batch by 6 dwords, we advance the other 10 here, completing a
* cacheline. It's not clear if the workaround requires this padding
* before other commands, or if it's just the regular padding we would
* already have for the workaround bb, so leave it here for now.
*/
for (i = 0; i < 10; i++)
*batch++ = MI_NOOP;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (err)
goto err;
engine->wa_ctx.vma = vma;
return 0;
err:
i915_gem_object_put(obj);
return err;
}
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
{
i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
}
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
{
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
&wa_ctx->per_ctx };
wa_bb_func_t wa_bb_fn[2];
struct page *page;
void *batch, *batch_ptr;
unsigned int i;
int ret;
if (engine->class != RENDER_CLASS)
return 0;
switch (INTEL_GEN(engine->i915)) {
case 12:
case 11:
return 0;
case 10:
wa_bb_fn[0] = gen10_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 9:
wa_bb_fn[0] = gen9_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 8:
wa_bb_fn[0] = gen8_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
default:
MISSING_CASE(INTEL_GEN(engine->i915));
return 0;
}
ret = lrc_setup_wa_ctx(engine);
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
batch = batch_ptr = kmap_atomic(page);
/*
* Emit the two workaround batch buffers, recording the offset from the
* start of the workaround batch buffer object for each and their
* respective sizes.
*/
for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
wa_bb[i]->offset = batch_ptr - batch;
if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
CACHELINE_BYTES))) {
ret = -EINVAL;
break;
}
if (wa_bb_fn[i])
batch_ptr = wa_bb_fn[i](engine, batch_ptr);
wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
}
BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx(engine);
return ret;
}
static void enable_execlists(struct intel_engine_cs *engine)
{
u32 mode;
assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
if (INTEL_GEN(engine->i915) >= 11)
mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
else
mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
ENGINE_WRITE_FW(engine,
RING_HWS_PGA,
i915_ggtt_offset(engine->status_page.vma));
ENGINE_POSTING_READ(engine, RING_HWS_PGA);
engine->context_tag = 0;
}
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
bool unexpected = false;
if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
unexpected = true;
}
return unexpected;
}
static int execlists_resume(struct intel_engine_cs *engine)
{
intel_engine_apply_workarounds(engine);
intel_engine_apply_whitelist(engine);
intel_mocs_init_engine(engine);
intel_engine_reset_breadcrumbs(engine);
if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
struct drm_printer p = drm_debug_printer(__func__);
intel_engine_dump(engine, &p, NULL);
}
enable_execlists(engine);
return 0;
}
static void execlists_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
unsigned long flags;
ENGINE_TRACE(engine, "depth<-%d\n",
atomic_read(&execlists->tasklet.count));
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->resume() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
GEM_BUG_ON(!reset_in_progress(execlists));
/* And flush any current direct submission. */
spin_lock_irqsave(&engine->active.lock, flags);
spin_unlock_irqrestore(&engine->active.lock, flags);
/*
* We stop engines, otherwise we might get failed reset and a
* dead gpu (on elk). Also as modern gpu as kbl can suffer
* from system hang if batchbuffer is progressing when
* the reset is issued, regardless of READY_TO_RESET ack.
* Thus assume it is best to stop engines on all gens
* where we have a gpu reset.
*
* WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
*
* FIXME: Wa for more modern gens needs to be validated
*/
intel_engine_stop_cs(engine);
}
static void reset_csb_pointers(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
const unsigned int reset_value = execlists->csb_size - 1;
ring_set_paused(engine, 0);
/*
* After a reset, the HW starts writing into CSB entry [0]. We
* therefore have to set our HEAD pointer back one entry so that
* the *first* entry we check is entry 0. To complicate this further,
* as we don't wait for the first interrupt after reset, we have to
* fake the HW write to point back to the last entry so that our
* inline comparison of our cached head position against the last HW
* write works even before the first interrupt.
*/
execlists->csb_head = reset_value;
WRITE_ONCE(*execlists->csb_write, reset_value);
wmb(); /* Make sure this is visible to HW (paranoia?) */
/*
* Sometimes Icelake forgets to reset its pointers on a GPU reset.
* Bludgeon them with a mmio update to be sure.
*/
ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
reset_value << 8 | reset_value);
ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
invalidate_csb_entries(&execlists->csb_status[0],
&execlists->csb_status[reset_value]);
}
static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
{
int x;
x = lrc_ring_mi_mode(engine);
if (x != -1) {
regs[x + 1] &= ~STOP_RING;
regs[x + 1] |= STOP_RING << 16;
}
}
static void __execlists_reset_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine)
{
u32 *regs = ce->lrc_reg_state;
__reset_stop_ring(regs, engine);
}
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct intel_context *ce;
struct i915_request *rq;
mb(); /* paranoia: read the CSB pointers from after the reset */
clflush(execlists->csb_write);
mb();
process_csb(engine); /* drain preemption events */
/* Following the reset, we need to reload the CSB read/write pointers */
reset_csb_pointers(engine);
/*
* Save the currently executing context, even if we completed
* its request, it was still running at the time of the
* reset and will have been clobbered.
*/
rq = execlists_active(execlists);
if (!rq)
goto unwind;
/* We still have requests in-flight; the engine should be active */
GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
ce = rq->context;
GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
if (i915_request_completed(rq)) {
/* Idle context; tidy up the ring so we can restart afresh */
ce->ring->head = intel_ring_wrap(ce->ring, rq->tail);
goto out_replay;
}
/* Context has requests still in-flight; it should not be idle! */
GEM_BUG_ON(i915_active_is_idle(&ce->active));
rq = active_request(ce->timeline, rq);
ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
GEM_BUG_ON(ce->ring->head == ce->ring->tail);
/*
* If this request hasn't started yet, e.g. it is waiting on a
* semaphore, we need to avoid skipping the request or else we
* break the signaling chain. However, if the context is corrupt
* the request will not restart and we will be stuck with a wedged
* device. It is quite often the case that if we issue a reset
* while the GPU is loading the context image, that the context
* image becomes corrupt.
*
* Otherwise, if we have not started yet, the request should replay
* perfectly and we do not need to flag the result as being erroneous.
*/
if (!i915_request_started(rq))
goto out_replay;
/*
* If the request was innocent, we leave the request in the ELSP
* and will try to replay it on restarting. The context image may
* have been corrupted by the reset, in which case we may have
* to service a new GPU hang, but more likely we can continue on
* without impact.
*
* If the request was guilty, we presume the context is corrupt
* and have to at least restore the RING register in the context
* image back to the expected values to skip over the guilty request.
*/
__i915_request_reset(rq, stalled);
if (!stalled)
goto out_replay;
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
GEM_BUG_ON(!intel_context_is_pinned(ce));
restore_default_state(ce, engine);
out_replay:
ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
ce->ring->head, ce->ring->tail);
intel_ring_update_space(ce->ring);
__execlists_reset_reg_state(ce, engine);
__execlists_update_reg_state(ce, engine);
ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
unwind:
/* Push back any incomplete requests for replay after the reset. */
cancel_port_requests(execlists);
__unwind_incomplete_requests(engine);
}
static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
{
unsigned long flags;
ENGINE_TRACE(engine, "\n");
spin_lock_irqsave(&engine->active.lock, flags);
__execlists_reset(engine, stalled);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void nop_submission_tasklet(unsigned long data)
{
/* The driver is wedged; don't process any more events. */
}
static void execlists_reset_cancel(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
ENGINE_TRACE(engine, "\n");
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->active.lock, flags);
__execlists_reset(engine, true);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->active.requests, sched.link)
mark_eio(rq);
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
mark_eio(rq);
__i915_request_submit(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* Cancel all attached virtual engines */
while ((rb = rb_first_cached(&execlists->virtual))) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
spin_lock(&ve->base.active.lock);
rq = fetch_and_zero(&ve->request);
if (rq) {
mark_eio(rq);
rq->engine = engine;
__i915_request_submit(rq);
i915_request_put(rq);
ve->base.execlists.queue_priority_hint = INT_MIN;
}
spin_unlock(&ve->base.active.lock);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
execlists->tasklet.func = nop_submission_tasklet;
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
/*
* After a GPU reset, we may have requests to replay. Do so now while
* we still have the forcewake to be sure that the GPU is not allowed
* to sleep before we restart and reload a context.
*/
GEM_BUG_ON(!reset_in_progress(execlists));
if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
execlists->tasklet.func(execlists->tasklet.data);
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
ENGINE_TRACE(engine, "depth->%d\n",
atomic_read(&execlists->tasklet.count));
}
static int gen8_emit_bb_start_noarb(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* WaDisableCtxRestoreArbitration:bdw,chv
*
* We don't need to perform MI_ARB_ENABLE as often as we do (in
* particular all the gen that do not need the w/a at all!), if we
* took care to make sure that on every switch into this context
* (both ordinary and for preemption) that arbitrartion was enabled
* we would be fine. However, for gen8 there is another w/a that
* requires us to not preempt inside GPGPU execution, so we keep
* arbitration disabled for gen8 batches. Arbitration will be
* re-enabled before we close the request
* (engine->emit_fini_breadcrumb).
*/
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* FIXME(BDW+): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
intel_ring_advance(rq, cs);
return 0;
}
static int gen8_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
ENGINE_POSTING_READ(engine, RING_IMR);
}
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
}
static int gen8_emit_flush(struct i915_request *request, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(request, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (request->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(request, cs);
return 0;
}
static int gen8_emit_flush_render(struct i915_request *request,
u32 mode)
{
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN(request->i915, 9))
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(request, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(request, cs);
return 0;
}
static int gen11_emit_flush_render(struct i915_request *request,
u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
return 0;
}
static u32 preparser_disable(bool state)
{
return MI_ARB_CHECK | 1 << 8 | state;
}
static int gen12_emit_flush_render(struct i915_request *request,
u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 flags = 0;
u32 *cs;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/* Wa_1409600907:tgl */
flags |= PIPE_CONTROL_DEPTH_STALL;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 flags = 0;
u32 *cs;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
cs = intel_ring_begin(request, 8);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Prevent the pre-parser from skipping past the TLB
* invalidate and loading a stale page for the batch
* buffer / request payload.
*/
*cs++ = preparser_disable(true);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
*cs++ = preparser_disable(false);
intel_ring_advance(request, cs);
/*
* Wa_1604544889:tgl
*/
if (IS_TGL_REVID(request->i915, TGL_REVID_A0, TGL_REVID_A0)) {
flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags,
LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
}
return 0;
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
{
/* Ensure there's always at least one preemption point per-request. */
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
request->wa_tail = intel_ring_offset(request, cs);
return cs;
}
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = intel_hws_preempt_address(request->engine);
*cs++ = 0;
return cs;
}
static __always_inline u32*
gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(request->engine))
cs = emit_preempt_busywait(request, cs);
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
0);
return gen8_emit_fini_breadcrumb_footer(request, cs);
}
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_pipe_control(cs,
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
return gen8_emit_fini_breadcrumb_footer(request, cs);
}
static u32 *
gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE);
return gen8_emit_fini_breadcrumb_footer(request, cs);
}
/*
* Note that the CS instruction pre-parser will not stall on the breadcrumb
* flush and will continue pre-fetching the instructions after it before the
* memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
* BB_START/END instructions, so, even though we might pre-fetch the pre-amble
* of the next request before the memory has been flushed, we're guaranteed that
* we won't access the batch itself too early.
* However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
* so, if the current request is modifying an instruction in the next request on
* the same intel_context, we might pre-fetch and then execute the pre-update
* instruction. To avoid this, the users of self-modifying code should either
* disable the parser around the code emitting the memory writes, via a new flag
* added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
* the in-kernel use-cases we've opted to use a separate context, see
* reloc_gpu() as an example.
* All the above applies only to the instructions themselves. Non-inline data
* used by the instructions is not pre-fetched.
*/
static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = intel_hws_preempt_address(request->engine);
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
return cs;
}
static __always_inline u32*
gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(request->engine))
cs = gen12_emit_preempt_busywait(request, cs);
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
0);
return gen12_emit_fini_breadcrumb_footer(request, cs);
}
static u32 *
gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
/* Wa_1409600907:tgl */
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_HDC_PIPELINE_FLUSH);
return gen12_emit_fini_breadcrumb_footer(request, cs);
}
static void execlists_park(struct intel_engine_cs *engine)
{
cancel_timer(&engine->execlists.timer);
cancel_timer(&engine->execlists.preempt);
}
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = execlists_submit_request;
engine->schedule = i915_schedule;
engine->execlists.tasklet.func = execlists_submission_tasklet;
engine->reset.prepare = execlists_reset_prepare;
engine->reset.rewind = execlists_reset_rewind;
engine->reset.cancel = execlists_reset_cancel;
engine->reset.finish = execlists_reset_finish;
engine->park = execlists_park;
engine->unpark = NULL;
engine->flags |= I915_ENGINE_SUPPORTS_STATS;
if (!intel_vgpu_active(engine->i915)) {
engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
engine->flags |= I915_ENGINE_HAS_PREEMPTION;
}
if (INTEL_GEN(engine->i915) >= 12)
engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
if (intel_engine_has_preemption(engine))
engine->emit_bb_start = gen8_emit_bb_start;
else
engine->emit_bb_start = gen8_emit_bb_start_noarb;
}
static void execlists_shutdown(struct intel_engine_cs *engine)
{
/* Synchronise with residual timers and any softirq they raise */
del_timer_sync(&engine->execlists.timer);
del_timer_sync(&engine->execlists.preempt);
tasklet_kill(&engine->execlists.tasklet);
}
static void execlists_release(struct intel_engine_cs *engine)
{
execlists_shutdown(engine);
intel_engine_cleanup_common(engine);
lrc_destroy_wa_ctx(engine);
}
static void
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overriden by each engine. */
engine->release = execlists_release;
engine->resume = execlists_resume;
engine->cops = &execlists_context_ops;
engine->request_alloc = execlists_request_alloc;
engine->emit_flush = gen8_emit_flush;
engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
if (INTEL_GEN(engine->i915) >= 12)
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
engine->set_default_submission = intel_execlists_set_default_submission;
if (INTEL_GEN(engine->i915) < 11) {
engine->irq_enable = gen8_logical_ring_enable_irq;
engine->irq_disable = gen8_logical_ring_disable_irq;
} else {
/*
* TODO: On Gen11 interrupt masks need to be clear
* to allow C6 entry. Keep interrupts enabled at
* and take the hit of generating extra interrupts
* until a more refined solution exists.
*/
}
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *engine)
{
unsigned int shift = 0;
if (INTEL_GEN(engine->i915) < 11) {
const u8 irq_shifts[] = {
[RCS0] = GEN8_RCS_IRQ_SHIFT,
[BCS0] = GEN8_BCS_IRQ_SHIFT,
[VCS0] = GEN8_VCS0_IRQ_SHIFT,
[VCS1] = GEN8_VCS1_IRQ_SHIFT,
[VECS0] = GEN8_VECS_IRQ_SHIFT,
};
shift = irq_shifts[engine->id];
}
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}
static void rcs_submission_override(struct intel_engine_cs *engine)
{
switch (INTEL_GEN(engine->i915)) {
case 12:
engine->emit_flush = gen12_emit_flush_render;
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
break;
case 11:
engine->emit_flush = gen11_emit_flush_render;
engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
break;
default:
engine->emit_flush = gen8_emit_flush_render;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
break;
}
}
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct drm_i915_private *i915 = engine->i915;
struct intel_uncore *uncore = engine->uncore;
u32 base = engine->mmio_base;
tasklet_init(&engine->execlists.tasklet,
execlists_submission_tasklet, (unsigned long)engine);
timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
logical_ring_default_vfuncs(engine);
logical_ring_default_irqs(engine);
if (engine->class == RENDER_CLASS)
rcs_submission_override(engine);
if (intel_init_workaround_bb(engine))
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed\n");
if (HAS_LOGICAL_RING_ELSQ(i915)) {
execlists->submit_reg = uncore->regs +
i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
execlists->ctrl_reg = uncore->regs +
i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
} else {
execlists->submit_reg = uncore->regs +
i915_mmio_reg_offset(RING_ELSP(base));
}
execlists->csb_status =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
execlists->csb_write =
&engine->status_page.addr[intel_hws_csb_write_index(i915)];
if (INTEL_GEN(i915) < 11)
execlists->csb_size = GEN8_CSB_ENTRIES;
else
execlists->csb_size = GEN11_CSB_ENTRIES;
reset_csb_pointers(engine);
return 0;
}
static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine)
{
u32 indirect_ctx_offset;
switch (INTEL_GEN(engine->i915)) {
default:
MISSING_CASE(INTEL_GEN(engine->i915));
/* fall through */
case 12:
indirect_ctx_offset =
GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 11:
indirect_ctx_offset =
GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 10:
indirect_ctx_offset =
GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 9:
indirect_ctx_offset =
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 8:
indirect_ctx_offset =
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
}
return indirect_ctx_offset;
}
static void init_common_reg_state(u32 * const regs,
const struct intel_engine_cs *engine,
const struct intel_ring *ring)
{
regs[CTX_CONTEXT_CONTROL] =
_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
if (INTEL_GEN(engine->i915) < 11)
regs[CTX_CONTEXT_CONTROL] |=
_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
CTX_CTRL_RS_CTX_ENABLE);
regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
regs[CTX_BB_STATE] = RING_BB_PPGTT;
}
static void init_wa_bb_reg_state(u32 * const regs,
const struct intel_engine_cs *engine,
u32 pos_bb_per_ctx)
{
const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
if (wa_ctx->per_ctx.size) {
const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[pos_bb_per_ctx] =
(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
}
if (wa_ctx->indirect_ctx.size) {
const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[pos_bb_per_ctx + 2] =
(ggtt_offset + wa_ctx->indirect_ctx.offset) |
(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
regs[pos_bb_per_ctx + 4] =
intel_lr_indirect_ctx_offset(engine) << 6;
}
}
static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
{
if (i915_vm_is_4lvl(&ppgtt->vm)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, regs);
} else {
ASSIGN_CTX_PDP(ppgtt, regs, 3);
ASSIGN_CTX_PDP(ppgtt, regs, 2);
ASSIGN_CTX_PDP(ppgtt, regs, 1);
ASSIGN_CTX_PDP(ppgtt, regs, 0);
}
}
static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
{
if (i915_is_ggtt(vm))
return i915_vm_to_ggtt(vm)->alias;
else
return i915_vm_to_ppgtt(vm);
}
static void execlists_init_reg_state(u32 *regs,
const struct intel_context *ce,
const struct intel_engine_cs *engine,
const struct intel_ring *ring,
bool close)
{
/*
* A context is actually a big batch buffer with several
* MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
* values we are setting here are only for the first context restore:
* on a subsequent save, the GPU will recreate this batchbuffer with new
* values (including all the missing MI_LOAD_REGISTER_IMM commands that
* we are not initializing here).
*
* Must keep consistent with virtual_update_register_offsets().
*/
u32 *bbe = set_offsets(regs, reg_offsets(engine), engine);
if (close) { /* Close the batch; used mainly by live_lrc_layout() */
*bbe = MI_BATCH_BUFFER_END;
if (INTEL_GEN(engine->i915) >= 10)
*bbe |= BIT(0);
}
init_common_reg_state(regs, engine, ring);
init_ppgtt_reg_state(regs, vm_alias(ce->vm));
init_wa_bb_reg_state(regs, engine,
INTEL_GEN(engine->i915) >= 12 ?
GEN12_CTX_BB_PER_CTX_PTR :
CTX_BB_PER_CTX_PTR);
__reset_stop_ring(regs, engine);
}
static int
populate_lr_context(struct intel_context *ce,
struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
bool inhibit = true;
void *vaddr;
u32 *regs;
int ret;
vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
return ret;
}
set_redzone(vaddr, engine);
if (engine->default_state) {
void *defaults;
defaults = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (IS_ERR(defaults)) {
ret = PTR_ERR(defaults);
goto err_unpin_ctx;
}
memcpy(vaddr, defaults, engine->context_size);
i915_gem_object_unpin_map(engine->default_state);
__set_bit(CONTEXT_VALID_BIT, &ce->flags);
inhibit = false;
}
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
execlists_init_reg_state(regs, ce, engine, ring, inhibit);
if (inhibit)
regs[CTX_CONTEXT_CONTROL] |=
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
ret = 0;
err_unpin_ctx:
__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
i915_gem_object_unpin_map(ctx_obj);
return ret;
}
static int __execlists_context_alloc(struct intel_context *ce,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj;
struct intel_ring *ring;
struct i915_vma *vma;
u32 context_size;
int ret;
GEM_BUG_ON(ce->state);
context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
context_size += I915_GTT_PAGE_SIZE; /* for redzone */
ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
if (IS_ERR(ctx_obj))
return PTR_ERR(ctx_obj);
vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto error_deref_obj;
}
if (!ce->timeline) {
struct intel_timeline *tl;
tl = intel_timeline_create(engine->gt, NULL);
if (IS_ERR(tl)) {
ret = PTR_ERR(tl);
goto error_deref_obj;
}
ce->timeline = tl;
}
ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto error_deref_obj;
}
ret = populate_lr_context(ce, ctx_obj, engine, ring);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error_ring_free;
}
ce->ring = ring;
ce->state = vma;
return 0;
error_ring_free:
intel_ring_put(ring);
error_deref_obj:
i915_gem_object_put(ctx_obj);
return ret;
}
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
return &ve->base.execlists.default_priolist.requests[0];
}
static void virtual_context_destroy(struct kref *kref)
{
struct virtual_engine *ve =
container_of(kref, typeof(*ve), context.ref);
unsigned int n;
GEM_BUG_ON(!list_empty(virtual_queue(ve)));
GEM_BUG_ON(ve->request);
GEM_BUG_ON(ve->context.inflight);
for (n = 0; n < ve->num_siblings; n++) {
struct intel_engine_cs *sibling = ve->siblings[n];
struct rb_node *node = &ve->nodes[sibling->id].rb;
unsigned long flags;
if (RB_EMPTY_NODE(node))
continue;
spin_lock_irqsave(&sibling->active.lock, flags);
/* Detachment is lazily performed in the execlists tasklet */
if (!RB_EMPTY_NODE(node))
rb_erase_cached(node, &sibling->execlists.virtual);
spin_unlock_irqrestore(&sibling->active.lock, flags);
}
GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
if (ve->context.state)
__execlists_context_fini(&ve->context);
intel_context_fini(&ve->context);
kfree(ve->bonds);
kfree(ve);
}
static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
int swp;
/*
* Pick a random sibling on starting to help spread the load around.
*
* New contexts are typically created with exactly the same order
* of siblings, and often started in batches. Due to the way we iterate
* the array of sibling when submitting requests, sibling[0] is
* prioritised for dequeuing. If we make sure that sibling[0] is fairly
* randomised across the system, we also help spread the load by the
* first engine we inspect being different each time.
*
* NB This does not force us to execute on this engine, it will just
* typically be the first we inspect for submission.
*/
swp = prandom_u32_max(ve->num_siblings);
if (!swp)
return;
swap(ve->siblings[swp], ve->siblings[0]);
if (!intel_engine_has_relative_mmio(ve->siblings[0]))
virtual_update_register_offsets(ve->context.lrc_reg_state,
ve->siblings[0]);
}
static int virtual_context_alloc(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
return __execlists_context_alloc(ce, ve->siblings[0]);
}
static int virtual_context_pin(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
int err;
/* Note: we must use a real engine class for setting up reg state */
err = __execlists_context_pin(ce, ve->siblings[0]);
if (err)
return err;
virtual_engine_initial_hint(ve);
return 0;
}
static void virtual_context_enter(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
unsigned int n;
for (n = 0; n < ve->num_siblings; n++)
intel_engine_pm_get(ve->siblings[n]);
intel_timeline_enter(ce->timeline);
}
static void virtual_context_exit(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
unsigned int n;
intel_timeline_exit(ce->timeline);
for (n = 0; n < ve->num_siblings; n++)
intel_engine_pm_put(ve->siblings[n]);
}
static const struct intel_context_ops virtual_context_ops = {
.alloc = virtual_context_alloc,
.pin = virtual_context_pin,
.unpin = execlists_context_unpin,
.enter = virtual_context_enter,
.exit = virtual_context_exit,
.destroy = virtual_context_destroy,
};
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
struct i915_request *rq;
intel_engine_mask_t mask;
rq = READ_ONCE(ve->request);
if (!rq)
return 0;
/* The rq is ready for submission; rq->execution_mask is now stable. */
mask = rq->execution_mask;
if (unlikely(!mask)) {
/* Invalid selection, submit to a random engine in error */
i915_request_skip(rq, -ENODEV);
mask = ve->siblings[0]->mask;
}
ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
rq->fence.context, rq->fence.seqno,
mask, ve->base.execlists.queue_priority_hint);
return mask;
}
static void virtual_submission_tasklet(unsigned long data)
{
struct virtual_engine * const ve = (struct virtual_engine *)data;
const int prio = ve->base.execlists.queue_priority_hint;
intel_engine_mask_t mask;
unsigned int n;
rcu_read_lock();
mask = virtual_submission_mask(ve);
rcu_read_unlock();
if (unlikely(!mask))
return;
local_irq_disable();
for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
struct intel_engine_cs *sibling = ve->siblings[n];
struct ve_node * const node = &ve->nodes[sibling->id];
struct rb_node **parent, *rb;
bool first;
if (unlikely(!(mask & sibling->mask))) {
if (!RB_EMPTY_NODE(&node->rb)) {
spin_lock(&sibling->active.lock);
rb_erase_cached(&node->rb,
&sibling->execlists.virtual);
RB_CLEAR_NODE(&node->rb);
spin_unlock(&sibling->active.lock);
}
continue;
}
spin_lock(&sibling->active.lock);
if (!RB_EMPTY_NODE(&node->rb)) {
/*
* Cheat and avoid rebalancing the tree if we can
* reuse this node in situ.
*/
first = rb_first_cached(&sibling->execlists.virtual) ==
&node->rb;
if (prio == node->prio || (prio > node->prio && first))
goto submit_engine;
rb_erase_cached(&node->rb, &sibling->execlists.virtual);
}
rb = NULL;
first = true;
parent = &sibling->execlists.virtual.rb_root.rb_node;
while (*parent) {
struct ve_node *other;
rb = *parent;
other = rb_entry(rb, typeof(*other), rb);
if (prio > other->prio) {
parent = &rb->rb_left;
} else {
parent = &rb->rb_right;
first = false;
}
}
rb_link_node(&node->rb, rb, parent);
rb_insert_color_cached(&node->rb,
&sibling->execlists.virtual,
first);
submit_engine:
GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
node->prio = prio;
if (first && prio > sibling->execlists.queue_priority_hint) {
sibling->execlists.queue_priority_hint = prio;
tasklet_hi_schedule(&sibling->execlists.tasklet);
}
spin_unlock(&sibling->active.lock);
}
local_irq_enable();
}
static void virtual_submit_request(struct i915_request *rq)
{
struct virtual_engine *ve = to_virtual_engine(rq->engine);
struct i915_request *old;
unsigned long flags;
ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
rq->fence.context,
rq->fence.seqno);
GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
spin_lock_irqsave(&ve->base.active.lock, flags);
old = ve->request;
if (old) { /* background completion event from preempt-to-busy */
GEM_BUG_ON(!i915_request_completed(old));
__i915_request_submit(old);
i915_request_put(old);
}
if (i915_request_completed(rq)) {
__i915_request_submit(rq);
ve->base.execlists.queue_priority_hint = INT_MIN;
ve->request = NULL;
} else {
ve->base.execlists.queue_priority_hint = rq_prio(rq);
ve->request = i915_request_get(rq);
GEM_BUG_ON(!list_empty(virtual_queue(ve)));
list_move_tail(&rq->sched.link, virtual_queue(ve));
tasklet_schedule(&ve->base.execlists.tasklet);
}
spin_unlock_irqrestore(&ve->base.active.lock, flags);
}
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
const struct intel_engine_cs *master)
{
int i;
for (i = 0; i < ve->num_bonds; i++) {
if (ve->bonds[i].master == master)
return &ve->bonds[i];
}
return NULL;
}
static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
struct virtual_engine *ve = to_virtual_engine(rq->engine);
intel_engine_mask_t allowed, exec;
struct ve_bond *bond;
allowed = ~to_request(signal)->engine->mask;
bond = virtual_find_bond(ve, to_request(signal)->engine);
if (bond)
allowed &= bond->sibling_mask;
/* Restrict the bonded request to run on only the available engines */
exec = READ_ONCE(rq->execution_mask);
while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
;
/* Prevent the master from being re-run on the bonded engines */
to_request(signal)->execution_mask &= ~allowed;
}
struct intel_context *
intel_execlists_create_virtual(struct intel_engine_cs **siblings,
unsigned int count)
{
struct virtual_engine *ve;
unsigned int n;
int err;
if (count == 0)
return ERR_PTR(-EINVAL);
if (count == 1)
return intel_context_create(siblings[0]);
ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
if (!ve)
return ERR_PTR(-ENOMEM);
ve->base.i915 = siblings[0]->i915;
ve->base.gt = siblings[0]->gt;
ve->base.uncore = siblings[0]->uncore;
ve->base.id = -1;
ve->base.class = OTHER_CLASS;
ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
/*
* The decision on whether to submit a request using semaphores
* depends on the saturated state of the engine. We only compute
* this during HW submission of the request, and we need for this
* state to be globally applied to all requests being submitted
* to this engine. Virtual engines encompass more than one physical
* engine and so we cannot accurately tell in advance if one of those
* engines is already saturated and so cannot afford to use a semaphore
* and be pessimized in priority for doing so -- if we are the only
* context using semaphores after all other clients have stopped, we
* will be starved on the saturated system. Such a global switch for
* semaphores is less than ideal, but alas is the current compromise.
*/
ve->base.saturated = ALL_ENGINES;
snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
intel_engine_init_breadcrumbs(&ve->base);
intel_engine_init_execlists(&ve->base);
ve->base.cops = &virtual_context_ops;
ve->base.request_alloc = execlists_request_alloc;
ve->base.schedule = i915_schedule;
ve->base.submit_request = virtual_submit_request;
ve->base.bond_execute = virtual_bond_execute;
INIT_LIST_HEAD(virtual_queue(ve));
ve->base.execlists.queue_priority_hint = INT_MIN;
tasklet_init(&ve->base.execlists.tasklet,
virtual_submission_tasklet,
(unsigned long)ve);
intel_context_init(&ve->context, &ve->base);
for (n = 0; n < count; n++) {
struct intel_engine_cs *sibling = siblings[n];
GEM_BUG_ON(!is_power_of_2(sibling->mask));
if (sibling->mask & ve->base.mask) {
DRM_DEBUG("duplicate %s entry in load balancer\n",
sibling->name);
err = -EINVAL;
goto err_put;
}
/*
* The virtual engine implementation is tightly coupled to
* the execlists backend -- we push out request directly
* into a tree inside each physical engine. We could support
* layering if we handle cloning of the requests and
* submitting a copy into each backend.
*/
if (sibling->execlists.tasklet.func !=
execlists_submission_tasklet) {
err = -ENODEV;
goto err_put;
}
GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
ve->siblings[ve->num_siblings++] = sibling;
ve->base.mask |= sibling->mask;
/*
* All physical engines must be compatible for their emission
* functions (as we build the instructions during request
* construction and do not alter them before submission
* on the physical engine). We use the engine class as a guide
* here, although that could be refined.
*/
if (ve->base.class != OTHER_CLASS) {
if (ve->base.class != sibling->class) {
DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
sibling->class, ve->base.class);
err = -EINVAL;
goto err_put;
}
continue;
}
ve->base.class = sibling->class;
ve->base.uabi_class = sibling->uabi_class;
snprintf(ve->base.name, sizeof(ve->base.name),
"v%dx%d", ve->base.class, count);
ve->base.context_size = sibling->context_size;
ve->base.emit_bb_start = sibling->emit_bb_start;
ve->base.emit_flush = sibling->emit_flush;
ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
ve->base.emit_fini_breadcrumb_dw =
sibling->emit_fini_breadcrumb_dw;
ve->base.flags = sibling->flags;
}
ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
return &ve->context;
err_put:
intel_context_put(&ve->context);
return ERR_PTR(err);
}
struct intel_context *
intel_execlists_clone_virtual(struct intel_engine_cs *src)
{
struct virtual_engine *se = to_virtual_engine(src);
struct intel_context *dst;
dst = intel_execlists_create_virtual(se->siblings,
se->num_siblings);
if (IS_ERR(dst))
return dst;
if (se->num_bonds) {
struct virtual_engine *de = to_virtual_engine(dst->engine);
de->bonds = kmemdup(se->bonds,
sizeof(*se->bonds) * se->num_bonds,
GFP_KERNEL);
if (!de->bonds) {
intel_context_put(dst);
return ERR_PTR(-ENOMEM);
}
de->num_bonds = se->num_bonds;
}
return dst;
}
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
const struct intel_engine_cs *master,
const struct intel_engine_cs *sibling)
{
struct virtual_engine *ve = to_virtual_engine(engine);
struct ve_bond *bond;
int n;
/* Sanity check the sibling is part of the virtual engine */
for (n = 0; n < ve->num_siblings; n++)
if (sibling == ve->siblings[n])
break;
if (n == ve->num_siblings)
return -EINVAL;
bond = virtual_find_bond(ve, master);
if (bond) {
bond->sibling_mask |= sibling->mask;
return 0;
}
bond = krealloc(ve->bonds,
sizeof(*bond) * (ve->num_bonds + 1),
GFP_KERNEL);
if (!bond)
return -ENOMEM;
bond[ve->num_bonds].master = master;
bond[ve->num_bonds].sibling_mask = sibling->mask;
ve->bonds = bond;
ve->num_bonds++;
return 0;
}
struct intel_engine_cs *
intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
unsigned int sibling)
{
struct virtual_engine *ve = to_virtual_engine(engine);
if (sibling >= ve->num_siblings)
return NULL;
return ve->siblings[sibling];
}
void intel_execlists_show_requests(struct intel_engine_cs *engine,
struct drm_printer *m,
void (*show_request)(struct drm_printer *m,
struct i915_request *rq,
const char *prefix),
unsigned int max)
{
const struct intel_engine_execlists *execlists = &engine->execlists;
struct i915_request *rq, *last;
unsigned long flags;
unsigned int count;
struct rb_node *rb;
spin_lock_irqsave(&engine->active.lock, flags);
last = NULL;
count = 0;
list_for_each_entry(rq, &engine->active.requests, sched.link) {
if (count++ < max - 1)
show_request(m, rq, "\t\tE ");
else
last = rq;
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d executing requests...\n",
count - max);
}
show_request(m, last, "\t\tE ");
}
last = NULL;
count = 0;
if (execlists->queue_priority_hint != INT_MIN)
drm_printf(m, "\t\tQueue priority hint: %d\n",
execlists->queue_priority_hint);
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
int i;
priolist_for_each_request(rq, p, i) {
if (count++ < max - 1)
show_request(m, rq, "\t\tQ ");
else
last = rq;
}
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d queued requests...\n",
count - max);
}
show_request(m, last, "\t\tQ ");
}
last = NULL;
count = 0;
for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
struct i915_request *rq = READ_ONCE(ve->request);
if (rq) {
if (count++ < max - 1)
show_request(m, rq, "\t\tV ");
else
last = rq;
}
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d virtual requests...\n",
count - max);
}
show_request(m, last, "\t\tV ");
}
spin_unlock_irqrestore(&engine->active.lock, flags);
}
void intel_lr_context_reset(struct intel_engine_cs *engine,
struct intel_context *ce,
u32 head,
bool scrub)
{
GEM_BUG_ON(!intel_context_is_pinned(ce));
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
if (scrub)
restore_default_state(ce, engine);
/* Rerun the request; its payload has been neutered (if guilty). */
ce->ring->head = head;
intel_ring_update_space(ce->ring);
__execlists_update_reg_state(ce, engine);
}
bool
intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
{
return engine->set_default_submission ==
intel_execlists_set_default_submission;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_lrc.c"
#endif