mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 04:06:12 +07:00
bf956be520
kasan reported use-after-free:
BUG: KASAN: use-after-free in call_usermodehelper_exec_work+0x2d3/0x310 kernel/umh.c:195
Write of size 4 at addr ffff8801d9202370 by task kworker/u4:2/50
Workqueue: events_unbound call_usermodehelper_exec_work
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1b9/0x294 lib/dump_stack.c:113
print_address_description+0x6c/0x20b mm/kasan/report.c:256
kasan_report_error mm/kasan/report.c:354 [inline]
kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412
__asan_report_store4_noabort+0x17/0x20 mm/kasan/report.c:437
call_usermodehelper_exec_work+0x2d3/0x310 kernel/umh.c:195
process_one_work+0xc1e/0x1b50 kernel/workqueue.c:2145
worker_thread+0x1cc/0x1440 kernel/workqueue.c:2279
kthread+0x345/0x410 kernel/kthread.c:240
ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412
The reason is that 'sub_info' cannot be accessed out of parent task
context, since it will be freed by the child.
Instead remember the pid in the child task.
Fixes: 449325b52b
("umh: introduce fork_usermode_blob() helper")
Reported-by: syzbot+2c73319c406f1987d156@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
687 lines
18 KiB
C
687 lines
18 KiB
C
/*
|
|
* umh - the kernel usermode helper
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/cred.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/security.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/async.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
|
|
#include <trace/events/module.h>
|
|
|
|
#define CAP_BSET (void *)1
|
|
#define CAP_PI (void *)2
|
|
|
|
static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
|
|
static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
|
|
static DEFINE_SPINLOCK(umh_sysctl_lock);
|
|
static DECLARE_RWSEM(umhelper_sem);
|
|
|
|
static void call_usermodehelper_freeinfo(struct subprocess_info *info)
|
|
{
|
|
if (info->cleanup)
|
|
(*info->cleanup)(info);
|
|
kfree(info);
|
|
}
|
|
|
|
static void umh_complete(struct subprocess_info *sub_info)
|
|
{
|
|
struct completion *comp = xchg(&sub_info->complete, NULL);
|
|
/*
|
|
* See call_usermodehelper_exec(). If xchg() returns NULL
|
|
* we own sub_info, the UMH_KILLABLE caller has gone away
|
|
* or the caller used UMH_NO_WAIT.
|
|
*/
|
|
if (comp)
|
|
complete(comp);
|
|
else
|
|
call_usermodehelper_freeinfo(sub_info);
|
|
}
|
|
|
|
/*
|
|
* This is the task which runs the usermode application
|
|
*/
|
|
static int call_usermodehelper_exec_async(void *data)
|
|
{
|
|
struct subprocess_info *sub_info = data;
|
|
struct cred *new;
|
|
int retval;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
flush_signal_handlers(current, 1);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/*
|
|
* Our parent (unbound workqueue) runs with elevated scheduling
|
|
* priority. Avoid propagating that into the userspace child.
|
|
*/
|
|
set_user_nice(current, 0);
|
|
|
|
retval = -ENOMEM;
|
|
new = prepare_kernel_cred(current);
|
|
if (!new)
|
|
goto out;
|
|
|
|
spin_lock(&umh_sysctl_lock);
|
|
new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
|
|
new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
|
|
new->cap_inheritable);
|
|
spin_unlock(&umh_sysctl_lock);
|
|
|
|
if (sub_info->init) {
|
|
retval = sub_info->init(sub_info, new);
|
|
if (retval) {
|
|
abort_creds(new);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
commit_creds(new);
|
|
|
|
sub_info->pid = task_pid_nr(current);
|
|
if (sub_info->file)
|
|
retval = do_execve_file(sub_info->file,
|
|
sub_info->argv, sub_info->envp);
|
|
else
|
|
retval = do_execve(getname_kernel(sub_info->path),
|
|
(const char __user *const __user *)sub_info->argv,
|
|
(const char __user *const __user *)sub_info->envp);
|
|
out:
|
|
sub_info->retval = retval;
|
|
/*
|
|
* call_usermodehelper_exec_sync() will call umh_complete
|
|
* if UHM_WAIT_PROC.
|
|
*/
|
|
if (!(sub_info->wait & UMH_WAIT_PROC))
|
|
umh_complete(sub_info);
|
|
if (!retval)
|
|
return 0;
|
|
do_exit(0);
|
|
}
|
|
|
|
/* Handles UMH_WAIT_PROC. */
|
|
static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
|
|
{
|
|
pid_t pid;
|
|
|
|
/* If SIGCLD is ignored kernel_wait4 won't populate the status. */
|
|
kernel_sigaction(SIGCHLD, SIG_DFL);
|
|
pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
|
|
if (pid < 0) {
|
|
sub_info->retval = pid;
|
|
} else {
|
|
int ret = -ECHILD;
|
|
/*
|
|
* Normally it is bogus to call wait4() from in-kernel because
|
|
* wait4() wants to write the exit code to a userspace address.
|
|
* But call_usermodehelper_exec_sync() always runs as kernel
|
|
* thread (workqueue) and put_user() to a kernel address works
|
|
* OK for kernel threads, due to their having an mm_segment_t
|
|
* which spans the entire address space.
|
|
*
|
|
* Thus the __user pointer cast is valid here.
|
|
*/
|
|
kernel_wait4(pid, (int __user *)&ret, 0, NULL);
|
|
|
|
/*
|
|
* If ret is 0, either call_usermodehelper_exec_async failed and
|
|
* the real error code is already in sub_info->retval or
|
|
* sub_info->retval is 0 anyway, so don't mess with it then.
|
|
*/
|
|
if (ret)
|
|
sub_info->retval = ret;
|
|
}
|
|
|
|
/* Restore default kernel sig handler */
|
|
kernel_sigaction(SIGCHLD, SIG_IGN);
|
|
|
|
umh_complete(sub_info);
|
|
}
|
|
|
|
/*
|
|
* We need to create the usermodehelper kernel thread from a task that is affine
|
|
* to an optimized set of CPUs (or nohz housekeeping ones) such that they
|
|
* inherit a widest affinity irrespective of call_usermodehelper() callers with
|
|
* possibly reduced affinity (eg: per-cpu workqueues). We don't want
|
|
* usermodehelper targets to contend a busy CPU.
|
|
*
|
|
* Unbound workqueues provide such wide affinity and allow to block on
|
|
* UMH_WAIT_PROC requests without blocking pending request (up to some limit).
|
|
*
|
|
* Besides, workqueues provide the privilege level that caller might not have
|
|
* to perform the usermodehelper request.
|
|
*
|
|
*/
|
|
static void call_usermodehelper_exec_work(struct work_struct *work)
|
|
{
|
|
struct subprocess_info *sub_info =
|
|
container_of(work, struct subprocess_info, work);
|
|
|
|
if (sub_info->wait & UMH_WAIT_PROC) {
|
|
call_usermodehelper_exec_sync(sub_info);
|
|
} else {
|
|
pid_t pid;
|
|
/*
|
|
* Use CLONE_PARENT to reparent it to kthreadd; we do not
|
|
* want to pollute current->children, and we need a parent
|
|
* that always ignores SIGCHLD to ensure auto-reaping.
|
|
*/
|
|
pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
|
|
CLONE_PARENT | SIGCHLD);
|
|
if (pid < 0) {
|
|
sub_info->retval = pid;
|
|
umh_complete(sub_info);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
|
|
* (used for preventing user land processes from being created after the user
|
|
* land has been frozen during a system-wide hibernation or suspend operation).
|
|
* Should always be manipulated under umhelper_sem acquired for write.
|
|
*/
|
|
static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
|
|
|
|
/* Number of helpers running */
|
|
static atomic_t running_helpers = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* Wait queue head used by usermodehelper_disable() to wait for all running
|
|
* helpers to finish.
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
|
|
|
|
/*
|
|
* Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
|
|
* to become 'false'.
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
|
|
|
|
/*
|
|
* Time to wait for running_helpers to become zero before the setting of
|
|
* usermodehelper_disabled in usermodehelper_disable() fails
|
|
*/
|
|
#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
|
|
|
|
int usermodehelper_read_trylock(void)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
int ret = 0;
|
|
|
|
down_read(&umhelper_sem);
|
|
for (;;) {
|
|
prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
|
|
TASK_INTERRUPTIBLE);
|
|
if (!usermodehelper_disabled)
|
|
break;
|
|
|
|
if (usermodehelper_disabled == UMH_DISABLED)
|
|
ret = -EAGAIN;
|
|
|
|
up_read(&umhelper_sem);
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
schedule();
|
|
try_to_freeze();
|
|
|
|
down_read(&umhelper_sem);
|
|
}
|
|
finish_wait(&usermodehelper_disabled_waitq, &wait);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
|
|
|
|
long usermodehelper_read_lock_wait(long timeout)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
if (timeout < 0)
|
|
return -EINVAL;
|
|
|
|
down_read(&umhelper_sem);
|
|
for (;;) {
|
|
prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
if (!usermodehelper_disabled)
|
|
break;
|
|
|
|
up_read(&umhelper_sem);
|
|
|
|
timeout = schedule_timeout(timeout);
|
|
if (!timeout)
|
|
break;
|
|
|
|
down_read(&umhelper_sem);
|
|
}
|
|
finish_wait(&usermodehelper_disabled_waitq, &wait);
|
|
return timeout;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
|
|
|
|
void usermodehelper_read_unlock(void)
|
|
{
|
|
up_read(&umhelper_sem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
|
|
|
|
/**
|
|
* __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
|
|
* @depth: New value to assign to usermodehelper_disabled.
|
|
*
|
|
* Change the value of usermodehelper_disabled (under umhelper_sem locked for
|
|
* writing) and wakeup tasks waiting for it to change.
|
|
*/
|
|
void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
|
|
{
|
|
down_write(&umhelper_sem);
|
|
usermodehelper_disabled = depth;
|
|
wake_up(&usermodehelper_disabled_waitq);
|
|
up_write(&umhelper_sem);
|
|
}
|
|
|
|
/**
|
|
* __usermodehelper_disable - Prevent new helpers from being started.
|
|
* @depth: New value to assign to usermodehelper_disabled.
|
|
*
|
|
* Set usermodehelper_disabled to @depth and wait for running helpers to exit.
|
|
*/
|
|
int __usermodehelper_disable(enum umh_disable_depth depth)
|
|
{
|
|
long retval;
|
|
|
|
if (!depth)
|
|
return -EINVAL;
|
|
|
|
down_write(&umhelper_sem);
|
|
usermodehelper_disabled = depth;
|
|
up_write(&umhelper_sem);
|
|
|
|
/*
|
|
* From now on call_usermodehelper_exec() won't start any new
|
|
* helpers, so it is sufficient if running_helpers turns out to
|
|
* be zero at one point (it may be increased later, but that
|
|
* doesn't matter).
|
|
*/
|
|
retval = wait_event_timeout(running_helpers_waitq,
|
|
atomic_read(&running_helpers) == 0,
|
|
RUNNING_HELPERS_TIMEOUT);
|
|
if (retval)
|
|
return 0;
|
|
|
|
__usermodehelper_set_disable_depth(UMH_ENABLED);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void helper_lock(void)
|
|
{
|
|
atomic_inc(&running_helpers);
|
|
smp_mb__after_atomic();
|
|
}
|
|
|
|
static void helper_unlock(void)
|
|
{
|
|
if (atomic_dec_and_test(&running_helpers))
|
|
wake_up(&running_helpers_waitq);
|
|
}
|
|
|
|
/**
|
|
* call_usermodehelper_setup - prepare to call a usermode helper
|
|
* @path: path to usermode executable
|
|
* @argv: arg vector for process
|
|
* @envp: environment for process
|
|
* @gfp_mask: gfp mask for memory allocation
|
|
* @cleanup: a cleanup function
|
|
* @init: an init function
|
|
* @data: arbitrary context sensitive data
|
|
*
|
|
* Returns either %NULL on allocation failure, or a subprocess_info
|
|
* structure. This should be passed to call_usermodehelper_exec to
|
|
* exec the process and free the structure.
|
|
*
|
|
* The init function is used to customize the helper process prior to
|
|
* exec. A non-zero return code causes the process to error out, exit,
|
|
* and return the failure to the calling process
|
|
*
|
|
* The cleanup function is just before ethe subprocess_info is about to
|
|
* be freed. This can be used for freeing the argv and envp. The
|
|
* Function must be runnable in either a process context or the
|
|
* context in which call_usermodehelper_exec is called.
|
|
*/
|
|
struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv,
|
|
char **envp, gfp_t gfp_mask,
|
|
int (*init)(struct subprocess_info *info, struct cred *new),
|
|
void (*cleanup)(struct subprocess_info *info),
|
|
void *data)
|
|
{
|
|
struct subprocess_info *sub_info;
|
|
sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
|
|
if (!sub_info)
|
|
goto out;
|
|
|
|
INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
|
|
|
|
#ifdef CONFIG_STATIC_USERMODEHELPER
|
|
sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH;
|
|
#else
|
|
sub_info->path = path;
|
|
#endif
|
|
sub_info->argv = argv;
|
|
sub_info->envp = envp;
|
|
|
|
sub_info->cleanup = cleanup;
|
|
sub_info->init = init;
|
|
sub_info->data = data;
|
|
out:
|
|
return sub_info;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_setup);
|
|
|
|
struct subprocess_info *call_usermodehelper_setup_file(struct file *file,
|
|
int (*init)(struct subprocess_info *info, struct cred *new),
|
|
void (*cleanup)(struct subprocess_info *info), void *data)
|
|
{
|
|
struct subprocess_info *sub_info;
|
|
|
|
sub_info = kzalloc(sizeof(struct subprocess_info), GFP_KERNEL);
|
|
if (!sub_info)
|
|
return NULL;
|
|
|
|
INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
|
|
sub_info->path = "none";
|
|
sub_info->file = file;
|
|
sub_info->init = init;
|
|
sub_info->cleanup = cleanup;
|
|
sub_info->data = data;
|
|
return sub_info;
|
|
}
|
|
|
|
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
|
|
{
|
|
struct umh_info *umh_info = info->data;
|
|
struct file *from_umh[2];
|
|
struct file *to_umh[2];
|
|
int err;
|
|
|
|
/* create pipe to send data to umh */
|
|
err = create_pipe_files(to_umh, 0);
|
|
if (err)
|
|
return err;
|
|
err = replace_fd(0, to_umh[0], 0);
|
|
fput(to_umh[0]);
|
|
if (err < 0) {
|
|
fput(to_umh[1]);
|
|
return err;
|
|
}
|
|
|
|
/* create pipe to receive data from umh */
|
|
err = create_pipe_files(from_umh, 0);
|
|
if (err) {
|
|
fput(to_umh[1]);
|
|
replace_fd(0, NULL, 0);
|
|
return err;
|
|
}
|
|
err = replace_fd(1, from_umh[1], 0);
|
|
fput(from_umh[1]);
|
|
if (err < 0) {
|
|
fput(to_umh[1]);
|
|
replace_fd(0, NULL, 0);
|
|
fput(from_umh[0]);
|
|
return err;
|
|
}
|
|
|
|
umh_info->pipe_to_umh = to_umh[1];
|
|
umh_info->pipe_from_umh = from_umh[0];
|
|
return 0;
|
|
}
|
|
|
|
static void umh_save_pid(struct subprocess_info *info)
|
|
{
|
|
struct umh_info *umh_info = info->data;
|
|
|
|
umh_info->pid = info->pid;
|
|
}
|
|
|
|
/**
|
|
* fork_usermode_blob - fork a blob of bytes as a usermode process
|
|
* @data: a blob of bytes that can be do_execv-ed as a file
|
|
* @len: length of the blob
|
|
* @info: information about usermode process (shouldn't be NULL)
|
|
*
|
|
* Returns either negative error or zero which indicates success
|
|
* in executing a blob of bytes as a usermode process. In such
|
|
* case 'struct umh_info *info' is populated with two pipes
|
|
* and a pid of the process. The caller is responsible for health
|
|
* check of the user process, killing it via pid, and closing the
|
|
* pipes when user process is no longer needed.
|
|
*/
|
|
int fork_usermode_blob(void *data, size_t len, struct umh_info *info)
|
|
{
|
|
struct subprocess_info *sub_info;
|
|
struct file *file;
|
|
ssize_t written;
|
|
loff_t pos = 0;
|
|
int err;
|
|
|
|
file = shmem_kernel_file_setup("", len, 0);
|
|
if (IS_ERR(file))
|
|
return PTR_ERR(file);
|
|
|
|
written = kernel_write(file, data, len, &pos);
|
|
if (written != len) {
|
|
err = written;
|
|
if (err >= 0)
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
sub_info = call_usermodehelper_setup_file(file, umh_pipe_setup,
|
|
umh_save_pid, info);
|
|
if (!sub_info)
|
|
goto out;
|
|
|
|
err = call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
|
|
out:
|
|
fput(file);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fork_usermode_blob);
|
|
|
|
/**
|
|
* call_usermodehelper_exec - start a usermode application
|
|
* @sub_info: information about the subprocessa
|
|
* @wait: wait for the application to finish and return status.
|
|
* when UMH_NO_WAIT don't wait at all, but you get no useful error back
|
|
* when the program couldn't be exec'ed. This makes it safe to call
|
|
* from interrupt context.
|
|
*
|
|
* Runs a user-space application. The application is started
|
|
* asynchronously if wait is not set, and runs as a child of system workqueues.
|
|
* (ie. it runs with full root capabilities and optimized affinity).
|
|
*/
|
|
int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(done);
|
|
int retval = 0;
|
|
|
|
if (!sub_info->path) {
|
|
call_usermodehelper_freeinfo(sub_info);
|
|
return -EINVAL;
|
|
}
|
|
helper_lock();
|
|
if (usermodehelper_disabled) {
|
|
retval = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there is no binary for us to call, then just return and get out of
|
|
* here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and
|
|
* disable all call_usermodehelper() calls.
|
|
*/
|
|
if (strlen(sub_info->path) == 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Set the completion pointer only if there is a waiter.
|
|
* This makes it possible to use umh_complete to free
|
|
* the data structure in case of UMH_NO_WAIT.
|
|
*/
|
|
sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
|
|
sub_info->wait = wait;
|
|
|
|
queue_work(system_unbound_wq, &sub_info->work);
|
|
if (wait == UMH_NO_WAIT) /* task has freed sub_info */
|
|
goto unlock;
|
|
|
|
if (wait & UMH_KILLABLE) {
|
|
retval = wait_for_completion_killable(&done);
|
|
if (!retval)
|
|
goto wait_done;
|
|
|
|
/* umh_complete() will see NULL and free sub_info */
|
|
if (xchg(&sub_info->complete, NULL))
|
|
goto unlock;
|
|
/* fallthrough, umh_complete() was already called */
|
|
}
|
|
|
|
wait_for_completion(&done);
|
|
wait_done:
|
|
retval = sub_info->retval;
|
|
out:
|
|
call_usermodehelper_freeinfo(sub_info);
|
|
unlock:
|
|
helper_unlock();
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_exec);
|
|
|
|
/**
|
|
* call_usermodehelper() - prepare and start a usermode application
|
|
* @path: path to usermode executable
|
|
* @argv: arg vector for process
|
|
* @envp: environment for process
|
|
* @wait: wait for the application to finish and return status.
|
|
* when UMH_NO_WAIT don't wait at all, but you get no useful error back
|
|
* when the program couldn't be exec'ed. This makes it safe to call
|
|
* from interrupt context.
|
|
*
|
|
* This function is the equivalent to use call_usermodehelper_setup() and
|
|
* call_usermodehelper_exec().
|
|
*/
|
|
int call_usermodehelper(const char *path, char **argv, char **envp, int wait)
|
|
{
|
|
struct subprocess_info *info;
|
|
gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
|
|
|
|
info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
|
|
NULL, NULL, NULL);
|
|
if (info == NULL)
|
|
return -ENOMEM;
|
|
|
|
return call_usermodehelper_exec(info, wait);
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper);
|
|
|
|
static int proc_cap_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table t;
|
|
unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
|
|
kernel_cap_t new_cap;
|
|
int err, i;
|
|
|
|
if (write && (!capable(CAP_SETPCAP) ||
|
|
!capable(CAP_SYS_MODULE)))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* convert from the global kernel_cap_t to the ulong array to print to
|
|
* userspace if this is a read.
|
|
*/
|
|
spin_lock(&umh_sysctl_lock);
|
|
for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
|
|
if (table->data == CAP_BSET)
|
|
cap_array[i] = usermodehelper_bset.cap[i];
|
|
else if (table->data == CAP_PI)
|
|
cap_array[i] = usermodehelper_inheritable.cap[i];
|
|
else
|
|
BUG();
|
|
}
|
|
spin_unlock(&umh_sysctl_lock);
|
|
|
|
t = *table;
|
|
t.data = &cap_array;
|
|
|
|
/*
|
|
* actually read or write and array of ulongs from userspace. Remember
|
|
* these are least significant 32 bits first
|
|
*/
|
|
err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/*
|
|
* convert from the sysctl array of ulongs to the kernel_cap_t
|
|
* internal representation
|
|
*/
|
|
for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
|
|
new_cap.cap[i] = cap_array[i];
|
|
|
|
/*
|
|
* Drop everything not in the new_cap (but don't add things)
|
|
*/
|
|
if (write) {
|
|
spin_lock(&umh_sysctl_lock);
|
|
if (table->data == CAP_BSET)
|
|
usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
|
|
if (table->data == CAP_PI)
|
|
usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
|
|
spin_unlock(&umh_sysctl_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct ctl_table usermodehelper_table[] = {
|
|
{
|
|
.procname = "bset",
|
|
.data = CAP_BSET,
|
|
.maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
|
|
.mode = 0600,
|
|
.proc_handler = proc_cap_handler,
|
|
},
|
|
{
|
|
.procname = "inheritable",
|
|
.data = CAP_PI,
|
|
.maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
|
|
.mode = 0600,
|
|
.proc_handler = proc_cap_handler,
|
|
},
|
|
{ }
|
|
};
|