mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 06:27:17 +07:00
6f52b16c5b
Many user space API headers are missing licensing information, which makes it hard for compliance tools to determine the correct license. By default are files without license information under the default license of the kernel, which is GPLV2. Marking them GPLV2 would exclude them from being included in non GPLV2 code, which is obviously not intended. The user space API headers fall under the syscall exception which is in the kernels COPYING file: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". otherwise syscall usage would not be possible. Update the files which contain no license information with an SPDX license identifier. The chosen identifier is 'GPL-2.0 WITH Linux-syscall-note' which is the officially assigned identifier for the Linux syscall exception. SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
252 lines
6.8 KiB
C
252 lines
6.8 KiB
C
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
|
||
#ifndef _UAPI__A_OUT_GNU_H__
|
||
#define _UAPI__A_OUT_GNU_H__
|
||
|
||
#define __GNU_EXEC_MACROS__
|
||
|
||
#ifndef __STRUCT_EXEC_OVERRIDE__
|
||
|
||
#include <asm/a.out.h>
|
||
|
||
#endif /* __STRUCT_EXEC_OVERRIDE__ */
|
||
|
||
#ifndef __ASSEMBLY__
|
||
|
||
/* these go in the N_MACHTYPE field */
|
||
enum machine_type {
|
||
#if defined (M_OLDSUN2)
|
||
M__OLDSUN2 = M_OLDSUN2,
|
||
#else
|
||
M_OLDSUN2 = 0,
|
||
#endif
|
||
#if defined (M_68010)
|
||
M__68010 = M_68010,
|
||
#else
|
||
M_68010 = 1,
|
||
#endif
|
||
#if defined (M_68020)
|
||
M__68020 = M_68020,
|
||
#else
|
||
M_68020 = 2,
|
||
#endif
|
||
#if defined (M_SPARC)
|
||
M__SPARC = M_SPARC,
|
||
#else
|
||
M_SPARC = 3,
|
||
#endif
|
||
/* skip a bunch so we don't run into any of sun's numbers */
|
||
M_386 = 100,
|
||
M_MIPS1 = 151, /* MIPS R3000/R3000 binary */
|
||
M_MIPS2 = 152 /* MIPS R6000/R4000 binary */
|
||
};
|
||
|
||
#if !defined (N_MAGIC)
|
||
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
||
#endif
|
||
#define N_MACHTYPE(exec) ((enum machine_type)(((exec).a_info >> 16) & 0xff))
|
||
#define N_FLAGS(exec) (((exec).a_info >> 24) & 0xff)
|
||
#define N_SET_INFO(exec, magic, type, flags) \
|
||
((exec).a_info = ((magic) & 0xffff) \
|
||
| (((int)(type) & 0xff) << 16) \
|
||
| (((flags) & 0xff) << 24))
|
||
#define N_SET_MAGIC(exec, magic) \
|
||
((exec).a_info = (((exec).a_info & 0xffff0000) | ((magic) & 0xffff)))
|
||
|
||
#define N_SET_MACHTYPE(exec, machtype) \
|
||
((exec).a_info = \
|
||
((exec).a_info&0xff00ffff) | ((((int)(machtype))&0xff) << 16))
|
||
|
||
#define N_SET_FLAGS(exec, flags) \
|
||
((exec).a_info = \
|
||
((exec).a_info&0x00ffffff) | (((flags) & 0xff) << 24))
|
||
|
||
/* Code indicating object file or impure executable. */
|
||
#define OMAGIC 0407
|
||
/* Code indicating pure executable. */
|
||
#define NMAGIC 0410
|
||
/* Code indicating demand-paged executable. */
|
||
#define ZMAGIC 0413
|
||
/* This indicates a demand-paged executable with the header in the text.
|
||
The first page is unmapped to help trap NULL pointer references */
|
||
#define QMAGIC 0314
|
||
|
||
/* Code indicating core file. */
|
||
#define CMAGIC 0421
|
||
|
||
#if !defined (N_BADMAG)
|
||
#define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
|
||
&& N_MAGIC(x) != NMAGIC \
|
||
&& N_MAGIC(x) != ZMAGIC \
|
||
&& N_MAGIC(x) != QMAGIC)
|
||
#endif
|
||
|
||
#define _N_HDROFF(x) (1024 - sizeof (struct exec))
|
||
|
||
#if !defined (N_TXTOFF)
|
||
#define N_TXTOFF(x) \
|
||
(N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
|
||
(N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
|
||
#endif
|
||
|
||
#if !defined (N_DATOFF)
|
||
#define N_DATOFF(x) (N_TXTOFF(x) + (x).a_text)
|
||
#endif
|
||
|
||
#if !defined (N_TRELOFF)
|
||
#define N_TRELOFF(x) (N_DATOFF(x) + (x).a_data)
|
||
#endif
|
||
|
||
#if !defined (N_DRELOFF)
|
||
#define N_DRELOFF(x) (N_TRELOFF(x) + N_TRSIZE(x))
|
||
#endif
|
||
|
||
#if !defined (N_SYMOFF)
|
||
#define N_SYMOFF(x) (N_DRELOFF(x) + N_DRSIZE(x))
|
||
#endif
|
||
|
||
#if !defined (N_STROFF)
|
||
#define N_STROFF(x) (N_SYMOFF(x) + N_SYMSIZE(x))
|
||
#endif
|
||
|
||
/* Address of text segment in memory after it is loaded. */
|
||
#if !defined (N_TXTADDR)
|
||
#define N_TXTADDR(x) (N_MAGIC(x) == QMAGIC ? PAGE_SIZE : 0)
|
||
#endif
|
||
|
||
/* Address of data segment in memory after it is loaded. */
|
||
#ifndef __KERNEL__
|
||
#include <unistd.h>
|
||
#endif
|
||
#if defined(__i386__) || defined(__mc68000__)
|
||
#define SEGMENT_SIZE 1024
|
||
#else
|
||
#ifndef SEGMENT_SIZE
|
||
#ifndef __KERNEL__
|
||
#define SEGMENT_SIZE getpagesize()
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#define _N_SEGMENT_ROUND(x) ALIGN(x, SEGMENT_SIZE)
|
||
|
||
#define _N_TXTENDADDR(x) (N_TXTADDR(x)+(x).a_text)
|
||
|
||
#ifndef N_DATADDR
|
||
#define N_DATADDR(x) \
|
||
(N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x)) \
|
||
: (_N_SEGMENT_ROUND (_N_TXTENDADDR(x))))
|
||
#endif
|
||
|
||
/* Address of bss segment in memory after it is loaded. */
|
||
#if !defined (N_BSSADDR)
|
||
#define N_BSSADDR(x) (N_DATADDR(x) + (x).a_data)
|
||
#endif
|
||
|
||
#if !defined (N_NLIST_DECLARED)
|
||
struct nlist {
|
||
union {
|
||
char *n_name;
|
||
struct nlist *n_next;
|
||
long n_strx;
|
||
} n_un;
|
||
unsigned char n_type;
|
||
char n_other;
|
||
short n_desc;
|
||
unsigned long n_value;
|
||
};
|
||
#endif /* no N_NLIST_DECLARED. */
|
||
|
||
#if !defined (N_UNDF)
|
||
#define N_UNDF 0
|
||
#endif
|
||
#if !defined (N_ABS)
|
||
#define N_ABS 2
|
||
#endif
|
||
#if !defined (N_TEXT)
|
||
#define N_TEXT 4
|
||
#endif
|
||
#if !defined (N_DATA)
|
||
#define N_DATA 6
|
||
#endif
|
||
#if !defined (N_BSS)
|
||
#define N_BSS 8
|
||
#endif
|
||
#if !defined (N_FN)
|
||
#define N_FN 15
|
||
#endif
|
||
|
||
#if !defined (N_EXT)
|
||
#define N_EXT 1
|
||
#endif
|
||
#if !defined (N_TYPE)
|
||
#define N_TYPE 036
|
||
#endif
|
||
#if !defined (N_STAB)
|
||
#define N_STAB 0340
|
||
#endif
|
||
|
||
/* The following type indicates the definition of a symbol as being
|
||
an indirect reference to another symbol. The other symbol
|
||
appears as an undefined reference, immediately following this symbol.
|
||
|
||
Indirection is asymmetrical. The other symbol's value will be used
|
||
to satisfy requests for the indirect symbol, but not vice versa.
|
||
If the other symbol does not have a definition, libraries will
|
||
be searched to find a definition. */
|
||
#define N_INDR 0xa
|
||
|
||
/* The following symbols refer to set elements.
|
||
All the N_SET[ATDB] symbols with the same name form one set.
|
||
Space is allocated for the set in the text section, and each set
|
||
element's value is stored into one word of the space.
|
||
The first word of the space is the length of the set (number of elements).
|
||
|
||
The address of the set is made into an N_SETV symbol
|
||
whose name is the same as the name of the set.
|
||
This symbol acts like a N_DATA global symbol
|
||
in that it can satisfy undefined external references. */
|
||
|
||
/* These appear as input to LD, in a .o file. */
|
||
#define N_SETA 0x14 /* Absolute set element symbol */
|
||
#define N_SETT 0x16 /* Text set element symbol */
|
||
#define N_SETD 0x18 /* Data set element symbol */
|
||
#define N_SETB 0x1A /* Bss set element symbol */
|
||
|
||
/* This is output from LD. */
|
||
#define N_SETV 0x1C /* Pointer to set vector in data area. */
|
||
|
||
#if !defined (N_RELOCATION_INFO_DECLARED)
|
||
/* This structure describes a single relocation to be performed.
|
||
The text-relocation section of the file is a vector of these structures,
|
||
all of which apply to the text section.
|
||
Likewise, the data-relocation section applies to the data section. */
|
||
|
||
struct relocation_info
|
||
{
|
||
/* Address (within segment) to be relocated. */
|
||
int r_address;
|
||
/* The meaning of r_symbolnum depends on r_extern. */
|
||
unsigned int r_symbolnum:24;
|
||
/* Nonzero means value is a pc-relative offset
|
||
and it should be relocated for changes in its own address
|
||
as well as for changes in the symbol or section specified. */
|
||
unsigned int r_pcrel:1;
|
||
/* Length (as exponent of 2) of the field to be relocated.
|
||
Thus, a value of 2 indicates 1<<2 bytes. */
|
||
unsigned int r_length:2;
|
||
/* 1 => relocate with value of symbol.
|
||
r_symbolnum is the index of the symbol
|
||
in file's the symbol table.
|
||
0 => relocate with the address of a segment.
|
||
r_symbolnum is N_TEXT, N_DATA, N_BSS or N_ABS
|
||
(the N_EXT bit may be set also, but signifies nothing). */
|
||
unsigned int r_extern:1;
|
||
/* Four bits that aren't used, but when writing an object file
|
||
it is desirable to clear them. */
|
||
unsigned int r_pad:4;
|
||
};
|
||
#endif /* no N_RELOCATION_INFO_DECLARED. */
|
||
|
||
#endif /*__ASSEMBLY__ */
|
||
#endif /* _UAPI__A_OUT_GNU_H__ */
|