linux_dsm_epyc7002/arch/powerpc/mm/pgtable_32.c
Christophe Leroy 4a6d8cf900 powerpc/mm: don't use pte_alloc_kernel() until slab is available on PPC32
In the same way as PPC64, implement early allocation functions and
avoid calling pte_alloc_kernel() before slab is available.

Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-05-03 01:20:25 +10:00

421 lines
10 KiB
C

/*
* This file contains the routines setting up the linux page tables.
* -- paulus
*
* Derived from arch/ppc/mm/init.c:
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/fixmap.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include <mm/mmu_decl.h>
unsigned long ioremap_bot;
EXPORT_SYMBOL(ioremap_bot); /* aka VMALLOC_END */
extern char etext[], _stext[], _sinittext[], _einittext[];
pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
{
return (pte_t *)pte_fragment_alloc(mm, 1);
}
pgtable_t pte_alloc_one(struct mm_struct *mm)
{
return (pgtable_t)pte_fragment_alloc(mm, 0);
}
void __iomem *
ioremap(phys_addr_t addr, unsigned long size)
{
pgprot_t prot = pgprot_noncached(PAGE_KERNEL);
return __ioremap_caller(addr, size, prot, __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap);
void __iomem *
ioremap_wc(phys_addr_t addr, unsigned long size)
{
pgprot_t prot = pgprot_noncached_wc(PAGE_KERNEL);
return __ioremap_caller(addr, size, prot, __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_wc);
void __iomem *
ioremap_wt(phys_addr_t addr, unsigned long size)
{
pgprot_t prot = pgprot_cached_wthru(PAGE_KERNEL);
return __ioremap_caller(addr, size, prot, __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_wt);
void __iomem *
ioremap_coherent(phys_addr_t addr, unsigned long size)
{
pgprot_t prot = pgprot_cached(PAGE_KERNEL);
return __ioremap_caller(addr, size, prot, __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_coherent);
void __iomem *
ioremap_prot(phys_addr_t addr, unsigned long size, unsigned long flags)
{
pte_t pte = __pte(flags);
/* writeable implies dirty for kernel addresses */
if (pte_write(pte))
pte = pte_mkdirty(pte);
/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
pte = pte_exprotect(pte);
pte = pte_mkprivileged(pte);
return __ioremap_caller(addr, size, pte_pgprot(pte), __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_prot);
void __iomem *
__ioremap(phys_addr_t addr, unsigned long size, unsigned long flags)
{
return __ioremap_caller(addr, size, __pgprot(flags), __builtin_return_address(0));
}
void __iomem *
__ioremap_caller(phys_addr_t addr, unsigned long size, pgprot_t prot, void *caller)
{
unsigned long v, i;
phys_addr_t p;
int err;
/*
* Choose an address to map it to.
* Once the vmalloc system is running, we use it.
* Before then, we use space going down from IOREMAP_TOP
* (ioremap_bot records where we're up to).
*/
p = addr & PAGE_MASK;
size = PAGE_ALIGN(addr + size) - p;
/*
* If the address lies within the first 16 MB, assume it's in ISA
* memory space
*/
if (p < 16*1024*1024)
p += _ISA_MEM_BASE;
#ifndef CONFIG_CRASH_DUMP
/*
* Don't allow anybody to remap normal RAM that we're using.
* mem_init() sets high_memory so only do the check after that.
*/
if (slab_is_available() && p <= virt_to_phys(high_memory - 1) &&
page_is_ram(__phys_to_pfn(p))) {
printk("__ioremap(): phys addr 0x%llx is RAM lr %ps\n",
(unsigned long long)p, __builtin_return_address(0));
return NULL;
}
#endif
if (size == 0)
return NULL;
/*
* Is it already mapped? Perhaps overlapped by a previous
* mapping.
*/
v = p_block_mapped(p);
if (v)
goto out;
if (slab_is_available()) {
struct vm_struct *area;
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (area == 0)
return NULL;
area->phys_addr = p;
v = (unsigned long) area->addr;
} else {
v = (ioremap_bot -= size);
}
/*
* Should check if it is a candidate for a BAT mapping
*/
err = 0;
for (i = 0; i < size && err == 0; i += PAGE_SIZE)
err = map_kernel_page(v + i, p + i, prot);
if (err) {
if (slab_is_available())
vunmap((void *)v);
return NULL;
}
out:
return (void __iomem *) (v + ((unsigned long)addr & ~PAGE_MASK));
}
EXPORT_SYMBOL(__ioremap);
void iounmap(volatile void __iomem *addr)
{
/*
* If mapped by BATs then there is nothing to do.
* Calling vfree() generates a benign warning.
*/
if (v_block_mapped((unsigned long)addr))
return;
if (addr > high_memory && (unsigned long) addr < ioremap_bot)
vunmap((void *) (PAGE_MASK & (unsigned long)addr));
}
EXPORT_SYMBOL(iounmap);
static void __init *early_alloc_pgtable(unsigned long size)
{
void *ptr = memblock_alloc(size, size);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, size, size);
return ptr;
}
static pte_t __init *early_pte_alloc_kernel(pmd_t *pmdp, unsigned long va)
{
if (pmd_none(*pmdp)) {
pte_t *ptep = early_alloc_pgtable(PTE_FRAG_SIZE);
pmd_populate_kernel(&init_mm, pmdp, ptep);
}
return pte_offset_kernel(pmdp, va);
}
int __ref map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot)
{
pmd_t *pd;
pte_t *pg;
int err = -ENOMEM;
/* Use upper 10 bits of VA to index the first level map */
pd = pmd_offset(pud_offset(pgd_offset_k(va), va), va);
/* Use middle 10 bits of VA to index the second-level map */
if (likely(slab_is_available()))
pg = pte_alloc_kernel(pd, va);
else
pg = early_pte_alloc_kernel(pd, va);
if (pg != 0) {
err = 0;
/* The PTE should never be already set nor present in the
* hash table
*/
BUG_ON((pte_present(*pg) | pte_hashpte(*pg)) && pgprot_val(prot));
set_pte_at(&init_mm, va, pg, pfn_pte(pa >> PAGE_SHIFT, prot));
}
smp_wmb();
return err;
}
/*
* Map in a chunk of physical memory starting at start.
*/
static void __init __mapin_ram_chunk(unsigned long offset, unsigned long top)
{
unsigned long v, s;
phys_addr_t p;
int ktext;
s = offset;
v = PAGE_OFFSET + s;
p = memstart_addr + s;
for (; s < top; s += PAGE_SIZE) {
ktext = ((char *)v >= _stext && (char *)v < etext) ||
((char *)v >= _sinittext && (char *)v < _einittext);
map_kernel_page(v, p, ktext ? PAGE_KERNEL_TEXT : PAGE_KERNEL);
#ifdef CONFIG_PPC_BOOK3S_32
if (ktext)
hash_preload(&init_mm, v, false, 0x300);
#endif
v += PAGE_SIZE;
p += PAGE_SIZE;
}
}
void __init mapin_ram(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
phys_addr_t base = reg->base;
phys_addr_t top = min(base + reg->size, total_lowmem);
if (base >= top)
continue;
base = mmu_mapin_ram(base, top);
if (IS_ENABLED(CONFIG_BDI_SWITCH))
__mapin_ram_chunk(reg->base, top);
else
__mapin_ram_chunk(base, top);
}
}
/* Scan the real Linux page tables and return a PTE pointer for
* a virtual address in a context.
* Returns true (1) if PTE was found, zero otherwise. The pointer to
* the PTE pointer is unmodified if PTE is not found.
*/
static int
get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, pmd_t **pmdp)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int retval = 0;
pgd = pgd_offset(mm, addr & PAGE_MASK);
if (pgd) {
pud = pud_offset(pgd, addr & PAGE_MASK);
if (pud && pud_present(*pud)) {
pmd = pmd_offset(pud, addr & PAGE_MASK);
if (pmd_present(*pmd)) {
pte = pte_offset_map(pmd, addr & PAGE_MASK);
if (pte) {
retval = 1;
*ptep = pte;
if (pmdp)
*pmdp = pmd;
/* XXX caller needs to do pte_unmap, yuck */
}
}
}
}
return(retval);
}
static int __change_page_attr_noflush(struct page *page, pgprot_t prot)
{
pte_t *kpte;
pmd_t *kpmd;
unsigned long address;
BUG_ON(PageHighMem(page));
address = (unsigned long)page_address(page);
if (v_block_mapped(address))
return 0;
if (!get_pteptr(&init_mm, address, &kpte, &kpmd))
return -EINVAL;
__set_pte_at(&init_mm, address, kpte, mk_pte(page, prot), 0);
pte_unmap(kpte);
return 0;
}
/*
* Change the page attributes of an page in the linear mapping.
*
* THIS DOES NOTHING WITH BAT MAPPINGS, DEBUG USE ONLY
*/
static int change_page_attr(struct page *page, int numpages, pgprot_t prot)
{
int i, err = 0;
unsigned long flags;
struct page *start = page;
local_irq_save(flags);
for (i = 0; i < numpages; i++, page++) {
err = __change_page_attr_noflush(page, prot);
if (err)
break;
}
wmb();
local_irq_restore(flags);
flush_tlb_kernel_range((unsigned long)page_address(start),
(unsigned long)page_address(page));
return err;
}
void mark_initmem_nx(void)
{
struct page *page = virt_to_page(_sinittext);
unsigned long numpages = PFN_UP((unsigned long)_einittext) -
PFN_DOWN((unsigned long)_sinittext);
if (v_block_mapped((unsigned long)_stext) + 1)
mmu_mark_initmem_nx();
else
change_page_attr(page, numpages, PAGE_KERNEL);
}
#ifdef CONFIG_STRICT_KERNEL_RWX
void mark_rodata_ro(void)
{
struct page *page;
unsigned long numpages;
if (v_block_mapped((unsigned long)_sinittext)) {
mmu_mark_rodata_ro();
return;
}
page = virt_to_page(_stext);
numpages = PFN_UP((unsigned long)_etext) -
PFN_DOWN((unsigned long)_stext);
change_page_attr(page, numpages, PAGE_KERNEL_ROX);
/*
* mark .rodata as read only. Use __init_begin rather than __end_rodata
* to cover NOTES and EXCEPTION_TABLE.
*/
page = virt_to_page(__start_rodata);
numpages = PFN_UP((unsigned long)__init_begin) -
PFN_DOWN((unsigned long)__start_rodata);
change_page_attr(page, numpages, PAGE_KERNEL_RO);
}
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
void __kernel_map_pages(struct page *page, int numpages, int enable)
{
if (PageHighMem(page))
return;
change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
}
#endif /* CONFIG_DEBUG_PAGEALLOC */