linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_ddi.c
Imre Deak fe4c63c8cb drm/i915/bxt: fix DDI PHY vswing scale value setting
According to bspec the DDI PHY vswing scale value is "don't care" in
case the scale enable bit [27] is clear. But this doesn't seem to be
correct. The scale value seems to also matter if the scale mode bit
[26] is set. So both bit 26 and 27 depend on the value. Setting the
scale value to 0 while either bit is set results in a failed modeset on
HDMI (sink reports no signal).

After reset the scale value is 0x98, but according to the spec we have
to program it to 0x9a. So for consistency program it always to 0x9a
regardless of the scale enable bit.

Signed-off-by: Imre Deak <imre.deak@intel.com>
Tested-by: Matt Roper <matthew.d.roper@intel.com>
Acked-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2015-06-12 13:14:38 +03:00

2842 lines
77 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include "i915_drv.h"
#include "intel_drv.h"
struct ddi_buf_trans {
u32 trans1; /* balance leg enable, de-emph level */
u32 trans2; /* vref sel, vswing */
};
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
* them for both DP and FDI transports, allowing those ports to
* automatically adapt to HDMI connections as well
*/
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0006000E },
{ 0x00D75FFF, 0x0005000A },
{ 0x00C30FFF, 0x00040006 },
{ 0x80AAAFFF, 0x000B0000 },
{ 0x00FFFFFF, 0x0005000A },
{ 0x00D75FFF, 0x000C0004 },
{ 0x80C30FFF, 0x000B0000 },
{ 0x00FFFFFF, 0x00040006 },
{ 0x80D75FFF, 0x000B0000 },
};
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0007000E },
{ 0x00D75FFF, 0x000F000A },
{ 0x00C30FFF, 0x00060006 },
{ 0x00AAAFFF, 0x001E0000 },
{ 0x00FFFFFF, 0x000F000A },
{ 0x00D75FFF, 0x00160004 },
{ 0x00C30FFF, 0x001E0000 },
{ 0x00FFFFFF, 0x00060006 },
{ 0x00D75FFF, 0x001E0000 },
};
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV d db */
{ 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */
{ 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */
{ 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */
{ 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */
{ 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */
{ 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */
{ 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */
{ 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */
{ 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */
{ 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */
{ 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */
{ 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */
};
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
{ 0x00FFFFFF, 0x00000012 },
{ 0x00EBAFFF, 0x00020011 },
{ 0x00C71FFF, 0x0006000F },
{ 0x00AAAFFF, 0x000E000A },
{ 0x00FFFFFF, 0x00020011 },
{ 0x00DB6FFF, 0x0005000F },
{ 0x00BEEFFF, 0x000A000C },
{ 0x00FFFFFF, 0x0005000F },
{ 0x00DB6FFF, 0x000A000C },
};
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0007000E },
{ 0x00D75FFF, 0x000E000A },
{ 0x00BEFFFF, 0x00140006 },
{ 0x80B2CFFF, 0x001B0002 },
{ 0x00FFFFFF, 0x000E000A },
{ 0x00DB6FFF, 0x00160005 },
{ 0x80C71FFF, 0x001A0002 },
{ 0x00F7DFFF, 0x00180004 },
{ 0x80D75FFF, 0x001B0002 },
};
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0001000E },
{ 0x00D75FFF, 0x0004000A },
{ 0x00C30FFF, 0x00070006 },
{ 0x00AAAFFF, 0x000C0000 },
{ 0x00FFFFFF, 0x0004000A },
{ 0x00D75FFF, 0x00090004 },
{ 0x00C30FFF, 0x000C0000 },
{ 0x00FFFFFF, 0x00070006 },
{ 0x00D75FFF, 0x000C0000 },
};
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV df db */
{ 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */
{ 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */
{ 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */
{ 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */
{ 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */
{ 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */
{ 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */
{ 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */
{ 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */
{ 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */
};
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
{ 0x00000018, 0x000000a2 },
{ 0x00004014, 0x0000009B },
{ 0x00006012, 0x00000088 },
{ 0x00008010, 0x00000087 },
{ 0x00000018, 0x0000009B },
{ 0x00004014, 0x00000088 },
{ 0x00006012, 0x00000087 },
{ 0x00000018, 0x00000088 },
{ 0x00004014, 0x00000087 },
};
/* eDP 1.4 low vswing translation parameters */
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
{ 0x00000018, 0x000000a8 },
{ 0x00002016, 0x000000ab },
{ 0x00006012, 0x000000a2 },
{ 0x00008010, 0x00000088 },
{ 0x00000018, 0x000000ab },
{ 0x00004014, 0x000000a2 },
{ 0x00006012, 0x000000a6 },
{ 0x00000018, 0x000000a2 },
{ 0x00005013, 0x0000009c },
{ 0x00000018, 0x00000088 },
};
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000ac },
{ 0x00005012, 0x0000009d },
{ 0x00007011, 0x00000088 },
{ 0x00000018, 0x000000a1 },
{ 0x00000018, 0x00000098 },
{ 0x00004013, 0x00000088 },
{ 0x00006012, 0x00000087 },
{ 0x00000018, 0x000000df },
{ 0x00003015, 0x00000087 },
{ 0x00003015, 0x000000c7 },
{ 0x00000018, 0x000000c7 },
};
struct bxt_ddi_buf_trans {
u32 margin; /* swing value */
u32 scale; /* scale value */
u32 enable; /* scale enable */
u32 deemphasis;
bool default_index; /* true if the entry represents default value */
};
/* BSpec does not define separate vswing/pre-emphasis values for eDP.
* Using DP values for eDP as well.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
{ 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
{ 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
{ 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
{ 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
{ 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
{ 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
};
/* BSpec has 2 recommended values - entries 0 and 8.
* Using the entry with higher vswing.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
{ 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
{ 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
{ 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
{ 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
{ 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
{ 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
};
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
struct intel_digital_port **dig_port,
enum port *port)
{
struct drm_encoder *encoder = &intel_encoder->base;
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_DP_MST) {
*dig_port = enc_to_mst(encoder)->primary;
*port = (*dig_port)->port;
} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
*dig_port = enc_to_dig_port(encoder);
*port = (*dig_port)->port;
} else if (type == INTEL_OUTPUT_ANALOG) {
*dig_port = NULL;
*port = PORT_E;
} else {
DRM_ERROR("Invalid DDI encoder type %d\n", type);
BUG();
}
}
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
struct intel_digital_port *dig_port;
enum port port;
ddi_get_encoder_port(intel_encoder, &dig_port, &port);
return port;
}
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
return intel_dig_port->hdmi.hdmi_reg;
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. The buffer values are different for FDI and DP modes,
* but the HDMI/DVI fields are shared among those. So we program the DDI
* in either FDI or DP modes only, as HDMI connections will work with both
* of those
*/
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
bool supports_hdmi)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
size;
int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
const struct ddi_buf_trans *ddi_translations_fdi;
const struct ddi_buf_trans *ddi_translations_dp;
const struct ddi_buf_trans *ddi_translations_edp;
const struct ddi_buf_trans *ddi_translations_hdmi;
const struct ddi_buf_trans *ddi_translations;
if (IS_BROXTON(dev)) {
if (!supports_hdmi)
return;
/* Vswing programming for HDMI */
bxt_ddi_vswing_sequence(dev, hdmi_level, port,
INTEL_OUTPUT_HDMI);
return;
} else if (IS_SKYLAKE(dev)) {
ddi_translations_fdi = NULL;
ddi_translations_dp = skl_ddi_translations_dp;
n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
if (dev_priv->edp_low_vswing) {
ddi_translations_edp = skl_ddi_translations_edp;
n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
} else {
ddi_translations_edp = skl_ddi_translations_dp;
n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
}
ddi_translations_hdmi = skl_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
hdmi_default_entry = 7;
} else if (IS_BROADWELL(dev)) {
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
ddi_translations_edp = bdw_ddi_translations_edp;
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
} else if (IS_HASWELL(dev)) {
ddi_translations_fdi = hsw_ddi_translations_fdi;
ddi_translations_dp = hsw_ddi_translations_dp;
ddi_translations_edp = hsw_ddi_translations_dp;
ddi_translations_hdmi = hsw_ddi_translations_hdmi;
n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
hdmi_default_entry = 6;
} else {
WARN(1, "ddi translation table missing\n");
ddi_translations_edp = bdw_ddi_translations_dp;
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
}
switch (port) {
case PORT_A:
ddi_translations = ddi_translations_edp;
size = n_edp_entries;
break;
case PORT_B:
case PORT_C:
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
break;
case PORT_D:
if (intel_dp_is_edp(dev, PORT_D)) {
ddi_translations = ddi_translations_edp;
size = n_edp_entries;
} else {
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
}
break;
case PORT_E:
if (ddi_translations_fdi)
ddi_translations = ddi_translations_fdi;
else
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
break;
default:
BUG();
}
for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
I915_WRITE(reg, ddi_translations[i].trans1);
reg += 4;
I915_WRITE(reg, ddi_translations[i].trans2);
reg += 4;
}
if (!supports_hdmi)
return;
/* Choose a good default if VBT is badly populated */
if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
hdmi_level >= n_hdmi_entries)
hdmi_level = hdmi_default_entry;
/* Entry 9 is for HDMI: */
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
reg += 4;
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
reg += 4;
}
/* Program DDI buffers translations for DP. By default, program ports A-D in DP
* mode and port E for FDI.
*/
void intel_prepare_ddi(struct drm_device *dev)
{
struct intel_encoder *intel_encoder;
bool visited[I915_MAX_PORTS] = { 0, };
if (!HAS_DDI(dev))
return;
for_each_intel_encoder(dev, intel_encoder) {
struct intel_digital_port *intel_dig_port;
enum port port;
bool supports_hdmi;
ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
if (visited[port])
continue;
supports_hdmi = intel_dig_port &&
intel_dig_port_supports_hdmi(intel_dig_port);
intel_prepare_ddi_buffers(dev, port, supports_hdmi);
visited[port] = true;
}
}
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
uint32_t reg = DDI_BUF_CTL(port);
int i;
for (i = 0; i < 16; i++) {
udelay(1);
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
return;
}
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 temp, i, rx_ctl_val;
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
/* Configure Port Clock Select */
I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
I915_WRITE(DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((intel_crtc->config->fdi_lanes - 1) << 1) |
DDI_BUF_TRANS_SELECT(i / 2));
POSTING_READ(DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(_FDI_RXA_MISC);
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
I915_WRITE(_FDI_RXA_MISC, temp);
POSTING_READ(_FDI_RXA_MISC);
/* Wait for FDI auto training time */
udelay(5);
temp = I915_READ(DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
/* Enable normal pixel sending for FDI */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
return;
}
temp = I915_READ(DDI_BUF_CTL(PORT_E));
temp &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
POSTING_READ(DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
temp = I915_READ(DP_TP_CTL(PORT_E));
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(PORT_E), temp);
POSTING_READ(DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
rx_ctl_val &= ~FDI_RX_ENABLE;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
/* Reset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(_FDI_RXA_MISC);
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(_FDI_RXA_MISC, temp);
POSTING_READ(_FDI_RXA_MISC);
}
DRM_ERROR("FDI link training failed!\n");
}
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_dp->DP = intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
}
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder, *ret = NULL;
int num_encoders = 0;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
ret = intel_encoder;
num_encoders++;
}
if (num_encoders != 1)
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(intel_crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
struct intel_encoder *
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_encoder *ret = NULL;
struct drm_atomic_state *state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int num_encoders = 0;
int i;
state = crtc_state->base.state;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
ret = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
#define P_MIN 2
#define P_MAX 64
#define P_INC 2
/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800
#define abs_diff(a, b) ({ \
typeof(a) __a = (a); \
typeof(b) __b = (b); \
(void) (&__a == &__b); \
__a > __b ? (__a - __b) : (__b - __a); })
struct hsw_wrpll_rnp {
unsigned p, n2, r2;
};
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
unsigned budget;
switch (clock) {
case 25175000:
case 25200000:
case 27000000:
case 27027000:
case 37762500:
case 37800000:
case 40500000:
case 40541000:
case 54000000:
case 54054000:
case 59341000:
case 59400000:
case 72000000:
case 74176000:
case 74250000:
case 81000000:
case 81081000:
case 89012000:
case 89100000:
case 108000000:
case 108108000:
case 111264000:
case 111375000:
case 148352000:
case 148500000:
case 162000000:
case 162162000:
case 222525000:
case 222750000:
case 296703000:
case 297000000:
budget = 0;
break;
case 233500000:
case 245250000:
case 247750000:
case 253250000:
case 298000000:
budget = 1500;
break;
case 169128000:
case 169500000:
case 179500000:
case 202000000:
budget = 2000;
break;
case 256250000:
case 262500000:
case 270000000:
case 272500000:
case 273750000:
case 280750000:
case 281250000:
case 286000000:
case 291750000:
budget = 4000;
break;
case 267250000:
case 268500000:
budget = 5000;
break;
default:
budget = 1000;
break;
}
return budget;
}
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
unsigned r2, unsigned n2, unsigned p,
struct hsw_wrpll_rnp *best)
{
uint64_t a, b, c, d, diff, diff_best;
/* No best (r,n,p) yet */
if (best->p == 0) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
return;
}
/*
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
* freq2k.
*
* delta = 1e6 *
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
* freq2k;
*
* and we would like delta <= budget.
*
* If the discrepancy is above the PPM-based budget, always prefer to
* improve upon the previous solution. However, if you're within the
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
*/
a = freq2k * budget * p * r2;
b = freq2k * budget * best->p * best->r2;
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
diff_best = abs_diff(freq2k * best->p * best->r2,
LC_FREQ_2K * best->n2);
c = 1000000 * diff;
d = 1000000 * diff_best;
if (a < c && b < d) {
/* If both are above the budget, pick the closer */
if (best->p * best->r2 * diff < p * r2 * diff_best) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
} else if (a >= c && b < d) {
/* If A is below the threshold but B is above it? Update. */
best->p = p;
best->n2 = n2;
best->r2 = r2;
} else if (a >= c && b >= d) {
/* Both are below the limit, so pick the higher n2/(r2*r2) */
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
}
/* Otherwise a < c && b >= d, do nothing */
}
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg)
{
int refclk = LC_FREQ;
int n, p, r;
u32 wrpll;
wrpll = I915_READ(reg);
switch (wrpll & WRPLL_PLL_REF_MASK) {
case WRPLL_PLL_SSC:
case WRPLL_PLL_NON_SSC:
/*
* We could calculate spread here, but our checking
* code only cares about 5% accuracy, and spread is a max of
* 0.5% downspread.
*/
refclk = 135;
break;
case WRPLL_PLL_LCPLL:
refclk = LC_FREQ;
break;
default:
WARN(1, "bad wrpll refclk\n");
return 0;
}
r = wrpll & WRPLL_DIVIDER_REF_MASK;
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
/* Convert to KHz, p & r have a fixed point portion */
return (refclk * n * 100) / (p * r);
}
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
uint32_t dpll)
{
uint32_t cfgcr1_reg, cfgcr2_reg;
uint32_t cfgcr1_val, cfgcr2_val;
uint32_t p0, p1, p2, dco_freq;
cfgcr1_reg = GET_CFG_CR1_REG(dpll);
cfgcr2_reg = GET_CFG_CR2_REG(dpll);
cfgcr1_val = I915_READ(cfgcr1_reg);
cfgcr2_val = I915_READ(cfgcr2_reg);
p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR2_PDIV_1:
p0 = 1;
break;
case DPLL_CFGCR2_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR2_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR2_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR2_KDIV_5:
p2 = 5;
break;
case DPLL_CFGCR2_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR2_KDIV_3:
p2 = 3;
break;
case DPLL_CFGCR2_KDIV_1:
p2 = 1;
break;
}
dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1000) / 0x8000;
return dco_freq / (p0 * p1 * p2 * 5);
}
static void skl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
int link_clock = 0;
uint32_t dpll_ctl1, dpll;
dpll = pipe_config->ddi_pll_sel;
dpll_ctl1 = I915_READ(DPLL_CTRL1);
if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
link_clock = skl_calc_wrpll_link(dev_priv, dpll);
} else {
link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
switch (link_clock) {
case DPLL_CTRL1_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CTRL1_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CTRL1_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CTRL1_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CTRL1_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CTRL1_LINK_RATE_2700:
link_clock = 270000;
break;
default:
WARN(1, "Unsupported link rate\n");
break;
}
link_clock *= 2;
}
pipe_config->port_clock = link_clock;
if (pipe_config->has_dp_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else
pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
}
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
int link_clock = 0;
u32 val, pll;
val = pipe_config->ddi_pll_sel;
switch (val & PORT_CLK_SEL_MASK) {
case PORT_CLK_SEL_LCPLL_810:
link_clock = 81000;
break;
case PORT_CLK_SEL_LCPLL_1350:
link_clock = 135000;
break;
case PORT_CLK_SEL_LCPLL_2700:
link_clock = 270000;
break;
case PORT_CLK_SEL_WRPLL1:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
break;
case PORT_CLK_SEL_WRPLL2:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
break;
case PORT_CLK_SEL_SPLL:
pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
if (pll == SPLL_PLL_FREQ_810MHz)
link_clock = 81000;
else if (pll == SPLL_PLL_FREQ_1350MHz)
link_clock = 135000;
else if (pll == SPLL_PLL_FREQ_2700MHz)
link_clock = 270000;
else {
WARN(1, "bad spll freq\n");
return;
}
break;
default:
WARN(1, "bad port clock sel\n");
return;
}
pipe_config->port_clock = link_clock * 2;
if (pipe_config->has_pch_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->fdi_m_n);
else if (pipe_config->has_dp_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else
pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
}
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
enum intel_dpll_id dpll)
{
/* FIXME formula not available in bspec */
return 0;
}
static void bxt_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
enum port port = intel_ddi_get_encoder_port(encoder);
uint32_t dpll = port;
pipe_config->port_clock =
bxt_calc_pll_link(dev_priv, dpll);
if (pipe_config->has_dp_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else
pipe_config->base.adjusted_mode.crtc_clock =
pipe_config->port_clock;
}
void intel_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
if (INTEL_INFO(dev)->gen <= 8)
hsw_ddi_clock_get(encoder, pipe_config);
else if (IS_SKYLAKE(dev))
skl_ddi_clock_get(encoder, pipe_config);
else if (IS_BROXTON(dev))
bxt_ddi_clock_get(encoder, pipe_config);
}
static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
uint64_t freq2k;
unsigned p, n2, r2;
struct hsw_wrpll_rnp best = { 0, 0, 0 };
unsigned budget;
freq2k = clock / 100;
budget = hsw_wrpll_get_budget_for_freq(clock);
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
* and directly pass the LC PLL to it. */
if (freq2k == 5400000) {
*n2_out = 2;
*p_out = 1;
*r2_out = 2;
return;
}
/*
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
* the WR PLL.
*
* We want R so that REF_MIN <= Ref <= REF_MAX.
* Injecting R2 = 2 * R gives:
* REF_MAX * r2 > LC_FREQ * 2 and
* REF_MIN * r2 < LC_FREQ * 2
*
* Which means the desired boundaries for r2 are:
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
*
*/
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
r2 <= LC_FREQ * 2 / REF_MIN;
r2++) {
/*
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
*
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
* VCO_MAX * r2 > n2 * LC_FREQ and
* VCO_MIN * r2 < n2 * LC_FREQ)
*
* Which means the desired boundaries for n2 are:
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
*/
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
n2 <= VCO_MAX * r2 / LC_FREQ;
n2++) {
for (p = P_MIN; p <= P_MAX; p += P_INC)
hsw_wrpll_update_rnp(freq2k, budget,
r2, n2, p, &best);
}
}
*n2_out = best.n2;
*p_out = best.p;
*r2_out = best.r2;
}
static bool
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder,
int clock)
{
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
struct intel_shared_dpll *pll;
uint32_t val;
unsigned p, n2, r2;
hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
WRPLL_DIVIDER_POST(p);
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.wrpll = val;
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
}
return true;
}
struct skl_wrpll_params {
uint32_t dco_fraction;
uint32_t dco_integer;
uint32_t qdiv_ratio;
uint32_t qdiv_mode;
uint32_t kdiv;
uint32_t pdiv;
uint32_t central_freq;
};
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
uint64_t afe_clock,
uint64_t central_freq,
uint32_t p0, uint32_t p1, uint32_t p2)
{
uint64_t dco_freq;
switch (central_freq) {
case 9600000000ULL:
params->central_freq = 0;
break;
case 9000000000ULL:
params->central_freq = 1;
break;
case 8400000000ULL:
params->central_freq = 3;
}
switch (p0) {
case 1:
params->pdiv = 0;
break;
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 7:
params->pdiv = 4;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
switch (p2) {
case 5:
params->kdiv = 0;
break;
case 2:
params->kdiv = 1;
break;
case 3:
params->kdiv = 2;
break;
case 1:
params->kdiv = 3;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
params->qdiv_ratio = p1;
params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
dco_freq = p0 * p1 * p2 * afe_clock;
/*
* Intermediate values are in Hz.
* Divide by MHz to match bsepc
*/
params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
params->dco_fraction =
div_u64((div_u64(dco_freq, 24) -
params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}
static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
struct skl_wrpll_params *wrpll_params)
{
uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
uint64_t dco_central_freq[3] = {8400000000ULL,
9000000000ULL,
9600000000ULL};
uint32_t min_dco_deviation = 400;
uint32_t min_dco_index = 3;
uint32_t P0[4] = {1, 2, 3, 7};
uint32_t P2[4] = {1, 2, 3, 5};
bool found = false;
uint32_t candidate_p = 0;
uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
uint32_t candidate_p2[3] = {0};
uint32_t dco_central_freq_deviation[3];
uint32_t i, P1, k, dco_count;
bool retry_with_odd = false;
/* Determine P0, P1 or P2 */
for (dco_count = 0; dco_count < 3; dco_count++) {
found = false;
candidate_p =
div64_u64(dco_central_freq[dco_count], afe_clock);
if (retry_with_odd == false)
candidate_p = (candidate_p % 2 == 0 ?
candidate_p : candidate_p + 1);
for (P1 = 1; P1 < candidate_p; P1++) {
for (i = 0; i < 4; i++) {
if (!(P0[i] != 1 || P1 == 1))
continue;
for (k = 0; k < 4; k++) {
if (P1 != 1 && P2[k] != 2)
continue;
if (candidate_p == P0[i] * P1 * P2[k]) {
/* Found possible P0, P1, P2 */
found = true;
candidate_p0[dco_count] = P0[i];
candidate_p1[dco_count] = P1;
candidate_p2[dco_count] = P2[k];
goto found;
}
}
}
}
found:
if (found) {
dco_central_freq_deviation[dco_count] =
div64_u64(10000 *
abs_diff(candidate_p * afe_clock,
dco_central_freq[dco_count]),
dco_central_freq[dco_count]);
if (dco_central_freq_deviation[dco_count] <
min_dco_deviation) {
min_dco_deviation =
dco_central_freq_deviation[dco_count];
min_dco_index = dco_count;
}
}
if (min_dco_index > 2 && dco_count == 2) {
/* oh well, we tried... */
if (retry_with_odd)
break;
retry_with_odd = true;
dco_count = 0;
}
}
if (WARN(min_dco_index > 2,
"No valid parameters found for pixel clock: %dHz\n", clock))
return false;
skl_wrpll_params_populate(wrpll_params,
afe_clock,
dco_central_freq[min_dco_index],
candidate_p0[min_dco_index],
candidate_p1[min_dco_index],
candidate_p2[min_dco_index]);
return true;
}
static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder,
int clock)
{
struct intel_shared_dpll *pll;
uint32_t ctrl1, cfgcr1, cfgcr2;
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
struct skl_wrpll_params wrpll_params = { 0, };
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
return false;
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
wrpll_params.central_freq;
} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
struct drm_encoder *encoder = &intel_encoder->base;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
switch (intel_dp->link_bw) {
case DP_LINK_BW_1_62:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
break;
case DP_LINK_BW_2_7:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
break;
case DP_LINK_BW_5_4:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
break;
}
cfgcr1 = cfgcr2 = 0;
} else /* eDP */
return true;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
/* shared DPLL id 0 is DPLL 1 */
crtc_state->ddi_pll_sel = pll->id + 1;
return true;
}
/* bxt clock parameters */
struct bxt_clk_div {
int clock;
uint32_t p1;
uint32_t p2;
uint32_t m2_int;
uint32_t m2_frac;
bool m2_frac_en;
uint32_t n;
};
/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
{162000, 4, 2, 32, 1677722, 1, 1},
{270000, 4, 1, 27, 0, 0, 1},
{540000, 2, 1, 27, 0, 0, 1},
{216000, 3, 2, 32, 1677722, 1, 1},
{243000, 4, 1, 24, 1258291, 1, 1},
{324000, 4, 1, 32, 1677722, 1, 1},
{432000, 3, 1, 32, 1677722, 1, 1}
};
static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder,
int clock)
{
struct intel_shared_dpll *pll;
struct bxt_clk_div clk_div = {0};
int vco = 0;
uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
uint32_t dcoampovr_en_h, dco_amp, lanestagger;
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
intel_clock_t best_clock;
/* Calculate HDMI div */
/*
* FIXME: tie the following calculation into
* i9xx_crtc_compute_clock
*/
if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
clock, pipe_name(intel_crtc->pipe));
return false;
}
clk_div.p1 = best_clock.p1;
clk_div.p2 = best_clock.p2;
WARN_ON(best_clock.m1 != 2);
clk_div.n = best_clock.n;
clk_div.m2_int = best_clock.m2 >> 22;
clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
clk_div.m2_frac_en = clk_div.m2_frac != 0;
vco = best_clock.vco;
} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP) {
int i;
clk_div = bxt_dp_clk_val[0];
for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
if (bxt_dp_clk_val[i].clock == clock) {
clk_div = bxt_dp_clk_val[i];
break;
}
}
vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
}
dco_amp = 15;
dcoampovr_en_h = 0;
if (vco >= 6200000 && vco <= 6480000) {
prop_coef = 4;
int_coef = 9;
gain_ctl = 3;
targ_cnt = 8;
} else if ((vco > 5400000 && vco < 6200000) ||
(vco >= 4800000 && vco < 5400000)) {
prop_coef = 5;
int_coef = 11;
gain_ctl = 3;
targ_cnt = 9;
if (vco >= 4800000 && vco < 5400000)
dcoampovr_en_h = 1;
} else if (vco == 5400000) {
prop_coef = 3;
int_coef = 8;
gain_ctl = 1;
targ_cnt = 9;
} else {
DRM_ERROR("Invalid VCO\n");
return false;
}
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (clock > 270000)
lanestagger = 0x18;
else if (clock > 135000)
lanestagger = 0x0d;
else if (clock > 67000)
lanestagger = 0x07;
else if (clock > 33000)
lanestagger = 0x04;
else
lanestagger = 0x02;
crtc_state->dpll_hw_state.ebb0 =
PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
if (clk_div.m2_frac_en)
crtc_state->dpll_hw_state.pll3 =
PORT_PLL_M2_FRAC_ENABLE;
crtc_state->dpll_hw_state.pll6 =
prop_coef | PORT_PLL_INT_COEFF(int_coef);
crtc_state->dpll_hw_state.pll6 |=
PORT_PLL_GAIN_CTL(gain_ctl);
crtc_state->dpll_hw_state.pll8 = targ_cnt;
if (dcoampovr_en_h)
crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP_OVR_EN_H;
crtc_state->dpll_hw_state.pll10 |= PORT_PLL_DCO_AMP(dco_amp);
crtc_state->dpll_hw_state.pcsdw12 =
LANESTAGGER_STRAP_OVRD | lanestagger;
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
/* shared DPLL id 0 is DPLL A */
crtc_state->ddi_pll_sel = pll->id;
return true;
}
/*
* Tries to find a *shared* PLL for the CRTC and store it in
* intel_crtc->ddi_pll_sel.
*
* For private DPLLs, compute_config() should do the selection for us. This
* function should be folded into compute_config() eventually.
*/
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = intel_crtc->base.dev;
struct intel_encoder *intel_encoder =
intel_ddi_get_crtc_new_encoder(crtc_state);
int clock = crtc_state->port_clock;
if (IS_SKYLAKE(dev))
return skl_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder, clock);
else if (IS_BROXTON(dev))
return bxt_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder, clock);
else
return hsw_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder, clock);
}
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
int type = intel_encoder->type;
uint32_t temp;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
temp = TRANS_MSA_SYNC_CLK;
switch (intel_crtc->config->pipe_bpp) {
case 18:
temp |= TRANS_MSA_6_BPC;
break;
case 24:
temp |= TRANS_MSA_8_BPC;
break;
case 30:
temp |= TRANS_MSA_10_BPC;
break;
case 36:
temp |= TRANS_MSA_12_BPC;
break;
default:
BUG();
}
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
}
}
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
uint32_t temp;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (state == true)
temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
else
temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
temp |= TRANS_DDI_SELECT_PORT(port);
switch (intel_crtc->config->pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* On Haswell, can only use the always-on power well for
* eDP when not using the panel fitter, and when not
* using motion blur mitigation (which we don't
* support). */
if (IS_HASWELL(dev) &&
(intel_crtc->config->pch_pfit.enabled ||
intel_crtc->config->pch_pfit.force_thru))
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (type == INTEL_OUTPUT_HDMI) {
if (intel_crtc->config->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
} else if (type == INTEL_OUTPUT_ANALOG) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (intel_dp->is_mst) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
} else
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
} else if (type == INTEL_OUTPUT_DP_MST) {
struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
if (intel_dp->is_mst) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
} else
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
} else {
WARN(1, "Invalid encoder type %d for pipe %c\n",
intel_encoder->type, pipe_name(pipe));
}
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
uint32_t val = I915_READ(reg);
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
val |= TRANS_DDI_PORT_NONE;
I915_WRITE(reg, val);
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder = intel_connector->encoder;
int type = intel_connector->base.connector_type;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum pipe pipe = 0;
enum transcoder cpu_transcoder;
enum intel_display_power_domain power_domain;
uint32_t tmp;
power_domain = intel_display_port_power_domain(intel_encoder);
if (!intel_display_power_is_enabled(dev_priv, power_domain))
return false;
if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
return false;
if (port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
return (type == DRM_MODE_CONNECTOR_HDMIA);
case TRANS_DDI_MODE_SELECT_DP_SST:
if (type == DRM_MODE_CONNECTOR_eDP)
return true;
return (type == DRM_MODE_CONNECTOR_DisplayPort);
case TRANS_DDI_MODE_SELECT_DP_MST:
/* if the transcoder is in MST state then
* connector isn't connected */
return false;
case TRANS_DDI_MODE_SELECT_FDI:
return (type == DRM_MODE_CONNECTOR_VGA);
default:
return false;
}
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(encoder);
enum intel_display_power_domain power_domain;
u32 tmp;
int i;
power_domain = intel_display_port_power_domain(encoder);
if (!intel_display_power_is_enabled(dev_priv, power_domain))
return false;
tmp = I915_READ(DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
return false;
if (port == PORT_A) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe = PIPE_C;
break;
}
return true;
} else {
for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
if ((tmp & TRANS_DDI_PORT_MASK)
== TRANS_DDI_SELECT_PORT(port)) {
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
return false;
*pipe = i;
return true;
}
}
}
DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
return false;
}
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_PORT(port));
}
void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
enum port port, int type)
{
struct drm_i915_private *dev_priv = dev->dev_private;
const struct bxt_ddi_buf_trans *ddi_translations;
u32 n_entries, i;
uint32_t val;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
ddi_translations = bxt_ddi_translations_dp;
} else if (type == INTEL_OUTPUT_HDMI) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
ddi_translations = bxt_ddi_translations_hdmi;
} else {
DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
type);
return;
}
/* Check if default value has to be used */
if (level >= n_entries ||
(type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
for (i = 0; i < n_entries; i++) {
if (ddi_translations[i].default_index) {
level = i;
break;
}
}
}
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
val &= ~UNIQE_TRANGE_EN_METHOD;
if (ddi_translations[level].enable)
val |= UNIQE_TRANGE_EN_METHOD;
I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
val &= ~DE_EMPHASIS;
val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
int hdmi_level;
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_panel_on(intel_dp);
}
if (IS_SKYLAKE(dev)) {
uint32_t dpll = crtc->config->ddi_pll_sel;
uint32_t val;
/*
* DPLL0 is used for eDP and is the only "private" DPLL (as
* opposed to shared) on SKL
*/
if (type == INTEL_OUTPUT_EDP) {
WARN_ON(dpll != SKL_DPLL0);
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
DPLL_CTRL1_SSC(dpll) |
DPLL_CTRL1_LINK_RATE_MASK(dpll));
val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
}
/* DDI -> PLL mapping */
val = I915_READ(DPLL_CTRL2);
val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
I915_WRITE(DPLL_CTRL2, val);
} else if (INTEL_INFO(dev)->gen < 9) {
WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
}
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_ddi_init_dp_buf_reg(intel_encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_dp_complete_link_train(intel_dp);
if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
intel_dp_stop_link_train(intel_dp);
} else if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
if (IS_BROXTON(dev)) {
hdmi_level = dev_priv->vbt.
ddi_port_info[port].hdmi_level_shift;
bxt_ddi_vswing_sequence(dev, hdmi_level, port,
INTEL_OUTPUT_HDMI);
}
intel_hdmi->set_infoframes(encoder,
crtc->config->has_hdmi_sink,
&crtc->config->base.adjusted_mode);
}
}
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t val;
bool wait = false;
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_vdd_on(intel_dp);
intel_edp_panel_off(intel_dp);
}
if (IS_SKYLAKE(dev))
I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
DPLL_CTRL2_DDI_CLK_OFF(port)));
else if (INTEL_INFO(dev)->gen < 9)
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
}
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_HDMI) {
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*/
I915_WRITE(DDI_BUF_CTL(port),
intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE);
} else if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
intel_dp_stop_link_train(intel_dp);
intel_edp_backlight_on(intel_dp);
intel_psr_enable(intel_dp);
intel_edp_drrs_enable(intel_dp);
}
if (intel_crtc->config->has_audio) {
intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
intel_audio_codec_enable(intel_encoder);
}
}
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int type = intel_encoder->type;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (intel_crtc->config->has_audio) {
intel_audio_codec_disable(intel_encoder);
intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
}
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_drrs_disable(intel_dp);
intel_psr_disable(intel_dp);
intel_edp_backlight_off(intel_dp);
}
}
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
POSTING_READ(WRPLL_CTL(pll->id));
udelay(20);
}
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
val = I915_READ(WRPLL_CTL(pll->id));
I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
POSTING_READ(WRPLL_CTL(pll->id));
}
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(WRPLL_CTL(pll->id));
hw_state->wrpll = val;
return val & WRPLL_PLL_ENABLE;
}
static const char * const hsw_ddi_pll_names[] = {
"WRPLL 1",
"WRPLL 2",
};
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
{
int i;
dev_priv->num_shared_dpll = 2;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
dev_priv->shared_dplls[i].get_hw_state =
hsw_ddi_pll_get_hw_state;
}
}
static const char * const skl_ddi_pll_names[] = {
"DPLL 1",
"DPLL 2",
"DPLL 3",
};
struct skl_dpll_regs {
u32 ctl, cfgcr1, cfgcr2;
};
/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
{
/* DPLL 1 */
.ctl = LCPLL2_CTL,
.cfgcr1 = DPLL1_CFGCR1,
.cfgcr2 = DPLL1_CFGCR2,
},
{
/* DPLL 2 */
.ctl = WRPLL_CTL1,
.cfgcr1 = DPLL2_CFGCR1,
.cfgcr2 = DPLL2_CFGCR2,
},
{
/* DPLL 3 */
.ctl = WRPLL_CTL2,
.cfgcr1 = DPLL3_CFGCR1,
.cfgcr2 = DPLL3_CFGCR2,
},
};
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
unsigned int dpll;
const struct skl_dpll_regs *regs = skl_dpll_regs;
/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
dpll = pll->id + 1;
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
DPLL_CTRL1_LINK_RATE_MASK(dpll));
val |= pll->config.hw_state.ctrl1 << (dpll * 6);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
POSTING_READ(regs[pll->id].cfgcr1);
POSTING_READ(regs[pll->id].cfgcr2);
/* the enable bit is always bit 31 */
I915_WRITE(regs[pll->id].ctl,
I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
DRM_ERROR("DPLL %d not locked\n", dpll);
}
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
/* the enable bit is always bit 31 */
I915_WRITE(regs[pll->id].ctl,
I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
POSTING_READ(regs[pll->id].ctl);
}
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
unsigned int dpll;
const struct skl_dpll_regs *regs = skl_dpll_regs;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
dpll = pll->id + 1;
val = I915_READ(regs[pll->id].ctl);
if (!(val & LCPLL_PLL_ENABLE))
return false;
val = I915_READ(DPLL_CTRL1);
hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
}
return true;
}
static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
int i;
dev_priv->num_shared_dpll = 3;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
dev_priv->shared_dplls[i].get_hw_state =
skl_ddi_pll_get_hw_state;
}
}
static void broxton_phy_init(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
enum port port;
uint32_t val;
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
val |= GT_DISPLAY_POWER_ON(phy);
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
/* Considering 10ms timeout until BSpec is updated */
if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
DRM_ERROR("timeout during PHY%d power on\n", phy);
for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
int lane;
for (lane = 0; lane < 4; lane++) {
val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
/*
* Note that on CHV this flag is called UPAR, but has
* the same function.
*/
val &= ~LATENCY_OPTIM;
if (lane != 1)
val |= LATENCY_OPTIM;
I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
}
}
/* Program PLL Rcomp code offset */
val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
val &= ~IREF0RC_OFFSET_MASK;
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
val &= ~IREF1RC_OFFSET_MASK;
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
/* Program power gating */
val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
SUS_CLK_CONFIG;
I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
if (phy == DPIO_PHY0) {
val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
}
val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
val &= ~OCL2_LDOFUSE_PWR_DIS;
/*
* On PHY1 disable power on the second channel, since no port is
* connected there. On PHY0 both channels have a port, so leave it
* enabled.
* TODO: port C is only connected on BXT-P, so on BXT0/1 we should
* power down the second channel on PHY0 as well.
*/
if (phy == DPIO_PHY1)
val |= OCL2_LDOFUSE_PWR_DIS;
I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
if (phy == DPIO_PHY0) {
uint32_t grc_code;
/*
* PHY0 isn't connected to an RCOMP resistor so copy over
* the corresponding calibrated value from PHY1, and disable
* the automatic calibration on PHY0.
*/
if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
10))
DRM_ERROR("timeout waiting for PHY1 GRC\n");
val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
grc_code = val << GRC_CODE_FAST_SHIFT |
val << GRC_CODE_SLOW_SHIFT |
val;
I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
val |= GRC_DIS | GRC_RDY_OVRD;
I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
}
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val |= COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}
void broxton_ddi_phy_init(struct drm_device *dev)
{
/* Enable PHY1 first since it provides Rcomp for PHY0 */
broxton_phy_init(dev->dev_private, DPIO_PHY1);
broxton_phy_init(dev->dev_private, DPIO_PHY0);
}
static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
uint32_t val;
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val &= ~COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}
void broxton_ddi_phy_uninit(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
broxton_phy_uninit(dev_priv, DPIO_PHY1);
broxton_phy_uninit(dev_priv, DPIO_PHY0);
/* FIXME: do this in broxton_phy_uninit per phy */
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}
static const char * const bxt_ddi_pll_names[] = {
"PORT PLL A",
"PORT PLL B",
"PORT PLL C",
};
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t temp;
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_REF_SEL;
/* Non-SSC reference */
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
/* Disable 10 bit clock */
temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
/* Write P1 & P2 */
temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
temp |= pll->config.hw_state.ebb0;
I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
/* Write M2 integer */
temp = I915_READ(BXT_PORT_PLL(port, 0));
temp &= ~PORT_PLL_M2_MASK;
temp |= pll->config.hw_state.pll0;
I915_WRITE(BXT_PORT_PLL(port, 0), temp);
/* Write N */
temp = I915_READ(BXT_PORT_PLL(port, 1));
temp &= ~PORT_PLL_N_MASK;
temp |= pll->config.hw_state.pll1;
I915_WRITE(BXT_PORT_PLL(port, 1), temp);
/* Write M2 fraction */
temp = I915_READ(BXT_PORT_PLL(port, 2));
temp &= ~PORT_PLL_M2_FRAC_MASK;
temp |= pll->config.hw_state.pll2;
I915_WRITE(BXT_PORT_PLL(port, 2), temp);
/* Write M2 fraction enable */
temp = I915_READ(BXT_PORT_PLL(port, 3));
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
temp |= pll->config.hw_state.pll3;
I915_WRITE(BXT_PORT_PLL(port, 3), temp);
/* Write coeff */
temp = I915_READ(BXT_PORT_PLL(port, 6));
temp &= ~PORT_PLL_PROP_COEFF_MASK;
temp &= ~PORT_PLL_INT_COEFF_MASK;
temp &= ~PORT_PLL_GAIN_CTL_MASK;
temp |= pll->config.hw_state.pll6;
I915_WRITE(BXT_PORT_PLL(port, 6), temp);
/* Write calibration val */
temp = I915_READ(BXT_PORT_PLL(port, 8));
temp &= ~PORT_PLL_TARGET_CNT_MASK;
temp |= pll->config.hw_state.pll8;
I915_WRITE(BXT_PORT_PLL(port, 8), temp);
temp = I915_READ(BXT_PORT_PLL(port, 9));
temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
temp |= (5 << 1);
I915_WRITE(BXT_PORT_PLL(port, 9), temp);
temp = I915_READ(BXT_PORT_PLL(port, 10));
temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
temp &= ~PORT_PLL_DCO_AMP_MASK;
temp |= pll->config.hw_state.pll10;
I915_WRITE(BXT_PORT_PLL(port, 10), temp);
/* Recalibrate with new settings */
temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
temp |= PORT_PLL_RECALIBRATE;
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
/* Enable 10 bit clock */
temp |= PORT_PLL_10BIT_CLK_ENABLE;
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
/* Enable PLL */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_LOCK), 200))
DRM_ERROR("PLL %d not locked\n", port);
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
temp &= ~LANE_STAGGER_MASK;
temp &= ~LANESTAGGER_STRAP_OVRD;
temp |= pll->config.hw_state.pcsdw12;
I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
uint32_t temp;
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
uint32_t val;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(BXT_PORT_PLL_ENABLE(port));
if (!(val & PORT_PLL_ENABLE))
return false;
hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers. We configure all lanes the same way, so
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
*/
hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
hw_state->pcsdw12,
I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
return true;
}
static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
int i;
dev_priv->num_shared_dpll = 3;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
dev_priv->shared_dplls[i].get_hw_state =
bxt_ddi_pll_get_hw_state;
}
}
void intel_ddi_pll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val = I915_READ(LCPLL_CTL);
if (IS_SKYLAKE(dev))
skl_shared_dplls_init(dev_priv);
else if (IS_BROXTON(dev))
bxt_shared_dplls_init(dev_priv);
else
hsw_shared_dplls_init(dev_priv);
if (IS_SKYLAKE(dev)) {
int cdclk_freq;
cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
dev_priv->skl_boot_cdclk = cdclk_freq;
if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
DRM_ERROR("LCPLL1 is disabled\n");
else
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
} else if (IS_BROXTON(dev)) {
broxton_init_cdclk(dev);
broxton_ddi_phy_init(dev);
} else {
/*
* The LCPLL register should be turned on by the BIOS. For now
* let's just check its state and print errors in case
* something is wrong. Don't even try to turn it on.
*/
if (val & LCPLL_CD_SOURCE_FCLK)
DRM_ERROR("CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
DRM_ERROR("LCPLL is disabled\n");
}
}
void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
enum port port = intel_dig_port->port;
uint32_t val;
bool wait = false;
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
val = DP_TP_CTL_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
if (intel_dp->is_mst)
val |= DP_TP_CTL_MODE_MST;
else {
val |= DP_TP_CTL_MODE_SST;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
}
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
POSTING_READ(DDI_BUF_CTL(port));
udelay(600);
}
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
uint32_t val;
intel_ddi_post_disable(intel_encoder);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_RX_ENABLE;
I915_WRITE(_FDI_RXA_CTL, val);
val = I915_READ(_FDI_RXA_MISC);
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(_FDI_RXA_MISC, val);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_PCDCLK;
I915_WRITE(_FDI_RXA_CTL, val);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(_FDI_RXA_CTL, val);
}
void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_hdmi *intel_hdmi;
u32 temp, flags = 0;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->base.adjusted_mode.flags |= flags;
switch (temp & TRANS_DDI_BPC_MASK) {
case TRANS_DDI_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANS_DDI_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANS_DDI_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANS_DDI_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
pipe_config->has_hdmi_sink = true;
intel_hdmi = enc_to_intel_hdmi(&encoder->base);
if (intel_hdmi->infoframe_enabled(&encoder->base))
pipe_config->has_infoframe = true;
break;
case TRANS_DDI_MODE_SELECT_DVI:
case TRANS_DDI_MODE_SELECT_FDI:
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
case TRANS_DDI_MODE_SELECT_DP_MST:
pipe_config->has_dp_encoder = true;
intel_dp_get_m_n(intel_crtc, pipe_config);
break;
default:
break;
}
if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
pipe_config->has_audio = true;
}
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
}
intel_ddi_clock_get(encoder, pipe_config);
}
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
/* HDMI has nothing special to destroy, so we can go with this. */
intel_dp_encoder_destroy(encoder);
}
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
int type = encoder->type;
int port = intel_ddi_get_encoder_port(encoder);
WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
if (port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (type == INTEL_OUTPUT_HDMI)
return intel_hdmi_compute_config(encoder, pipe_config);
else
return intel_dp_compute_config(encoder, pipe_config);
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.destroy = intel_ddi_destroy,
};
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
if (!intel_dp_init_connector(intel_dig_port, connector)) {
kfree(connector);
return NULL;
}
return connector;
}
static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(intel_dig_port, connector);
return connector;
}
void intel_ddi_init(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
bool init_hdmi, init_dp;
init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
dev_priv->vbt.ddi_port_info[port].supports_hdmi);
init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
if (!init_dp && !init_hdmi) {
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
port_name(port));
init_hdmi = true;
init_dp = true;
}
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, encoder, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS);
intel_encoder->compute_config = intel_ddi_compute_config;
intel_encoder->enable = intel_enable_ddi;
intel_encoder->pre_enable = intel_ddi_pre_enable;
intel_encoder->disable = intel_disable_ddi;
intel_encoder->post_disable = intel_ddi_post_disable;
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
intel_encoder->get_config = intel_ddi_get_config;
intel_dig_port->port = port;
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
(DDI_BUF_PORT_REVERSAL |
DDI_A_4_LANES);
intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = 0;
if (init_dp) {
if (!intel_ddi_init_dp_connector(intel_dig_port))
goto err;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
dev_priv->hotplug.irq_port[port] = intel_dig_port;
}
/* In theory we don't need the encoder->type check, but leave it just in
* case we have some really bad VBTs... */
if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
if (!intel_ddi_init_hdmi_connector(intel_dig_port))
goto err;
}
return;
err:
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}