linux_dsm_epyc7002/drivers/gpio/gpio-pca953x.c
Marek Vasut 4942723276 gpio: pca953x: Perform basic regmap conversion
Convert the driver to use regmap to access the chips. Due to the convoluted
register mapping scheme, implement read/write/volatile check functions that
untangle the mess and perform check accordingly. This patch does not zap the
internal register cache of the PCA953x driver, nor does it push the regmap
access down into the gpiochip accessors to simplify the review. All that is
in subsequent patches.

Signed-off-by: Marek Vasut <marek.vasut+renesas@gmail.com>
Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2018-12-14 15:19:11 +01:00

1090 lines
28 KiB
C

/*
* PCA953x 4/8/16/24/40 bit I/O ports
*
* Copyright (C) 2005 Ben Gardner <bgardner@wabtec.com>
* Copyright (C) 2007 Marvell International Ltd.
*
* Derived from drivers/i2c/chips/pca9539.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*/
#include <linux/acpi.h>
#include <linux/gpio/driver.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_data/pca953x.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#define PCA953X_INPUT 0x00
#define PCA953X_OUTPUT 0x01
#define PCA953X_INVERT 0x02
#define PCA953X_DIRECTION 0x03
#define REG_ADDR_MASK 0x3f
#define REG_ADDR_EXT 0x40
#define REG_ADDR_AI 0x80
#define PCA957X_IN 0x00
#define PCA957X_INVRT 0x01
#define PCA957X_BKEN 0x02
#define PCA957X_PUPD 0x03
#define PCA957X_CFG 0x04
#define PCA957X_OUT 0x05
#define PCA957X_MSK 0x06
#define PCA957X_INTS 0x07
#define PCAL953X_OUT_STRENGTH 0x20
#define PCAL953X_IN_LATCH 0x22
#define PCAL953X_PULL_EN 0x23
#define PCAL953X_PULL_SEL 0x24
#define PCAL953X_INT_MASK 0x25
#define PCAL953X_INT_STAT 0x26
#define PCAL953X_OUT_CONF 0x27
#define PCAL6524_INT_EDGE 0x28
#define PCAL6524_INT_CLR 0x2a
#define PCAL6524_IN_STATUS 0x2b
#define PCAL6524_OUT_INDCONF 0x2c
#define PCAL6524_DEBOUNCE 0x2d
#define PCA_GPIO_MASK 0x00FF
#define PCAL_GPIO_MASK 0x1f
#define PCAL_PINCTRL_MASK 0x60
#define PCA_INT 0x0100
#define PCA_PCAL 0x0200
#define PCA_LATCH_INT (PCA_PCAL | PCA_INT)
#define PCA953X_TYPE 0x1000
#define PCA957X_TYPE 0x2000
#define PCA_TYPE_MASK 0xF000
#define PCA_CHIP_TYPE(x) ((x) & PCA_TYPE_MASK)
static const struct i2c_device_id pca953x_id[] = {
{ "pca9505", 40 | PCA953X_TYPE | PCA_INT, },
{ "pca9534", 8 | PCA953X_TYPE | PCA_INT, },
{ "pca9535", 16 | PCA953X_TYPE | PCA_INT, },
{ "pca9536", 4 | PCA953X_TYPE, },
{ "pca9537", 4 | PCA953X_TYPE | PCA_INT, },
{ "pca9538", 8 | PCA953X_TYPE | PCA_INT, },
{ "pca9539", 16 | PCA953X_TYPE | PCA_INT, },
{ "pca9554", 8 | PCA953X_TYPE | PCA_INT, },
{ "pca9555", 16 | PCA953X_TYPE | PCA_INT, },
{ "pca9556", 8 | PCA953X_TYPE, },
{ "pca9557", 8 | PCA953X_TYPE, },
{ "pca9574", 8 | PCA957X_TYPE | PCA_INT, },
{ "pca9575", 16 | PCA957X_TYPE | PCA_INT, },
{ "pca9698", 40 | PCA953X_TYPE, },
{ "pcal6524", 24 | PCA953X_TYPE | PCA_INT | PCA_PCAL, },
{ "pcal9555a", 16 | PCA953X_TYPE | PCA_INT | PCA_PCAL, },
{ "max7310", 8 | PCA953X_TYPE, },
{ "max7312", 16 | PCA953X_TYPE | PCA_INT, },
{ "max7313", 16 | PCA953X_TYPE | PCA_INT, },
{ "max7315", 8 | PCA953X_TYPE | PCA_INT, },
{ "max7318", 16 | PCA953X_TYPE | PCA_INT, },
{ "pca6107", 8 | PCA953X_TYPE | PCA_INT, },
{ "tca6408", 8 | PCA953X_TYPE | PCA_INT, },
{ "tca6416", 16 | PCA953X_TYPE | PCA_INT, },
{ "tca6424", 24 | PCA953X_TYPE | PCA_INT, },
{ "tca9539", 16 | PCA953X_TYPE | PCA_INT, },
{ "tca9554", 8 | PCA953X_TYPE | PCA_INT, },
{ "xra1202", 8 | PCA953X_TYPE },
{ }
};
MODULE_DEVICE_TABLE(i2c, pca953x_id);
static const struct acpi_device_id pca953x_acpi_ids[] = {
{ "INT3491", 16 | PCA953X_TYPE | PCA_INT | PCA_PCAL, },
{ }
};
MODULE_DEVICE_TABLE(acpi, pca953x_acpi_ids);
#define MAX_BANK 5
#define BANK_SZ 8
#define NBANK(chip) DIV_ROUND_UP(chip->gpio_chip.ngpio, BANK_SZ)
struct pca953x_reg_config {
int direction;
int output;
int input;
int invert;
};
static const struct pca953x_reg_config pca953x_regs = {
.direction = PCA953X_DIRECTION,
.output = PCA953X_OUTPUT,
.input = PCA953X_INPUT,
.invert = PCA953X_INVERT,
};
static const struct pca953x_reg_config pca957x_regs = {
.direction = PCA957X_CFG,
.output = PCA957X_OUT,
.input = PCA957X_IN,
.invert = PCA957X_INVRT,
};
struct pca953x_chip {
unsigned gpio_start;
u8 reg_output[MAX_BANK];
u8 reg_direction[MAX_BANK];
struct mutex i2c_lock;
struct regmap *regmap;
#ifdef CONFIG_GPIO_PCA953X_IRQ
struct mutex irq_lock;
u8 irq_mask[MAX_BANK];
u8 irq_stat[MAX_BANK];
u8 irq_trig_raise[MAX_BANK];
u8 irq_trig_fall[MAX_BANK];
#endif
struct i2c_client *client;
struct gpio_chip gpio_chip;
const char *const *names;
unsigned long driver_data;
struct regulator *regulator;
const struct pca953x_reg_config *regs;
};
static int pca953x_bank_shift(struct pca953x_chip *chip)
{
return fls((chip->gpio_chip.ngpio - 1) / BANK_SZ);
}
#define PCA953x_BANK_INPUT BIT(0)
#define PCA953x_BANK_OUTPUT BIT(1)
#define PCA953x_BANK_POLARITY BIT(2)
#define PCA953x_BANK_CONFIG BIT(3)
#define PCA957x_BANK_INPUT BIT(0)
#define PCA957x_BANK_POLARITY BIT(1)
#define PCA957x_BANK_BUSHOLD BIT(2)
#define PCA957x_BANK_CONFIG BIT(4)
#define PCA957x_BANK_OUTPUT BIT(5)
#define PCAL9xxx_BANK_IN_LATCH BIT(8 + 2)
#define PCAL9xxx_BANK_IRQ_MASK BIT(8 + 5)
#define PCAL9xxx_BANK_IRQ_STAT BIT(8 + 6)
/*
* We care about the following registers:
* - Standard set, below 0x40, each port can be replicated up to 8 times
* - PCA953x standard
* Input port 0x00 + 0 * bank_size R
* Output port 0x00 + 1 * bank_size RW
* Polarity Inversion port 0x00 + 2 * bank_size RW
* Configuration port 0x00 + 3 * bank_size RW
* - PCA957x with mixed up registers
* Input port 0x00 + 0 * bank_size R
* Polarity Inversion port 0x00 + 1 * bank_size RW
* Bus hold port 0x00 + 2 * bank_size RW
* Configuration port 0x00 + 4 * bank_size RW
* Output port 0x00 + 5 * bank_size RW
*
* - Extended set, above 0x40, often chip specific.
* - PCAL6524/PCAL9555A with custom PCAL IRQ handling:
* Input latch register 0x40 + 2 * bank_size RW
* Interrupt mask register 0x40 + 5 * bank_size RW
* Interrupt status register 0x40 + 6 * bank_size R
*
* - Registers with bit 0x80 set, the AI bit
* The bit is cleared and the registers fall into one of the
* categories above.
*/
static bool pca953x_check_register(struct pca953x_chip *chip, unsigned int reg,
u32 checkbank)
{
int bank_shift = pca953x_bank_shift(chip);
int bank = (reg & REG_ADDR_MASK) >> bank_shift;
int offset = reg & (BIT(bank_shift) - 1);
/* Special PCAL extended register check. */
if (reg & REG_ADDR_EXT) {
if (!(chip->driver_data & PCA_PCAL))
return false;
bank += 8;
}
/* Register is not in the matching bank. */
if (!(BIT(bank) & checkbank))
return false;
/* Register is not within allowed range of bank. */
if (offset >= NBANK(chip))
return false;
return true;
}
static bool pca953x_readable_register(struct device *dev, unsigned int reg)
{
struct pca953x_chip *chip = dev_get_drvdata(dev);
u32 bank;
if (PCA_CHIP_TYPE(chip->driver_data) == PCA953X_TYPE) {
bank = PCA953x_BANK_INPUT | PCA953x_BANK_OUTPUT |
PCA953x_BANK_POLARITY | PCA953x_BANK_CONFIG;
} else {
bank = PCA957x_BANK_INPUT | PCA957x_BANK_OUTPUT |
PCA957x_BANK_POLARITY | PCA957x_BANK_CONFIG |
PCA957x_BANK_BUSHOLD;
}
if (chip->driver_data & PCA_PCAL) {
bank |= PCAL9xxx_BANK_IN_LATCH | PCAL9xxx_BANK_IRQ_MASK |
PCAL9xxx_BANK_IRQ_STAT;
}
return pca953x_check_register(chip, reg, bank);
}
static bool pca953x_writeable_register(struct device *dev, unsigned int reg)
{
struct pca953x_chip *chip = dev_get_drvdata(dev);
u32 bank;
if (PCA_CHIP_TYPE(chip->driver_data) == PCA953X_TYPE) {
bank = PCA953x_BANK_OUTPUT | PCA953x_BANK_POLARITY |
PCA953x_BANK_CONFIG;
} else {
bank = PCA957x_BANK_OUTPUT | PCA957x_BANK_POLARITY |
PCA957x_BANK_CONFIG | PCA957x_BANK_BUSHOLD;
}
if (chip->driver_data & PCA_PCAL)
bank |= PCAL9xxx_BANK_IN_LATCH | PCAL9xxx_BANK_IRQ_MASK;
return pca953x_check_register(chip, reg, bank);
}
static bool pca953x_volatile_register(struct device *dev, unsigned int reg)
{
struct pca953x_chip *chip = dev_get_drvdata(dev);
u32 bank;
if (PCA_CHIP_TYPE(chip->driver_data) == PCA953X_TYPE)
bank = PCA953x_BANK_INPUT;
else
bank = PCA957x_BANK_INPUT;
if (chip->driver_data & PCA_PCAL)
bank |= PCAL9xxx_BANK_IRQ_STAT;
return pca953x_check_register(chip, reg, bank);
}
const struct regmap_config pca953x_i2c_regmap = {
.reg_bits = 8,
.val_bits = 8,
.readable_reg = pca953x_readable_register,
.writeable_reg = pca953x_writeable_register,
.volatile_reg = pca953x_volatile_register,
.cache_type = REGCACHE_RBTREE,
.max_register = 0x7f,
};
static u8 pca953x_recalc_addr(struct pca953x_chip *chip, int reg, int off,
bool write, bool addrinc)
{
int bank_shift = pca953x_bank_shift(chip);
int addr = (reg & PCAL_GPIO_MASK) << bank_shift;
int pinctrl = (reg & PCAL_PINCTRL_MASK) << 1;
u8 regaddr = pinctrl | addr | (off / BANK_SZ);
/* Single byte read doesn't need AI bit set. */
if (!addrinc)
return regaddr;
/* Chips with 24 and more GPIOs always support Auto Increment */
if (write && NBANK(chip) > 2)
regaddr |= REG_ADDR_AI;
/* PCA9575 needs address-increment on multi-byte writes */
if (PCA_CHIP_TYPE(chip->driver_data) == PCA957X_TYPE)
regaddr |= REG_ADDR_AI;
return regaddr;
}
static int pca953x_read_single(struct pca953x_chip *chip, int reg, u32 *val,
int off)
{
u8 regaddr = pca953x_recalc_addr(chip, reg, off, false, false);
int ret;
ret = regmap_read(chip->regmap, regaddr, val);
if (ret < 0) {
dev_err(&chip->client->dev, "failed reading register\n");
return ret;
}
return 0;
}
static int pca953x_write_single(struct pca953x_chip *chip, int reg, u32 val,
int off)
{
u8 regaddr = pca953x_recalc_addr(chip, reg, off, true, false);
int ret;
ret = regmap_write(chip->regmap, regaddr, val);
if (ret < 0) {
dev_err(&chip->client->dev, "failed writing register\n");
return ret;
}
return 0;
}
static int pca953x_write_regs(struct pca953x_chip *chip, int reg, u8 *val)
{
u8 regaddr = pca953x_recalc_addr(chip, reg, 0, true, true);
int ret;
ret = regmap_bulk_write(chip->regmap, regaddr, val, NBANK(chip));
if (ret < 0) {
dev_err(&chip->client->dev, "failed writing register\n");
return ret;
}
return 0;
}
static int pca953x_read_regs(struct pca953x_chip *chip, int reg, u8 *val)
{
u8 regaddr = pca953x_recalc_addr(chip, reg, 0, false, true);
int ret;
ret = regmap_bulk_read(chip->regmap, regaddr, val, NBANK(chip));
if (ret < 0) {
dev_err(&chip->client->dev, "failed reading register\n");
return ret;
}
return 0;
}
static int pca953x_gpio_direction_input(struct gpio_chip *gc, unsigned off)
{
struct pca953x_chip *chip = gpiochip_get_data(gc);
u8 reg_val;
int ret;
mutex_lock(&chip->i2c_lock);
reg_val = chip->reg_direction[off / BANK_SZ] | (1u << (off % BANK_SZ));
ret = pca953x_write_single(chip, chip->regs->direction, reg_val, off);
if (ret)
goto exit;
chip->reg_direction[off / BANK_SZ] = reg_val;
exit:
mutex_unlock(&chip->i2c_lock);
return ret;
}
static int pca953x_gpio_direction_output(struct gpio_chip *gc,
unsigned off, int val)
{
struct pca953x_chip *chip = gpiochip_get_data(gc);
u8 reg_val;
int ret;
mutex_lock(&chip->i2c_lock);
/* set output level */
if (val)
reg_val = chip->reg_output[off / BANK_SZ]
| (1u << (off % BANK_SZ));
else
reg_val = chip->reg_output[off / BANK_SZ]
& ~(1u << (off % BANK_SZ));
ret = pca953x_write_single(chip, chip->regs->output, reg_val, off);
if (ret)
goto exit;
chip->reg_output[off / BANK_SZ] = reg_val;
/* then direction */
reg_val = chip->reg_direction[off / BANK_SZ] & ~(1u << (off % BANK_SZ));
ret = pca953x_write_single(chip, chip->regs->direction, reg_val, off);
if (ret)
goto exit;
chip->reg_direction[off / BANK_SZ] = reg_val;
exit:
mutex_unlock(&chip->i2c_lock);
return ret;
}
static int pca953x_gpio_get_value(struct gpio_chip *gc, unsigned off)
{
struct pca953x_chip *chip = gpiochip_get_data(gc);
u32 reg_val;
int ret;
mutex_lock(&chip->i2c_lock);
ret = pca953x_read_single(chip, chip->regs->input, &reg_val, off);
mutex_unlock(&chip->i2c_lock);
if (ret < 0) {
/* NOTE: diagnostic already emitted; that's all we should
* do unless gpio_*_value_cansleep() calls become different
* from their nonsleeping siblings (and report faults).
*/
return 0;
}
return (reg_val & (1u << (off % BANK_SZ))) ? 1 : 0;
}
static void pca953x_gpio_set_value(struct gpio_chip *gc, unsigned off, int val)
{
struct pca953x_chip *chip = gpiochip_get_data(gc);
u8 reg_val;
int ret;
mutex_lock(&chip->i2c_lock);
if (val)
reg_val = chip->reg_output[off / BANK_SZ]
| (1u << (off % BANK_SZ));
else
reg_val = chip->reg_output[off / BANK_SZ]
& ~(1u << (off % BANK_SZ));
ret = pca953x_write_single(chip, chip->regs->output, reg_val, off);
if (ret)
goto exit;
chip->reg_output[off / BANK_SZ] = reg_val;
exit:
mutex_unlock(&chip->i2c_lock);
}
static int pca953x_gpio_get_direction(struct gpio_chip *gc, unsigned off)
{
struct pca953x_chip *chip = gpiochip_get_data(gc);
u32 reg_val;
int ret;
mutex_lock(&chip->i2c_lock);
ret = pca953x_read_single(chip, chip->regs->direction, &reg_val, off);
mutex_unlock(&chip->i2c_lock);
if (ret < 0)
return ret;
return !!(reg_val & (1u << (off % BANK_SZ)));
}
static void pca953x_gpio_set_multiple(struct gpio_chip *gc,
unsigned long *mask, unsigned long *bits)
{
struct pca953x_chip *chip = gpiochip_get_data(gc);
unsigned int bank_mask, bank_val;
int bank;
u8 reg_val[MAX_BANK];
int ret;
mutex_lock(&chip->i2c_lock);
memcpy(reg_val, chip->reg_output, NBANK(chip));
for (bank = 0; bank < NBANK(chip); bank++) {
bank_mask = mask[bank / sizeof(*mask)] >>
((bank % sizeof(*mask)) * 8);
if (bank_mask) {
bank_val = bits[bank / sizeof(*bits)] >>
((bank % sizeof(*bits)) * 8);
bank_val &= bank_mask;
reg_val[bank] = (reg_val[bank] & ~bank_mask) | bank_val;
}
}
ret = pca953x_write_regs(chip, chip->regs->output, reg_val);
if (ret)
goto exit;
memcpy(chip->reg_output, reg_val, NBANK(chip));
exit:
mutex_unlock(&chip->i2c_lock);
}
static void pca953x_setup_gpio(struct pca953x_chip *chip, int gpios)
{
struct gpio_chip *gc;
gc = &chip->gpio_chip;
gc->direction_input = pca953x_gpio_direction_input;
gc->direction_output = pca953x_gpio_direction_output;
gc->get = pca953x_gpio_get_value;
gc->set = pca953x_gpio_set_value;
gc->get_direction = pca953x_gpio_get_direction;
gc->set_multiple = pca953x_gpio_set_multiple;
gc->can_sleep = true;
gc->base = chip->gpio_start;
gc->ngpio = gpios;
gc->label = chip->client->name;
gc->parent = &chip->client->dev;
gc->owner = THIS_MODULE;
gc->names = chip->names;
}
#ifdef CONFIG_GPIO_PCA953X_IRQ
static void pca953x_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct pca953x_chip *chip = gpiochip_get_data(gc);
chip->irq_mask[d->hwirq / BANK_SZ] &= ~(1 << (d->hwirq % BANK_SZ));
}
static void pca953x_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct pca953x_chip *chip = gpiochip_get_data(gc);
chip->irq_mask[d->hwirq / BANK_SZ] |= 1 << (d->hwirq % BANK_SZ);
}
static void pca953x_irq_bus_lock(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct pca953x_chip *chip = gpiochip_get_data(gc);
mutex_lock(&chip->irq_lock);
}
static void pca953x_irq_bus_sync_unlock(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct pca953x_chip *chip = gpiochip_get_data(gc);
u8 new_irqs;
int level, i;
u8 invert_irq_mask[MAX_BANK];
if (chip->driver_data & PCA_PCAL) {
/* Enable latch on interrupt-enabled inputs */
pca953x_write_regs(chip, PCAL953X_IN_LATCH, chip->irq_mask);
for (i = 0; i < NBANK(chip); i++)
invert_irq_mask[i] = ~chip->irq_mask[i];
/* Unmask enabled interrupts */
pca953x_write_regs(chip, PCAL953X_INT_MASK, invert_irq_mask);
}
/* Look for any newly setup interrupt */
for (i = 0; i < NBANK(chip); i++) {
new_irqs = chip->irq_trig_fall[i] | chip->irq_trig_raise[i];
new_irqs &= ~chip->reg_direction[i];
while (new_irqs) {
level = __ffs(new_irqs);
pca953x_gpio_direction_input(&chip->gpio_chip,
level + (BANK_SZ * i));
new_irqs &= ~(1 << level);
}
}
mutex_unlock(&chip->irq_lock);
}
static int pca953x_irq_set_type(struct irq_data *d, unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
struct pca953x_chip *chip = gpiochip_get_data(gc);
int bank_nb = d->hwirq / BANK_SZ;
u8 mask = 1 << (d->hwirq % BANK_SZ);
if (!(type & IRQ_TYPE_EDGE_BOTH)) {
dev_err(&chip->client->dev, "irq %d: unsupported type %d\n",
d->irq, type);
return -EINVAL;
}
if (type & IRQ_TYPE_EDGE_FALLING)
chip->irq_trig_fall[bank_nb] |= mask;
else
chip->irq_trig_fall[bank_nb] &= ~mask;
if (type & IRQ_TYPE_EDGE_RISING)
chip->irq_trig_raise[bank_nb] |= mask;
else
chip->irq_trig_raise[bank_nb] &= ~mask;
return 0;
}
static void pca953x_irq_shutdown(struct irq_data *d)
{
struct pca953x_chip *chip = irq_data_get_irq_chip_data(d);
u8 mask = 1 << (d->hwirq % BANK_SZ);
chip->irq_trig_raise[d->hwirq / BANK_SZ] &= ~mask;
chip->irq_trig_fall[d->hwirq / BANK_SZ] &= ~mask;
}
static struct irq_chip pca953x_irq_chip = {
.name = "pca953x",
.irq_mask = pca953x_irq_mask,
.irq_unmask = pca953x_irq_unmask,
.irq_bus_lock = pca953x_irq_bus_lock,
.irq_bus_sync_unlock = pca953x_irq_bus_sync_unlock,
.irq_set_type = pca953x_irq_set_type,
.irq_shutdown = pca953x_irq_shutdown,
};
static bool pca953x_irq_pending(struct pca953x_chip *chip, u8 *pending)
{
u8 cur_stat[MAX_BANK];
u8 old_stat[MAX_BANK];
bool pending_seen = false;
bool trigger_seen = false;
u8 trigger[MAX_BANK];
int ret, i;
if (chip->driver_data & PCA_PCAL) {
/* Read the current interrupt status from the device */
ret = pca953x_read_regs(chip, PCAL953X_INT_STAT, trigger);
if (ret)
return false;
/* Check latched inputs and clear interrupt status */
ret = pca953x_read_regs(chip, PCA953X_INPUT, cur_stat);
if (ret)
return false;
for (i = 0; i < NBANK(chip); i++) {
/* Apply filter for rising/falling edge selection */
pending[i] = (~cur_stat[i] & chip->irq_trig_fall[i]) |
(cur_stat[i] & chip->irq_trig_raise[i]);
pending[i] &= trigger[i];
if (pending[i])
pending_seen = true;
}
return pending_seen;
}
ret = pca953x_read_regs(chip, chip->regs->input, cur_stat);
if (ret)
return false;
/* Remove output pins from the equation */
for (i = 0; i < NBANK(chip); i++)
cur_stat[i] &= chip->reg_direction[i];
memcpy(old_stat, chip->irq_stat, NBANK(chip));
for (i = 0; i < NBANK(chip); i++) {
trigger[i] = (cur_stat[i] ^ old_stat[i]) & chip->irq_mask[i];
if (trigger[i])
trigger_seen = true;
}
if (!trigger_seen)
return false;
memcpy(chip->irq_stat, cur_stat, NBANK(chip));
for (i = 0; i < NBANK(chip); i++) {
pending[i] = (old_stat[i] & chip->irq_trig_fall[i]) |
(cur_stat[i] & chip->irq_trig_raise[i]);
pending[i] &= trigger[i];
if (pending[i])
pending_seen = true;
}
return pending_seen;
}
static irqreturn_t pca953x_irq_handler(int irq, void *devid)
{
struct pca953x_chip *chip = devid;
u8 pending[MAX_BANK];
u8 level;
unsigned nhandled = 0;
int i;
if (!pca953x_irq_pending(chip, pending))
return IRQ_NONE;
for (i = 0; i < NBANK(chip); i++) {
while (pending[i]) {
level = __ffs(pending[i]);
handle_nested_irq(irq_find_mapping(chip->gpio_chip.irq.domain,
level + (BANK_SZ * i)));
pending[i] &= ~(1 << level);
nhandled++;
}
}
return (nhandled > 0) ? IRQ_HANDLED : IRQ_NONE;
}
static int pca953x_irq_setup(struct pca953x_chip *chip,
int irq_base)
{
struct i2c_client *client = chip->client;
int ret, i;
if (client->irq && irq_base != -1
&& (chip->driver_data & PCA_INT)) {
ret = pca953x_read_regs(chip,
chip->regs->input, chip->irq_stat);
if (ret)
return ret;
/*
* There is no way to know which GPIO line generated the
* interrupt. We have to rely on the previous read for
* this purpose.
*/
for (i = 0; i < NBANK(chip); i++)
chip->irq_stat[i] &= chip->reg_direction[i];
mutex_init(&chip->irq_lock);
ret = devm_request_threaded_irq(&client->dev,
client->irq,
NULL,
pca953x_irq_handler,
IRQF_TRIGGER_LOW | IRQF_ONESHOT |
IRQF_SHARED,
dev_name(&client->dev), chip);
if (ret) {
dev_err(&client->dev, "failed to request irq %d\n",
client->irq);
return ret;
}
ret = gpiochip_irqchip_add_nested(&chip->gpio_chip,
&pca953x_irq_chip,
irq_base,
handle_simple_irq,
IRQ_TYPE_NONE);
if (ret) {
dev_err(&client->dev,
"could not connect irqchip to gpiochip\n");
return ret;
}
gpiochip_set_nested_irqchip(&chip->gpio_chip,
&pca953x_irq_chip,
client->irq);
}
return 0;
}
#else /* CONFIG_GPIO_PCA953X_IRQ */
static int pca953x_irq_setup(struct pca953x_chip *chip,
int irq_base)
{
struct i2c_client *client = chip->client;
if (client->irq && irq_base != -1 && (chip->driver_data & PCA_INT))
dev_warn(&client->dev, "interrupt support not compiled in\n");
return 0;
}
#endif
static int device_pca95xx_init(struct pca953x_chip *chip, u32 invert)
{
int ret;
u8 val[MAX_BANK];
ret = pca953x_read_regs(chip, chip->regs->output, chip->reg_output);
if (ret)
goto out;
ret = pca953x_read_regs(chip, chip->regs->direction,
chip->reg_direction);
if (ret)
goto out;
/* set platform specific polarity inversion */
if (invert)
memset(val, 0xFF, NBANK(chip));
else
memset(val, 0, NBANK(chip));
ret = pca953x_write_regs(chip, chip->regs->invert, val);
out:
return ret;
}
static int device_pca957x_init(struct pca953x_chip *chip, u32 invert)
{
int ret;
u8 val[MAX_BANK];
ret = device_pca95xx_init(chip, invert);
if (ret)
goto out;
/* To enable register 6, 7 to control pull up and pull down */
memset(val, 0x02, NBANK(chip));
ret = pca953x_write_regs(chip, PCA957X_BKEN, val);
if (ret)
goto out;
return 0;
out:
return ret;
}
static const struct of_device_id pca953x_dt_ids[];
static int pca953x_probe(struct i2c_client *client,
const struct i2c_device_id *i2c_id)
{
struct pca953x_platform_data *pdata;
struct pca953x_chip *chip;
int irq_base = 0;
int ret;
u32 invert = 0;
struct regulator *reg;
chip = devm_kzalloc(&client->dev,
sizeof(struct pca953x_chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
pdata = dev_get_platdata(&client->dev);
if (pdata) {
irq_base = pdata->irq_base;
chip->gpio_start = pdata->gpio_base;
invert = pdata->invert;
chip->names = pdata->names;
} else {
struct gpio_desc *reset_gpio;
chip->gpio_start = -1;
irq_base = 0;
/*
* See if we need to de-assert a reset pin.
*
* There is no known ACPI-enabled platforms that are
* using "reset" GPIO. Otherwise any of those platform
* must use _DSD method with corresponding property.
*/
reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(reset_gpio))
return PTR_ERR(reset_gpio);
}
chip->client = client;
reg = devm_regulator_get(&client->dev, "vcc");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret != -EPROBE_DEFER)
dev_err(&client->dev, "reg get err: %d\n", ret);
return ret;
}
ret = regulator_enable(reg);
if (ret) {
dev_err(&client->dev, "reg en err: %d\n", ret);
return ret;
}
chip->regulator = reg;
if (i2c_id) {
chip->driver_data = i2c_id->driver_data;
} else {
const struct acpi_device_id *acpi_id;
struct device *dev = &client->dev;
chip->driver_data = (uintptr_t)of_device_get_match_data(dev);
if (!chip->driver_data) {
acpi_id = acpi_match_device(pca953x_acpi_ids, dev);
if (!acpi_id) {
ret = -ENODEV;
goto err_exit;
}
chip->driver_data = acpi_id->driver_data;
}
}
i2c_set_clientdata(client, chip);
chip->regmap = devm_regmap_init_i2c(client, &pca953x_i2c_regmap);
if (IS_ERR(chip->regmap)) {
ret = PTR_ERR(chip->regmap);
goto err_exit;
}
mutex_init(&chip->i2c_lock);
/*
* In case we have an i2c-mux controlled by a GPIO provided by an
* expander using the same driver higher on the device tree, read the
* i2c adapter nesting depth and use the retrieved value as lockdep
* subclass for chip->i2c_lock.
*
* REVISIT: This solution is not complete. It protects us from lockdep
* false positives when the expander controlling the i2c-mux is on
* a different level on the device tree, but not when it's on the same
* level on a different branch (in which case the subclass number
* would be the same).
*
* TODO: Once a correct solution is developed, a similar fix should be
* applied to all other i2c-controlled GPIO expanders (and potentially
* regmap-i2c).
*/
lockdep_set_subclass(&chip->i2c_lock,
i2c_adapter_depth(client->adapter));
/* initialize cached registers from their original values.
* we can't share this chip with another i2c master.
*/
pca953x_setup_gpio(chip, chip->driver_data & PCA_GPIO_MASK);
if (PCA_CHIP_TYPE(chip->driver_data) == PCA953X_TYPE) {
chip->regs = &pca953x_regs;
ret = device_pca95xx_init(chip, invert);
} else {
chip->regs = &pca957x_regs;
ret = device_pca957x_init(chip, invert);
}
if (ret)
goto err_exit;
ret = devm_gpiochip_add_data(&client->dev, &chip->gpio_chip, chip);
if (ret)
goto err_exit;
ret = pca953x_irq_setup(chip, irq_base);
if (ret)
goto err_exit;
if (pdata && pdata->setup) {
ret = pdata->setup(client, chip->gpio_chip.base,
chip->gpio_chip.ngpio, pdata->context);
if (ret < 0)
dev_warn(&client->dev, "setup failed, %d\n", ret);
}
return 0;
err_exit:
regulator_disable(chip->regulator);
return ret;
}
static int pca953x_remove(struct i2c_client *client)
{
struct pca953x_platform_data *pdata = dev_get_platdata(&client->dev);
struct pca953x_chip *chip = i2c_get_clientdata(client);
int ret;
if (pdata && pdata->teardown) {
ret = pdata->teardown(client, chip->gpio_chip.base,
chip->gpio_chip.ngpio, pdata->context);
if (ret < 0)
dev_err(&client->dev, "%s failed, %d\n",
"teardown", ret);
} else {
ret = 0;
}
regulator_disable(chip->regulator);
return ret;
}
/* convenience to stop overlong match-table lines */
#define OF_953X(__nrgpio, __int) (void *)(__nrgpio | PCA953X_TYPE | __int)
#define OF_957X(__nrgpio, __int) (void *)(__nrgpio | PCA957X_TYPE | __int)
static const struct of_device_id pca953x_dt_ids[] = {
{ .compatible = "nxp,pca9505", .data = OF_953X(40, PCA_INT), },
{ .compatible = "nxp,pca9534", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "nxp,pca9535", .data = OF_953X(16, PCA_INT), },
{ .compatible = "nxp,pca9536", .data = OF_953X( 4, 0), },
{ .compatible = "nxp,pca9537", .data = OF_953X( 4, PCA_INT), },
{ .compatible = "nxp,pca9538", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "nxp,pca9539", .data = OF_953X(16, PCA_INT), },
{ .compatible = "nxp,pca9554", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "nxp,pca9555", .data = OF_953X(16, PCA_INT), },
{ .compatible = "nxp,pca9556", .data = OF_953X( 8, 0), },
{ .compatible = "nxp,pca9557", .data = OF_953X( 8, 0), },
{ .compatible = "nxp,pca9574", .data = OF_957X( 8, PCA_INT), },
{ .compatible = "nxp,pca9575", .data = OF_957X(16, PCA_INT), },
{ .compatible = "nxp,pca9698", .data = OF_953X(40, 0), },
{ .compatible = "nxp,pcal6524", .data = OF_953X(24, PCA_LATCH_INT), },
{ .compatible = "nxp,pcal9555a", .data = OF_953X(16, PCA_LATCH_INT), },
{ .compatible = "maxim,max7310", .data = OF_953X( 8, 0), },
{ .compatible = "maxim,max7312", .data = OF_953X(16, PCA_INT), },
{ .compatible = "maxim,max7313", .data = OF_953X(16, PCA_INT), },
{ .compatible = "maxim,max7315", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "maxim,max7318", .data = OF_953X(16, PCA_INT), },
{ .compatible = "ti,pca6107", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "ti,pca9536", .data = OF_953X( 4, 0), },
{ .compatible = "ti,tca6408", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "ti,tca6416", .data = OF_953X(16, PCA_INT), },
{ .compatible = "ti,tca6424", .data = OF_953X(24, PCA_INT), },
{ .compatible = "onnn,pca9654", .data = OF_953X( 8, PCA_INT), },
{ .compatible = "exar,xra1202", .data = OF_953X( 8, 0), },
{ }
};
MODULE_DEVICE_TABLE(of, pca953x_dt_ids);
static struct i2c_driver pca953x_driver = {
.driver = {
.name = "pca953x",
.of_match_table = pca953x_dt_ids,
.acpi_match_table = ACPI_PTR(pca953x_acpi_ids),
},
.probe = pca953x_probe,
.remove = pca953x_remove,
.id_table = pca953x_id,
};
static int __init pca953x_init(void)
{
return i2c_add_driver(&pca953x_driver);
}
/* register after i2c postcore initcall and before
* subsys initcalls that may rely on these GPIOs
*/
subsys_initcall(pca953x_init);
static void __exit pca953x_exit(void)
{
i2c_del_driver(&pca953x_driver);
}
module_exit(pca953x_exit);
MODULE_AUTHOR("eric miao <eric.miao@marvell.com>");
MODULE_DESCRIPTION("GPIO expander driver for PCA953x");
MODULE_LICENSE("GPL");