linux_dsm_epyc7002/drivers/acpi/scan.c
Randy Dunlap d758a8fa8c [ACPI] fix kernel-doc warnings in acpi/scan.c
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
2006-01-07 05:05:31 -05:00

1414 lines
34 KiB
C

/*
* scan.c - support for transforming the ACPI namespace into individual objects
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/acpi.h>
#include <acpi/acpi_drivers.h>
#include <acpi/acinterp.h> /* for acpi_ex_eisa_id_to_string() */
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME("scan")
#define STRUCT_TO_INT(s) (*((int*)&s))
extern struct acpi_device *acpi_root;
#define ACPI_BUS_CLASS "system_bus"
#define ACPI_BUS_HID "ACPI_BUS"
#define ACPI_BUS_DRIVER_NAME "ACPI Bus Driver"
#define ACPI_BUS_DEVICE_NAME "System Bus"
static LIST_HEAD(acpi_device_list);
DEFINE_SPINLOCK(acpi_device_lock);
LIST_HEAD(acpi_wakeup_device_list);
static int acpi_bus_trim(struct acpi_device *start, int rmdevice);
static void acpi_device_release(struct kobject *kobj)
{
struct acpi_device *dev = container_of(kobj, struct acpi_device, kobj);
kfree(dev->pnp.cid_list);
kfree(dev);
}
struct acpi_device_attribute {
struct attribute attr;
ssize_t(*show) (struct acpi_device *, char *);
ssize_t(*store) (struct acpi_device *, const char *, size_t);
};
typedef void acpi_device_sysfs_files(struct kobject *,
const struct attribute *);
static void setup_sys_fs_device_files(struct acpi_device *dev,
acpi_device_sysfs_files * func);
#define create_sysfs_device_files(dev) \
setup_sys_fs_device_files(dev, (acpi_device_sysfs_files *)&sysfs_create_file)
#define remove_sysfs_device_files(dev) \
setup_sys_fs_device_files(dev, (acpi_device_sysfs_files *)&sysfs_remove_file)
#define to_acpi_device(n) container_of(n, struct acpi_device, kobj)
#define to_handle_attr(n) container_of(n, struct acpi_device_attribute, attr);
static ssize_t acpi_device_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct acpi_device *device = to_acpi_device(kobj);
struct acpi_device_attribute *attribute = to_handle_attr(attr);
return attribute->show ? attribute->show(device, buf) : -EIO;
}
static ssize_t acpi_device_attr_store(struct kobject *kobj,
struct attribute *attr, const char *buf,
size_t len)
{
struct acpi_device *device = to_acpi_device(kobj);
struct acpi_device_attribute *attribute = to_handle_attr(attr);
return attribute->store ? attribute->store(device, buf, len) : -EIO;
}
static struct sysfs_ops acpi_device_sysfs_ops = {
.show = acpi_device_attr_show,
.store = acpi_device_attr_store,
};
static struct kobj_type ktype_acpi_ns = {
.sysfs_ops = &acpi_device_sysfs_ops,
.release = acpi_device_release,
};
static int namespace_uevent(struct kset *kset, struct kobject *kobj,
char **envp, int num_envp, char *buffer,
int buffer_size)
{
struct acpi_device *dev = to_acpi_device(kobj);
int i = 0;
int len = 0;
if (!dev->driver)
return 0;
if (add_uevent_var(envp, num_envp, &i, buffer, buffer_size, &len,
"PHYSDEVDRIVER=%s", dev->driver->name))
return -ENOMEM;
envp[i] = NULL;
return 0;
}
static struct kset_uevent_ops namespace_uevent_ops = {
.uevent = &namespace_uevent,
};
static struct kset acpi_namespace_kset = {
.kobj = {
.name = "namespace",
},
.subsys = &acpi_subsys,
.ktype = &ktype_acpi_ns,
.uevent_ops = &namespace_uevent_ops,
};
static void acpi_device_register(struct acpi_device *device,
struct acpi_device *parent)
{
/*
* Linkage
* -------
* Link this device to its parent and siblings.
*/
INIT_LIST_HEAD(&device->children);
INIT_LIST_HEAD(&device->node);
INIT_LIST_HEAD(&device->g_list);
INIT_LIST_HEAD(&device->wakeup_list);
spin_lock(&acpi_device_lock);
if (device->parent) {
list_add_tail(&device->node, &device->parent->children);
list_add_tail(&device->g_list, &device->parent->g_list);
} else
list_add_tail(&device->g_list, &acpi_device_list);
if (device->wakeup.flags.valid)
list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
spin_unlock(&acpi_device_lock);
strlcpy(device->kobj.name, device->pnp.bus_id, KOBJ_NAME_LEN);
if (parent)
device->kobj.parent = &parent->kobj;
device->kobj.ktype = &ktype_acpi_ns;
device->kobj.kset = &acpi_namespace_kset;
kobject_register(&device->kobj);
create_sysfs_device_files(device);
}
static int acpi_device_unregister(struct acpi_device *device, int type)
{
spin_lock(&acpi_device_lock);
if (device->parent) {
list_del(&device->node);
list_del(&device->g_list);
} else
list_del(&device->g_list);
list_del(&device->wakeup_list);
spin_unlock(&acpi_device_lock);
acpi_detach_data(device->handle, acpi_bus_data_handler);
remove_sysfs_device_files(device);
kobject_unregister(&device->kobj);
return 0;
}
void acpi_bus_data_handler(acpi_handle handle, u32 function, void *context)
{
ACPI_FUNCTION_TRACE("acpi_bus_data_handler");
/* TBD */
return_VOID;
}
static int acpi_bus_get_power_flags(struct acpi_device *device)
{
acpi_status status = 0;
acpi_handle handle = NULL;
u32 i = 0;
ACPI_FUNCTION_TRACE("acpi_bus_get_power_flags");
/*
* Power Management Flags
*/
status = acpi_get_handle(device->handle, "_PSC", &handle);
if (ACPI_SUCCESS(status))
device->power.flags.explicit_get = 1;
status = acpi_get_handle(device->handle, "_IRC", &handle);
if (ACPI_SUCCESS(status))
device->power.flags.inrush_current = 1;
/*
* Enumerate supported power management states
*/
for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3; i++) {
struct acpi_device_power_state *ps = &device->power.states[i];
char object_name[5] = { '_', 'P', 'R', '0' + i, '\0' };
/* Evaluate "_PRx" to se if power resources are referenced */
acpi_evaluate_reference(device->handle, object_name, NULL,
&ps->resources);
if (ps->resources.count) {
device->power.flags.power_resources = 1;
ps->flags.valid = 1;
}
/* Evaluate "_PSx" to see if we can do explicit sets */
object_name[2] = 'S';
status = acpi_get_handle(device->handle, object_name, &handle);
if (ACPI_SUCCESS(status)) {
ps->flags.explicit_set = 1;
ps->flags.valid = 1;
}
/* State is valid if we have some power control */
if (ps->resources.count || ps->flags.explicit_set)
ps->flags.valid = 1;
ps->power = -1; /* Unknown - driver assigned */
ps->latency = -1; /* Unknown - driver assigned */
}
/* Set defaults for D0 and D3 states (always valid) */
device->power.states[ACPI_STATE_D0].flags.valid = 1;
device->power.states[ACPI_STATE_D0].power = 100;
device->power.states[ACPI_STATE_D3].flags.valid = 1;
device->power.states[ACPI_STATE_D3].power = 0;
/* TBD: System wake support and resource requirements. */
device->power.state = ACPI_STATE_UNKNOWN;
return_VALUE(0);
}
int acpi_match_ids(struct acpi_device *device, char *ids)
{
int error = 0;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
if (device->flags.hardware_id)
if (strstr(ids, device->pnp.hardware_id))
goto Done;
if (device->flags.compatible_ids) {
struct acpi_compatible_id_list *cid_list = device->pnp.cid_list;
int i;
/* compare multiple _CID entries against driver ids */
for (i = 0; i < cid_list->count; i++) {
if (strstr(ids, cid_list->id[i].value))
goto Done;
}
}
error = -ENOENT;
Done:
if (buffer.pointer)
acpi_os_free(buffer.pointer);
return error;
}
static acpi_status
acpi_bus_extract_wakeup_device_power_package(struct acpi_device *device,
union acpi_object *package)
{
int i = 0;
union acpi_object *element = NULL;
if (!device || !package || (package->package.count < 2))
return AE_BAD_PARAMETER;
element = &(package->package.elements[0]);
if (!element)
return AE_BAD_PARAMETER;
if (element->type == ACPI_TYPE_PACKAGE) {
if ((element->package.count < 2) ||
(element->package.elements[0].type !=
ACPI_TYPE_LOCAL_REFERENCE)
|| (element->package.elements[1].type != ACPI_TYPE_INTEGER))
return AE_BAD_DATA;
device->wakeup.gpe_device =
element->package.elements[0].reference.handle;
device->wakeup.gpe_number =
(u32) element->package.elements[1].integer.value;
} else if (element->type == ACPI_TYPE_INTEGER) {
device->wakeup.gpe_number = element->integer.value;
} else
return AE_BAD_DATA;
element = &(package->package.elements[1]);
if (element->type != ACPI_TYPE_INTEGER) {
return AE_BAD_DATA;
}
device->wakeup.sleep_state = element->integer.value;
if ((package->package.count - 2) > ACPI_MAX_HANDLES) {
return AE_NO_MEMORY;
}
device->wakeup.resources.count = package->package.count - 2;
for (i = 0; i < device->wakeup.resources.count; i++) {
element = &(package->package.elements[i + 2]);
if (element->type != ACPI_TYPE_ANY) {
return AE_BAD_DATA;
}
device->wakeup.resources.handles[i] = element->reference.handle;
}
return AE_OK;
}
static int acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
{
acpi_status status = 0;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *package = NULL;
ACPI_FUNCTION_TRACE("acpi_bus_get_wakeup_flags");
/* _PRW */
status = acpi_evaluate_object(device->handle, "_PRW", NULL, &buffer);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PRW\n"));
goto end;
}
package = (union acpi_object *)buffer.pointer;
status = acpi_bus_extract_wakeup_device_power_package(device, package);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error extracting _PRW package\n"));
goto end;
}
acpi_os_free(buffer.pointer);
device->wakeup.flags.valid = 1;
/* Power button, Lid switch always enable wakeup */
if (!acpi_match_ids(device, "PNP0C0D,PNP0C0C,PNP0C0E"))
device->wakeup.flags.run_wake = 1;
end:
if (ACPI_FAILURE(status))
device->flags.wake_capable = 0;
return_VALUE(0);
}
/* --------------------------------------------------------------------------
ACPI sysfs device file support
-------------------------------------------------------------------------- */
static ssize_t acpi_eject_store(struct acpi_device *device,
const char *buf, size_t count);
#define ACPI_DEVICE_ATTR(_name,_mode,_show,_store) \
static struct acpi_device_attribute acpi_device_attr_##_name = \
__ATTR(_name, _mode, _show, _store)
ACPI_DEVICE_ATTR(eject, 0200, NULL, acpi_eject_store);
/**
* setup_sys_fs_device_files - sets up the device files under device namespace
* @dev: acpi_device object
* @func: function pointer to create or destroy the device file
*/
static void
setup_sys_fs_device_files(struct acpi_device *dev,
acpi_device_sysfs_files * func)
{
acpi_status status;
acpi_handle temp = NULL;
/*
* If device has _EJ0, 'eject' file is created that is used to trigger
* hot-removal function from userland.
*/
status = acpi_get_handle(dev->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
(*(func)) (&dev->kobj, &acpi_device_attr_eject.attr);
}
static int acpi_eject_operation(acpi_handle handle, int lockable)
{
struct acpi_object_list arg_list;
union acpi_object arg;
acpi_status status = AE_OK;
/*
* TBD: evaluate _PS3?
*/
if (lockable) {
arg_list.count = 1;
arg_list.pointer = &arg;
arg.type = ACPI_TYPE_INTEGER;
arg.integer.value = 0;
acpi_evaluate_object(handle, "_LCK", &arg_list, NULL);
}
arg_list.count = 1;
arg_list.pointer = &arg;
arg.type = ACPI_TYPE_INTEGER;
arg.integer.value = 1;
/*
* TBD: _EJD support.
*/
status = acpi_evaluate_object(handle, "_EJ0", &arg_list, NULL);
if (ACPI_FAILURE(status)) {
return (-ENODEV);
}
return (0);
}
static ssize_t
acpi_eject_store(struct acpi_device *device, const char *buf, size_t count)
{
int result;
int ret = count;
int islockable;
acpi_status status;
acpi_handle handle;
acpi_object_type type = 0;
if ((!count) || (buf[0] != '1')) {
return -EINVAL;
}
#ifndef FORCE_EJECT
if (device->driver == NULL) {
ret = -ENODEV;
goto err;
}
#endif
status = acpi_get_type(device->handle, &type);
if (ACPI_FAILURE(status) || (!device->flags.ejectable)) {
ret = -ENODEV;
goto err;
}
islockable = device->flags.lockable;
handle = device->handle;
if (type == ACPI_TYPE_PROCESSOR)
result = acpi_bus_trim(device, 0);
else
result = acpi_bus_trim(device, 1);
if (!result)
result = acpi_eject_operation(handle, islockable);
if (result) {
ret = -EBUSY;
}
err:
return ret;
}
/* --------------------------------------------------------------------------
Performance Management
-------------------------------------------------------------------------- */
static int acpi_bus_get_perf_flags(struct acpi_device *device)
{
device->performance.state = ACPI_STATE_UNKNOWN;
return 0;
}
/* --------------------------------------------------------------------------
Driver Management
-------------------------------------------------------------------------- */
static LIST_HEAD(acpi_bus_drivers);
static DECLARE_MUTEX(acpi_bus_drivers_lock);
/**
* acpi_bus_match - match device IDs to driver's supported IDs
* @device: the device that we are trying to match to a driver
* @driver: driver whose device id table is being checked
*
* Checks the device's hardware (_HID) or compatible (_CID) ids to see if it
* matches the specified driver's criteria.
*/
static int
acpi_bus_match(struct acpi_device *device, struct acpi_driver *driver)
{
if (driver && driver->ops.match)
return driver->ops.match(device, driver);
return acpi_match_ids(device, driver->ids);
}
/**
* acpi_bus_driver_init - add a device to a driver
* @device: the device to add and initialize
* @driver: driver for the device
*
* Used to initialize a device via its device driver. Called whenever a
* driver is bound to a device. Invokes the driver's add() and start() ops.
*/
static int
acpi_bus_driver_init(struct acpi_device *device, struct acpi_driver *driver)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_bus_driver_init");
if (!device || !driver)
return_VALUE(-EINVAL);
if (!driver->ops.add)
return_VALUE(-ENOSYS);
result = driver->ops.add(device);
if (result) {
device->driver = NULL;
acpi_driver_data(device) = NULL;
return_VALUE(result);
}
device->driver = driver;
/*
* TBD - Configuration Management: Assign resources to device based
* upon possible configuration and currently allocated resources.
*/
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Driver successfully bound to device\n"));
return_VALUE(0);
}
static int acpi_start_single_object(struct acpi_device *device)
{
int result = 0;
struct acpi_driver *driver;
ACPI_FUNCTION_TRACE("acpi_start_single_object");
if (!(driver = device->driver))
return_VALUE(0);
if (driver->ops.start) {
result = driver->ops.start(device);
if (result && driver->ops.remove)
driver->ops.remove(device, ACPI_BUS_REMOVAL_NORMAL);
}
return_VALUE(result);
}
static int acpi_driver_attach(struct acpi_driver *drv)
{
struct list_head *node, *next;
int count = 0;
ACPI_FUNCTION_TRACE("acpi_driver_attach");
spin_lock(&acpi_device_lock);
list_for_each_safe(node, next, &acpi_device_list) {
struct acpi_device *dev =
container_of(node, struct acpi_device, g_list);
if (dev->driver || !dev->status.present)
continue;
spin_unlock(&acpi_device_lock);
if (!acpi_bus_match(dev, drv)) {
if (!acpi_bus_driver_init(dev, drv)) {
acpi_start_single_object(dev);
atomic_inc(&drv->references);
count++;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Found driver [%s] for device [%s]\n",
drv->name, dev->pnp.bus_id));
}
}
spin_lock(&acpi_device_lock);
}
spin_unlock(&acpi_device_lock);
return_VALUE(count);
}
static int acpi_driver_detach(struct acpi_driver *drv)
{
struct list_head *node, *next;
ACPI_FUNCTION_TRACE("acpi_driver_detach");
spin_lock(&acpi_device_lock);
list_for_each_safe(node, next, &acpi_device_list) {
struct acpi_device *dev =
container_of(node, struct acpi_device, g_list);
if (dev->driver == drv) {
spin_unlock(&acpi_device_lock);
if (drv->ops.remove)
drv->ops.remove(dev, ACPI_BUS_REMOVAL_NORMAL);
spin_lock(&acpi_device_lock);
dev->driver = NULL;
dev->driver_data = NULL;
atomic_dec(&drv->references);
}
}
spin_unlock(&acpi_device_lock);
return_VALUE(0);
}
/**
* acpi_bus_register_driver - register a driver with the ACPI bus
* @driver: driver being registered
*
* Registers a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and binds. Returns the
* number of devices that were claimed by the driver, or a negative
* error status for failure.
*/
int acpi_bus_register_driver(struct acpi_driver *driver)
{
int count;
ACPI_FUNCTION_TRACE("acpi_bus_register_driver");
if (acpi_disabled)
return_VALUE(-ENODEV);
if (!driver)
return_VALUE(-EINVAL);
spin_lock(&acpi_device_lock);
list_add_tail(&driver->node, &acpi_bus_drivers);
spin_unlock(&acpi_device_lock);
count = acpi_driver_attach(driver);
return_VALUE(count);
}
EXPORT_SYMBOL(acpi_bus_register_driver);
/**
* acpi_bus_unregister_driver - unregisters a driver with the APIC bus
* @driver: driver to unregister
*
* Unregisters a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and unbinds.
*/
int acpi_bus_unregister_driver(struct acpi_driver *driver)
{
int error = 0;
ACPI_FUNCTION_TRACE("acpi_bus_unregister_driver");
if (driver) {
acpi_driver_detach(driver);
if (!atomic_read(&driver->references)) {
spin_lock(&acpi_device_lock);
list_del_init(&driver->node);
spin_unlock(&acpi_device_lock);
}
} else
error = -EINVAL;
return_VALUE(error);
}
EXPORT_SYMBOL(acpi_bus_unregister_driver);
/**
* acpi_bus_find_driver - check if there is a driver installed for the device
* @device: device that we are trying to find a supporting driver for
*
* Parses the list of registered drivers looking for a driver applicable for
* the specified device.
*/
static int acpi_bus_find_driver(struct acpi_device *device)
{
int result = 0;
struct list_head *node, *next;
ACPI_FUNCTION_TRACE("acpi_bus_find_driver");
spin_lock(&acpi_device_lock);
list_for_each_safe(node, next, &acpi_bus_drivers) {
struct acpi_driver *driver =
container_of(node, struct acpi_driver, node);
atomic_inc(&driver->references);
spin_unlock(&acpi_device_lock);
if (!acpi_bus_match(device, driver)) {
result = acpi_bus_driver_init(device, driver);
if (!result)
goto Done;
}
atomic_dec(&driver->references);
spin_lock(&acpi_device_lock);
}
spin_unlock(&acpi_device_lock);
Done:
return_VALUE(result);
}
/* --------------------------------------------------------------------------
Device Enumeration
-------------------------------------------------------------------------- */
static int acpi_bus_get_flags(struct acpi_device *device)
{
acpi_status status = AE_OK;
acpi_handle temp = NULL;
ACPI_FUNCTION_TRACE("acpi_bus_get_flags");
/* Presence of _STA indicates 'dynamic_status' */
status = acpi_get_handle(device->handle, "_STA", &temp);
if (ACPI_SUCCESS(status))
device->flags.dynamic_status = 1;
/* Presence of _CID indicates 'compatible_ids' */
status = acpi_get_handle(device->handle, "_CID", &temp);
if (ACPI_SUCCESS(status))
device->flags.compatible_ids = 1;
/* Presence of _RMV indicates 'removable' */
status = acpi_get_handle(device->handle, "_RMV", &temp);
if (ACPI_SUCCESS(status))
device->flags.removable = 1;
/* Presence of _EJD|_EJ0 indicates 'ejectable' */
status = acpi_get_handle(device->handle, "_EJD", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
else {
status = acpi_get_handle(device->handle, "_EJ0", &temp);
if (ACPI_SUCCESS(status))
device->flags.ejectable = 1;
}
/* Presence of _LCK indicates 'lockable' */
status = acpi_get_handle(device->handle, "_LCK", &temp);
if (ACPI_SUCCESS(status))
device->flags.lockable = 1;
/* Presence of _PS0|_PR0 indicates 'power manageable' */
status = acpi_get_handle(device->handle, "_PS0", &temp);
if (ACPI_FAILURE(status))
status = acpi_get_handle(device->handle, "_PR0", &temp);
if (ACPI_SUCCESS(status))
device->flags.power_manageable = 1;
/* Presence of _PRW indicates wake capable */
status = acpi_get_handle(device->handle, "_PRW", &temp);
if (ACPI_SUCCESS(status))
device->flags.wake_capable = 1;
/* TBD: Peformance management */
return_VALUE(0);
}
static void acpi_device_get_busid(struct acpi_device *device,
acpi_handle handle, int type)
{
char bus_id[5] = { '?', 0 };
struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
int i = 0;
/*
* Bus ID
* ------
* The device's Bus ID is simply the object name.
* TBD: Shouldn't this value be unique (within the ACPI namespace)?
*/
switch (type) {
case ACPI_BUS_TYPE_SYSTEM:
strcpy(device->pnp.bus_id, "ACPI");
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
strcpy(device->pnp.bus_id, "PWRF");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
strcpy(device->pnp.bus_id, "SLPF");
break;
default:
acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
/* Clean up trailing underscores (if any) */
for (i = 3; i > 1; i--) {
if (bus_id[i] == '_')
bus_id[i] = '\0';
else
break;
}
strcpy(device->pnp.bus_id, bus_id);
break;
}
}
static void acpi_device_set_id(struct acpi_device *device,
struct acpi_device *parent, acpi_handle handle,
int type)
{
struct acpi_device_info *info;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
char *hid = NULL;
char *uid = NULL;
struct acpi_compatible_id_list *cid_list = NULL;
acpi_status status;
switch (type) {
case ACPI_BUS_TYPE_DEVICE:
status = acpi_get_object_info(handle, &buffer);
if (ACPI_FAILURE(status)) {
printk("%s: Error reading device info\n", __FUNCTION__);
return;
}
info = buffer.pointer;
if (info->valid & ACPI_VALID_HID)
hid = info->hardware_id.value;
if (info->valid & ACPI_VALID_UID)
uid = info->unique_id.value;
if (info->valid & ACPI_VALID_CID)
cid_list = &info->compatibility_id;
if (info->valid & ACPI_VALID_ADR) {
device->pnp.bus_address = info->address;
device->flags.bus_address = 1;
}
break;
case ACPI_BUS_TYPE_POWER:
hid = ACPI_POWER_HID;
break;
case ACPI_BUS_TYPE_PROCESSOR:
hid = ACPI_PROCESSOR_HID;
break;
case ACPI_BUS_TYPE_SYSTEM:
hid = ACPI_SYSTEM_HID;
break;
case ACPI_BUS_TYPE_THERMAL:
hid = ACPI_THERMAL_HID;
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
hid = ACPI_BUTTON_HID_POWERF;
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
hid = ACPI_BUTTON_HID_SLEEPF;
break;
}
/*
* \_SB
* ----
* Fix for the system root bus device -- the only root-level device.
*/
if ((parent == ACPI_ROOT_OBJECT) && (type == ACPI_BUS_TYPE_DEVICE)) {
hid = ACPI_BUS_HID;
strcpy(device->pnp.device_name, ACPI_BUS_DEVICE_NAME);
strcpy(device->pnp.device_class, ACPI_BUS_CLASS);
}
if (hid) {
strcpy(device->pnp.hardware_id, hid);
device->flags.hardware_id = 1;
}
if (uid) {
strcpy(device->pnp.unique_id, uid);
device->flags.unique_id = 1;
}
if (cid_list) {
device->pnp.cid_list = kmalloc(cid_list->size, GFP_KERNEL);
if (device->pnp.cid_list)
memcpy(device->pnp.cid_list, cid_list, cid_list->size);
else
printk(KERN_ERR "Memory allocation error\n");
}
acpi_os_free(buffer.pointer);
}
static int acpi_device_set_context(struct acpi_device *device, int type)
{
acpi_status status = AE_OK;
int result = 0;
/*
* Context
* -------
* Attach this 'struct acpi_device' to the ACPI object. This makes
* resolutions from handle->device very efficient. Note that we need
* to be careful with fixed-feature devices as they all attach to the
* root object.
*/
if (type != ACPI_BUS_TYPE_POWER_BUTTON &&
type != ACPI_BUS_TYPE_SLEEP_BUTTON) {
status = acpi_attach_data(device->handle,
acpi_bus_data_handler, device);
if (ACPI_FAILURE(status)) {
printk("Error attaching device data\n");
result = -ENODEV;
}
}
return result;
}
static void acpi_device_get_debug_info(struct acpi_device *device,
acpi_handle handle, int type)
{
#ifdef CONFIG_ACPI_DEBUG_OUTPUT
char *type_string = NULL;
char name[80] = { '?', '\0' };
struct acpi_buffer buffer = { sizeof(name), name };
switch (type) {
case ACPI_BUS_TYPE_DEVICE:
type_string = "Device";
acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
break;
case ACPI_BUS_TYPE_POWER:
type_string = "Power Resource";
acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
break;
case ACPI_BUS_TYPE_PROCESSOR:
type_string = "Processor";
acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
break;
case ACPI_BUS_TYPE_SYSTEM:
type_string = "System";
acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
break;
case ACPI_BUS_TYPE_THERMAL:
type_string = "Thermal Zone";
acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
break;
case ACPI_BUS_TYPE_POWER_BUTTON:
type_string = "Power Button";
sprintf(name, "PWRB");
break;
case ACPI_BUS_TYPE_SLEEP_BUTTON:
type_string = "Sleep Button";
sprintf(name, "SLPB");
break;
}
printk(KERN_DEBUG "Found %s %s [%p]\n", type_string, name, handle);
#endif /*CONFIG_ACPI_DEBUG_OUTPUT */
}
static int acpi_bus_remove(struct acpi_device *dev, int rmdevice)
{
int result = 0;
struct acpi_driver *driver;
ACPI_FUNCTION_TRACE("acpi_bus_remove");
if (!dev)
return_VALUE(-EINVAL);
driver = dev->driver;
if ((driver) && (driver->ops.remove)) {
if (driver->ops.stop) {
result = driver->ops.stop(dev, ACPI_BUS_REMOVAL_EJECT);
if (result)
return_VALUE(result);
}
result = dev->driver->ops.remove(dev, ACPI_BUS_REMOVAL_EJECT);
if (result) {
return_VALUE(result);
}
atomic_dec(&dev->driver->references);
dev->driver = NULL;
acpi_driver_data(dev) = NULL;
}
if (!rmdevice)
return_VALUE(0);
if (dev->flags.bus_address) {
if ((dev->parent) && (dev->parent->ops.unbind))
dev->parent->ops.unbind(dev);
}
acpi_device_unregister(dev, ACPI_BUS_REMOVAL_EJECT);
return_VALUE(0);
}
static int
acpi_add_single_object(struct acpi_device **child,
struct acpi_device *parent, acpi_handle handle, int type)
{
int result = 0;
struct acpi_device *device = NULL;
ACPI_FUNCTION_TRACE("acpi_add_single_object");
if (!child)
return_VALUE(-EINVAL);
device = kmalloc(sizeof(struct acpi_device), GFP_KERNEL);
if (!device) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Memory allocation error\n"));
return_VALUE(-ENOMEM);
}
memset(device, 0, sizeof(struct acpi_device));
device->handle = handle;
device->parent = parent;
acpi_device_get_busid(device, handle, type);
/*
* Flags
* -----
* Get prior to calling acpi_bus_get_status() so we know whether
* or not _STA is present. Note that we only look for object
* handles -- cannot evaluate objects until we know the device is
* present and properly initialized.
*/
result = acpi_bus_get_flags(device);
if (result)
goto end;
/*
* Status
* ------
* See if the device is present. We always assume that non-Device
* and non-Processor objects (e.g. thermal zones, power resources,
* etc.) are present, functioning, etc. (at least when parent object
* is present). Note that _STA has a different meaning for some
* objects (e.g. power resources) so we need to be careful how we use
* it.
*/
switch (type) {
case ACPI_BUS_TYPE_PROCESSOR:
case ACPI_BUS_TYPE_DEVICE:
result = acpi_bus_get_status(device);
if (ACPI_FAILURE(result) || !device->status.present) {
result = -ENOENT;
goto end;
}
break;
default:
STRUCT_TO_INT(device->status) = 0x0F;
break;
}
/*
* Initialize Device
* -----------------
* TBD: Synch with Core's enumeration/initialization process.
*/
/*
* Hardware ID, Unique ID, & Bus Address
* -------------------------------------
*/
acpi_device_set_id(device, parent, handle, type);
/*
* Power Management
* ----------------
*/
if (device->flags.power_manageable) {
result = acpi_bus_get_power_flags(device);
if (result)
goto end;
}
/*
* Wakeup device management
*-----------------------
*/
if (device->flags.wake_capable) {
result = acpi_bus_get_wakeup_device_flags(device);
if (result)
goto end;
}
/*
* Performance Management
* ----------------------
*/
if (device->flags.performance_manageable) {
result = acpi_bus_get_perf_flags(device);
if (result)
goto end;
}
if ((result = acpi_device_set_context(device, type)))
goto end;
acpi_device_get_debug_info(device, handle, type);
acpi_device_register(device, parent);
/*
* Bind _ADR-Based Devices
* -----------------------
* If there's a a bus address (_ADR) then we utilize the parent's
* 'bind' function (if exists) to bind the ACPI- and natively-
* enumerated device representations.
*/
if (device->flags.bus_address) {
if (device->parent && device->parent->ops.bind)
device->parent->ops.bind(device);
}
/*
* Locate & Attach Driver
* ----------------------
* If there's a hardware id (_HID) or compatible ids (_CID) we check
* to see if there's a driver installed for this kind of device. Note
* that drivers can install before or after a device is enumerated.
*
* TBD: Assumes LDM provides driver hot-plug capability.
*/
acpi_bus_find_driver(device);
end:
if (!result)
*child = device;
else {
kfree(device->pnp.cid_list);
kfree(device);
}
return_VALUE(result);
}
static int acpi_bus_scan(struct acpi_device *start, struct acpi_bus_ops *ops)
{
acpi_status status = AE_OK;
struct acpi_device *parent = NULL;
struct acpi_device *child = NULL;
acpi_handle phandle = NULL;
acpi_handle chandle = NULL;
acpi_object_type type = 0;
u32 level = 1;
ACPI_FUNCTION_TRACE("acpi_bus_scan");
if (!start)
return_VALUE(-EINVAL);
parent = start;
phandle = start->handle;
/*
* Parse through the ACPI namespace, identify all 'devices', and
* create a new 'struct acpi_device' for each.
*/
while ((level > 0) && parent) {
status = acpi_get_next_object(ACPI_TYPE_ANY, phandle,
chandle, &chandle);
/*
* If this scope is exhausted then move our way back up.
*/
if (ACPI_FAILURE(status)) {
level--;
chandle = phandle;
acpi_get_parent(phandle, &phandle);
if (parent->parent)
parent = parent->parent;
continue;
}
status = acpi_get_type(chandle, &type);
if (ACPI_FAILURE(status))
continue;
/*
* If this is a scope object then parse it (depth-first).
*/
if (type == ACPI_TYPE_LOCAL_SCOPE) {
level++;
phandle = chandle;
chandle = NULL;
continue;
}
/*
* We're only interested in objects that we consider 'devices'.
*/
switch (type) {
case ACPI_TYPE_DEVICE:
type = ACPI_BUS_TYPE_DEVICE;
break;
case ACPI_TYPE_PROCESSOR:
type = ACPI_BUS_TYPE_PROCESSOR;
break;
case ACPI_TYPE_THERMAL:
type = ACPI_BUS_TYPE_THERMAL;
break;
case ACPI_TYPE_POWER:
type = ACPI_BUS_TYPE_POWER;
break;
default:
continue;
}
if (ops->acpi_op_add)
status = acpi_add_single_object(&child, parent,
chandle, type);
else
status = acpi_bus_get_device(chandle, &child);
if (ACPI_FAILURE(status))
continue;
if (ops->acpi_op_start) {
status = acpi_start_single_object(child);
if (ACPI_FAILURE(status))
continue;
}
/*
* If the device is present, enabled, and functioning then
* parse its scope (depth-first). Note that we need to
* represent absent devices to facilitate PnP notifications
* -- but only the subtree head (not all of its children,
* which will be enumerated when the parent is inserted).
*
* TBD: Need notifications and other detection mechanisms
* in place before we can fully implement this.
*/
if (child->status.present) {
status = acpi_get_next_object(ACPI_TYPE_ANY, chandle,
NULL, NULL);
if (ACPI_SUCCESS(status)) {
level++;
phandle = chandle;
chandle = NULL;
parent = child;
}
}
}
return_VALUE(0);
}
int
acpi_bus_add(struct acpi_device **child,
struct acpi_device *parent, acpi_handle handle, int type)
{
int result;
struct acpi_bus_ops ops;
ACPI_FUNCTION_TRACE("acpi_bus_add");
result = acpi_add_single_object(child, parent, handle, type);
if (!result) {
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
result = acpi_bus_scan(*child, &ops);
}
return_VALUE(result);
}
EXPORT_SYMBOL(acpi_bus_add);
int acpi_bus_start(struct acpi_device *device)
{
int result;
struct acpi_bus_ops ops;
ACPI_FUNCTION_TRACE("acpi_bus_start");
if (!device)
return_VALUE(-EINVAL);
result = acpi_start_single_object(device);
if (!result) {
memset(&ops, 0, sizeof(ops));
ops.acpi_op_start = 1;
result = acpi_bus_scan(device, &ops);
}
return_VALUE(result);
}
EXPORT_SYMBOL(acpi_bus_start);
static int acpi_bus_trim(struct acpi_device *start, int rmdevice)
{
acpi_status status;
struct acpi_device *parent, *child;
acpi_handle phandle, chandle;
acpi_object_type type;
u32 level = 1;
int err = 0;
parent = start;
phandle = start->handle;
child = chandle = NULL;
while ((level > 0) && parent && (!err)) {
status = acpi_get_next_object(ACPI_TYPE_ANY, phandle,
chandle, &chandle);
/*
* If this scope is exhausted then move our way back up.
*/
if (ACPI_FAILURE(status)) {
level--;
chandle = phandle;
acpi_get_parent(phandle, &phandle);
child = parent;
parent = parent->parent;
if (level == 0)
err = acpi_bus_remove(child, rmdevice);
else
err = acpi_bus_remove(child, 1);
continue;
}
status = acpi_get_type(chandle, &type);
if (ACPI_FAILURE(status)) {
continue;
}
/*
* If there is a device corresponding to chandle then
* parse it (depth-first).
*/
if (acpi_bus_get_device(chandle, &child) == 0) {
level++;
phandle = chandle;
chandle = NULL;
parent = child;
}
continue;
}
return err;
}
static int acpi_bus_scan_fixed(struct acpi_device *root)
{
int result = 0;
struct acpi_device *device = NULL;
ACPI_FUNCTION_TRACE("acpi_bus_scan_fixed");
if (!root)
return_VALUE(-ENODEV);
/*
* Enumerate all fixed-feature devices.
*/
if (acpi_fadt.pwr_button == 0) {
result = acpi_add_single_object(&device, acpi_root,
NULL,
ACPI_BUS_TYPE_POWER_BUTTON);
if (!result)
result = acpi_start_single_object(device);
}
if (acpi_fadt.sleep_button == 0) {
result = acpi_add_single_object(&device, acpi_root,
NULL,
ACPI_BUS_TYPE_SLEEP_BUTTON);
if (!result)
result = acpi_start_single_object(device);
}
return_VALUE(result);
}
static int __init acpi_scan_init(void)
{
int result;
struct acpi_bus_ops ops;
ACPI_FUNCTION_TRACE("acpi_scan_init");
if (acpi_disabled)
return_VALUE(0);
kset_register(&acpi_namespace_kset);
/*
* Create the root device in the bus's device tree
*/
result = acpi_add_single_object(&acpi_root, NULL, ACPI_ROOT_OBJECT,
ACPI_BUS_TYPE_SYSTEM);
if (result)
goto Done;
result = acpi_start_single_object(acpi_root);
/*
* Enumerate devices in the ACPI namespace.
*/
result = acpi_bus_scan_fixed(acpi_root);
if (!result) {
memset(&ops, 0, sizeof(ops));
ops.acpi_op_add = 1;
ops.acpi_op_start = 1;
result = acpi_bus_scan(acpi_root, &ops);
}
if (result)
acpi_device_unregister(acpi_root, ACPI_BUS_REMOVAL_NORMAL);
Done:
return_VALUE(result);
}
subsys_initcall(acpi_scan_init);