mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 11:56:43 +07:00
d1748302f7
The automatic increase of the min_delta_ns of a clockevents device should be done in the clockevents code as the minimum delay is an attribute of the clockevents device. In addition not all architectures want the automatic adjustment, on a massively virtualized system it can happen that the programming of a clock event fails several times in a row because the virtual cpu has been rescheduled quickly enough. In that case the minimum delay will erroneously be increased with no way back. The new config symbol GENERIC_CLOCKEVENTS_MIN_ADJUST is used to enable the automatic adjustment. The config option is selected only for x86. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: john stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/20110823133142.494157493@de.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
420 lines
9.5 KiB
C
420 lines
9.5 KiB
C
/*
|
|
* linux/kernel/time/tick-common.c
|
|
*
|
|
* This file contains the base functions to manage periodic tick
|
|
* related events.
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
|
|
*
|
|
* This code is licenced under the GPL version 2. For details see
|
|
* kernel-base/COPYING.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Tick devices
|
|
*/
|
|
DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
|
|
/*
|
|
* Tick next event: keeps track of the tick time
|
|
*/
|
|
ktime_t tick_next_period;
|
|
ktime_t tick_period;
|
|
int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
|
|
static DEFINE_RAW_SPINLOCK(tick_device_lock);
|
|
|
|
/*
|
|
* Debugging: see timer_list.c
|
|
*/
|
|
struct tick_device *tick_get_device(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_device, cpu);
|
|
}
|
|
|
|
/**
|
|
* tick_is_oneshot_available - check for a oneshot capable event device
|
|
*/
|
|
int tick_is_oneshot_available(void)
|
|
{
|
|
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
|
|
|
|
if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
|
|
return 0;
|
|
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return 1;
|
|
return tick_broadcast_oneshot_available();
|
|
}
|
|
|
|
/*
|
|
* Periodic tick
|
|
*/
|
|
static void tick_periodic(int cpu)
|
|
{
|
|
if (tick_do_timer_cpu == cpu) {
|
|
write_seqlock(&xtime_lock);
|
|
|
|
/* Keep track of the next tick event */
|
|
tick_next_period = ktime_add(tick_next_period, tick_period);
|
|
|
|
do_timer(1);
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
profile_tick(CPU_PROFILING);
|
|
}
|
|
|
|
/*
|
|
* Event handler for periodic ticks
|
|
*/
|
|
void tick_handle_periodic(struct clock_event_device *dev)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
ktime_t next;
|
|
|
|
tick_periodic(cpu);
|
|
|
|
if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
|
|
return;
|
|
/*
|
|
* Setup the next period for devices, which do not have
|
|
* periodic mode:
|
|
*/
|
|
next = ktime_add(dev->next_event, tick_period);
|
|
for (;;) {
|
|
if (!clockevents_program_event(dev, next, false))
|
|
return;
|
|
/*
|
|
* Have to be careful here. If we're in oneshot mode,
|
|
* before we call tick_periodic() in a loop, we need
|
|
* to be sure we're using a real hardware clocksource.
|
|
* Otherwise we could get trapped in an infinite
|
|
* loop, as the tick_periodic() increments jiffies,
|
|
* when then will increment time, posibly causing
|
|
* the loop to trigger again and again.
|
|
*/
|
|
if (timekeeping_valid_for_hres())
|
|
tick_periodic(cpu);
|
|
next = ktime_add(next, tick_period);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the device for a periodic tick
|
|
*/
|
|
void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
|
|
{
|
|
tick_set_periodic_handler(dev, broadcast);
|
|
|
|
/* Broadcast setup ? */
|
|
if (!tick_device_is_functional(dev))
|
|
return;
|
|
|
|
if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
|
|
!tick_broadcast_oneshot_active()) {
|
|
clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
|
|
} else {
|
|
unsigned long seq;
|
|
ktime_t next;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
next = tick_next_period;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
|
|
|
|
for (;;) {
|
|
if (!clockevents_program_event(dev, next, false))
|
|
return;
|
|
next = ktime_add(next, tick_period);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the tick device
|
|
*/
|
|
static void tick_setup_device(struct tick_device *td,
|
|
struct clock_event_device *newdev, int cpu,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
ktime_t next_event;
|
|
void (*handler)(struct clock_event_device *) = NULL;
|
|
|
|
/*
|
|
* First device setup ?
|
|
*/
|
|
if (!td->evtdev) {
|
|
/*
|
|
* If no cpu took the do_timer update, assign it to
|
|
* this cpu:
|
|
*/
|
|
if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
|
|
tick_do_timer_cpu = cpu;
|
|
tick_next_period = ktime_get();
|
|
tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
|
|
}
|
|
|
|
/*
|
|
* Startup in periodic mode first.
|
|
*/
|
|
td->mode = TICKDEV_MODE_PERIODIC;
|
|
} else {
|
|
handler = td->evtdev->event_handler;
|
|
next_event = td->evtdev->next_event;
|
|
td->evtdev->event_handler = clockevents_handle_noop;
|
|
}
|
|
|
|
td->evtdev = newdev;
|
|
|
|
/*
|
|
* When the device is not per cpu, pin the interrupt to the
|
|
* current cpu:
|
|
*/
|
|
if (!cpumask_equal(newdev->cpumask, cpumask))
|
|
irq_set_affinity(newdev->irq, cpumask);
|
|
|
|
/*
|
|
* When global broadcasting is active, check if the current
|
|
* device is registered as a placeholder for broadcast mode.
|
|
* This allows us to handle this x86 misfeature in a generic
|
|
* way.
|
|
*/
|
|
if (tick_device_uses_broadcast(newdev, cpu))
|
|
return;
|
|
|
|
if (td->mode == TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(newdev, 0);
|
|
else
|
|
tick_setup_oneshot(newdev, handler, next_event);
|
|
}
|
|
|
|
/*
|
|
* Check, if the new registered device should be used.
|
|
*/
|
|
static int tick_check_new_device(struct clock_event_device *newdev)
|
|
{
|
|
struct clock_event_device *curdev;
|
|
struct tick_device *td;
|
|
int cpu, ret = NOTIFY_OK;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_device_lock, flags);
|
|
|
|
cpu = smp_processor_id();
|
|
if (!cpumask_test_cpu(cpu, newdev->cpumask))
|
|
goto out_bc;
|
|
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
curdev = td->evtdev;
|
|
|
|
/* cpu local device ? */
|
|
if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
|
|
|
|
/*
|
|
* If the cpu affinity of the device interrupt can not
|
|
* be set, ignore it.
|
|
*/
|
|
if (!irq_can_set_affinity(newdev->irq))
|
|
goto out_bc;
|
|
|
|
/*
|
|
* If we have a cpu local device already, do not replace it
|
|
* by a non cpu local device
|
|
*/
|
|
if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
|
|
goto out_bc;
|
|
}
|
|
|
|
/*
|
|
* If we have an active device, then check the rating and the oneshot
|
|
* feature.
|
|
*/
|
|
if (curdev) {
|
|
/*
|
|
* Prefer one shot capable devices !
|
|
*/
|
|
if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
|
|
!(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
|
|
goto out_bc;
|
|
/*
|
|
* Check the rating
|
|
*/
|
|
if (curdev->rating >= newdev->rating)
|
|
goto out_bc;
|
|
}
|
|
|
|
/*
|
|
* Replace the eventually existing device by the new
|
|
* device. If the current device is the broadcast device, do
|
|
* not give it back to the clockevents layer !
|
|
*/
|
|
if (tick_is_broadcast_device(curdev)) {
|
|
clockevents_shutdown(curdev);
|
|
curdev = NULL;
|
|
}
|
|
clockevents_exchange_device(curdev, newdev);
|
|
tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
|
|
if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
|
|
tick_oneshot_notify();
|
|
|
|
raw_spin_unlock_irqrestore(&tick_device_lock, flags);
|
|
return NOTIFY_STOP;
|
|
|
|
out_bc:
|
|
/*
|
|
* Can the new device be used as a broadcast device ?
|
|
*/
|
|
if (tick_check_broadcast_device(newdev))
|
|
ret = NOTIFY_STOP;
|
|
|
|
raw_spin_unlock_irqrestore(&tick_device_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Transfer the do_timer job away from a dying cpu.
|
|
*
|
|
* Called with interrupts disabled.
|
|
*/
|
|
static void tick_handover_do_timer(int *cpup)
|
|
{
|
|
if (*cpup == tick_do_timer_cpu) {
|
|
int cpu = cpumask_first(cpu_online_mask);
|
|
|
|
tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
|
|
TICK_DO_TIMER_NONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shutdown an event device on a given cpu:
|
|
*
|
|
* This is called on a life CPU, when a CPU is dead. So we cannot
|
|
* access the hardware device itself.
|
|
* We just set the mode and remove it from the lists.
|
|
*/
|
|
static void tick_shutdown(unsigned int *cpup)
|
|
{
|
|
struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
|
|
struct clock_event_device *dev = td->evtdev;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_device_lock, flags);
|
|
td->mode = TICKDEV_MODE_PERIODIC;
|
|
if (dev) {
|
|
/*
|
|
* Prevent that the clock events layer tries to call
|
|
* the set mode function!
|
|
*/
|
|
dev->mode = CLOCK_EVT_MODE_UNUSED;
|
|
clockevents_exchange_device(dev, NULL);
|
|
td->evtdev = NULL;
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_device_lock, flags);
|
|
}
|
|
|
|
static void tick_suspend(void)
|
|
{
|
|
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_device_lock, flags);
|
|
clockevents_shutdown(td->evtdev);
|
|
raw_spin_unlock_irqrestore(&tick_device_lock, flags);
|
|
}
|
|
|
|
static void tick_resume(void)
|
|
{
|
|
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
|
|
unsigned long flags;
|
|
int broadcast = tick_resume_broadcast();
|
|
|
|
raw_spin_lock_irqsave(&tick_device_lock, flags);
|
|
clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
|
|
|
|
if (!broadcast) {
|
|
if (td->mode == TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(td->evtdev, 0);
|
|
else
|
|
tick_resume_oneshot();
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_device_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Notification about clock event devices
|
|
*/
|
|
static int tick_notify(struct notifier_block *nb, unsigned long reason,
|
|
void *dev)
|
|
{
|
|
switch (reason) {
|
|
|
|
case CLOCK_EVT_NOTIFY_ADD:
|
|
return tick_check_new_device(dev);
|
|
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_ON:
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
|
|
tick_broadcast_on_off(reason, dev);
|
|
break;
|
|
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
|
|
case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
|
|
tick_broadcast_oneshot_control(reason);
|
|
break;
|
|
|
|
case CLOCK_EVT_NOTIFY_CPU_DYING:
|
|
tick_handover_do_timer(dev);
|
|
break;
|
|
|
|
case CLOCK_EVT_NOTIFY_CPU_DEAD:
|
|
tick_shutdown_broadcast_oneshot(dev);
|
|
tick_shutdown_broadcast(dev);
|
|
tick_shutdown(dev);
|
|
break;
|
|
|
|
case CLOCK_EVT_NOTIFY_SUSPEND:
|
|
tick_suspend();
|
|
tick_suspend_broadcast();
|
|
break;
|
|
|
|
case CLOCK_EVT_NOTIFY_RESUME:
|
|
tick_resume();
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block tick_notifier = {
|
|
.notifier_call = tick_notify,
|
|
};
|
|
|
|
/**
|
|
* tick_init - initialize the tick control
|
|
*
|
|
* Register the notifier with the clockevents framework
|
|
*/
|
|
void __init tick_init(void)
|
|
{
|
|
clockevents_register_notifier(&tick_notifier);
|
|
}
|