mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 16:35:01 +07:00
ddfce6bb43
Fix some of the easy warnings in network device drivers. Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
3236 lines
86 KiB
C
3236 lines
86 KiB
C
/*
|
|
* acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
|
|
* and other Tigon based cards.
|
|
*
|
|
* Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
|
|
*
|
|
* Thanks to Alteon and 3Com for providing hardware and documentation
|
|
* enabling me to write this driver.
|
|
*
|
|
* A mailing list for discussing the use of this driver has been
|
|
* setup, please subscribe to the lists if you have any questions
|
|
* about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
|
|
* see how to subscribe.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Additional credits:
|
|
* Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
|
|
* dump support. The trace dump support has not been
|
|
* integrated yet however.
|
|
* Troy Benjegerdes: Big Endian (PPC) patches.
|
|
* Nate Stahl: Better out of memory handling and stats support.
|
|
* Aman Singla: Nasty race between interrupt handler and tx code dealing
|
|
* with 'testing the tx_ret_csm and setting tx_full'
|
|
* David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
|
|
* infrastructure and Sparc support
|
|
* Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
|
|
* driver under Linux/Sparc64
|
|
* Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
|
|
* ETHTOOL_GDRVINFO support
|
|
* Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
|
|
* handler and close() cleanup.
|
|
* Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
|
|
* memory mapped IO is enabled to
|
|
* make the driver work on RS/6000.
|
|
* Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
|
|
* where the driver would disable
|
|
* bus master mode if it had to disable
|
|
* write and invalidate.
|
|
* Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
|
|
* endian systems.
|
|
* Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
|
|
* rx producer index when
|
|
* flushing the Jumbo ring.
|
|
* Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
|
|
* driver init path.
|
|
* Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/version.h>
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sockios.h>
|
|
|
|
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
|
|
#include <linux/if_vlan.h>
|
|
#endif
|
|
|
|
#ifdef SIOCETHTOOL
|
|
#include <linux/ethtool.h>
|
|
#endif
|
|
|
|
#include <net/sock.h>
|
|
#include <net/ip.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
|
|
#define DRV_NAME "acenic"
|
|
|
|
#undef INDEX_DEBUG
|
|
|
|
#ifdef CONFIG_ACENIC_OMIT_TIGON_I
|
|
#define ACE_IS_TIGON_I(ap) 0
|
|
#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
|
|
#else
|
|
#define ACE_IS_TIGON_I(ap) (ap->version == 1)
|
|
#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
|
|
#endif
|
|
|
|
#ifndef PCI_VENDOR_ID_ALTEON
|
|
#define PCI_VENDOR_ID_ALTEON 0x12ae
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
|
|
#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
|
|
#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_3COM_3C985
|
|
#define PCI_DEVICE_ID_3COM_3C985 0x0001
|
|
#endif
|
|
#ifndef PCI_VENDOR_ID_NETGEAR
|
|
#define PCI_VENDOR_ID_NETGEAR 0x1385
|
|
#define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
|
|
#define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Farallon used the DEC vendor ID by mistake and they seem not
|
|
* to care - stinky!
|
|
*/
|
|
#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
|
|
#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
|
|
#define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
|
|
#endif
|
|
#ifndef PCI_VENDOR_ID_SGI
|
|
#define PCI_VENDOR_ID_SGI 0x10a9
|
|
#endif
|
|
#ifndef PCI_DEVICE_ID_SGI_ACENIC
|
|
#define PCI_DEVICE_ID_SGI_ACENIC 0x0009
|
|
#endif
|
|
|
|
static struct pci_device_id acenic_pci_tbl[] = {
|
|
{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
/*
|
|
* Farallon used the DEC vendor ID on their cards incorrectly,
|
|
* then later Alteon's ID.
|
|
*/
|
|
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
|
|
PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
|
|
|
|
#define ace_sync_irq(irq) synchronize_irq(irq)
|
|
|
|
#ifndef offset_in_page
|
|
#define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
|
|
#endif
|
|
|
|
#define ACE_MAX_MOD_PARMS 8
|
|
#define BOARD_IDX_STATIC 0
|
|
#define BOARD_IDX_OVERFLOW -1
|
|
|
|
#if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
|
|
defined(NETIF_F_HW_VLAN_RX)
|
|
#define ACENIC_DO_VLAN 1
|
|
#define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
|
|
#else
|
|
#define ACENIC_DO_VLAN 0
|
|
#define ACE_RCB_VLAN_FLAG 0
|
|
#endif
|
|
|
|
#include "acenic.h"
|
|
|
|
/*
|
|
* These must be defined before the firmware is included.
|
|
*/
|
|
#define MAX_TEXT_LEN 96*1024
|
|
#define MAX_RODATA_LEN 8*1024
|
|
#define MAX_DATA_LEN 2*1024
|
|
|
|
#include "acenic_firmware.h"
|
|
|
|
#ifndef tigon2FwReleaseLocal
|
|
#define tigon2FwReleaseLocal 0
|
|
#endif
|
|
|
|
/*
|
|
* This driver currently supports Tigon I and Tigon II based cards
|
|
* including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
|
|
* GA620. The driver should also work on the SGI, DEC and Farallon
|
|
* versions of the card, however I have not been able to test that
|
|
* myself.
|
|
*
|
|
* This card is really neat, it supports receive hardware checksumming
|
|
* and jumbo frames (up to 9000 bytes) and does a lot of work in the
|
|
* firmware. Also the programming interface is quite neat, except for
|
|
* the parts dealing with the i2c eeprom on the card ;-)
|
|
*
|
|
* Using jumbo frames:
|
|
*
|
|
* To enable jumbo frames, simply specify an mtu between 1500 and 9000
|
|
* bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
|
|
* by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
|
|
* interface number and <MTU> being the MTU value.
|
|
*
|
|
* Module parameters:
|
|
*
|
|
* When compiled as a loadable module, the driver allows for a number
|
|
* of module parameters to be specified. The driver supports the
|
|
* following module parameters:
|
|
*
|
|
* trace=<val> - Firmware trace level. This requires special traced
|
|
* firmware to replace the firmware supplied with
|
|
* the driver - for debugging purposes only.
|
|
*
|
|
* link=<val> - Link state. Normally you want to use the default link
|
|
* parameters set by the driver. This can be used to
|
|
* override these in case your switch doesn't negotiate
|
|
* the link properly. Valid values are:
|
|
* 0x0001 - Force half duplex link.
|
|
* 0x0002 - Do not negotiate line speed with the other end.
|
|
* 0x0010 - 10Mbit/sec link.
|
|
* 0x0020 - 100Mbit/sec link.
|
|
* 0x0040 - 1000Mbit/sec link.
|
|
* 0x0100 - Do not negotiate flow control.
|
|
* 0x0200 - Enable RX flow control Y
|
|
* 0x0400 - Enable TX flow control Y (Tigon II NICs only).
|
|
* Default value is 0x0270, ie. enable link+flow
|
|
* control negotiation. Negotiating the highest
|
|
* possible link speed with RX flow control enabled.
|
|
*
|
|
* When disabling link speed negotiation, only one link
|
|
* speed is allowed to be specified!
|
|
*
|
|
* tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
|
|
* to wait for more packets to arive before
|
|
* interrupting the host, from the time the first
|
|
* packet arrives.
|
|
*
|
|
* rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
|
|
* to wait for more packets to arive in the transmit ring,
|
|
* before interrupting the host, after transmitting the
|
|
* first packet in the ring.
|
|
*
|
|
* max_tx_desc=<val> - maximum number of transmit descriptors
|
|
* (packets) transmitted before interrupting the host.
|
|
*
|
|
* max_rx_desc=<val> - maximum number of receive descriptors
|
|
* (packets) received before interrupting the host.
|
|
*
|
|
* tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
|
|
* increments of the NIC's on board memory to be used for
|
|
* transmit and receive buffers. For the 1MB NIC app. 800KB
|
|
* is available, on the 1/2MB NIC app. 300KB is available.
|
|
* 68KB will always be available as a minimum for both
|
|
* directions. The default value is a 50/50 split.
|
|
* dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
|
|
* operations, default (1) is to always disable this as
|
|
* that is what Alteon does on NT. I have not been able
|
|
* to measure any real performance differences with
|
|
* this on my systems. Set <val>=0 if you want to
|
|
* enable these operations.
|
|
*
|
|
* If you use more than one NIC, specify the parameters for the
|
|
* individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
|
|
* run tracing on NIC #2 but not on NIC #1 and #3.
|
|
*
|
|
* TODO:
|
|
*
|
|
* - Proper multicast support.
|
|
* - NIC dump support.
|
|
* - More tuning parameters.
|
|
*
|
|
* The mini ring is not used under Linux and I am not sure it makes sense
|
|
* to actually use it.
|
|
*
|
|
* New interrupt handler strategy:
|
|
*
|
|
* The old interrupt handler worked using the traditional method of
|
|
* replacing an skbuff with a new one when a packet arrives. However
|
|
* the rx rings do not need to contain a static number of buffer
|
|
* descriptors, thus it makes sense to move the memory allocation out
|
|
* of the main interrupt handler and do it in a bottom half handler
|
|
* and only allocate new buffers when the number of buffers in the
|
|
* ring is below a certain threshold. In order to avoid starving the
|
|
* NIC under heavy load it is however necessary to force allocation
|
|
* when hitting a minimum threshold. The strategy for alloction is as
|
|
* follows:
|
|
*
|
|
* RX_LOW_BUF_THRES - allocate buffers in the bottom half
|
|
* RX_PANIC_LOW_THRES - we are very low on buffers, allocate
|
|
* the buffers in the interrupt handler
|
|
* RX_RING_THRES - maximum number of buffers in the rx ring
|
|
* RX_MINI_THRES - maximum number of buffers in the mini ring
|
|
* RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
|
|
*
|
|
* One advantagous side effect of this allocation approach is that the
|
|
* entire rx processing can be done without holding any spin lock
|
|
* since the rx rings and registers are totally independent of the tx
|
|
* ring and its registers. This of course includes the kmalloc's of
|
|
* new skb's. Thus start_xmit can run in parallel with rx processing
|
|
* and the memory allocation on SMP systems.
|
|
*
|
|
* Note that running the skb reallocation in a bottom half opens up
|
|
* another can of races which needs to be handled properly. In
|
|
* particular it can happen that the interrupt handler tries to run
|
|
* the reallocation while the bottom half is either running on another
|
|
* CPU or was interrupted on the same CPU. To get around this the
|
|
* driver uses bitops to prevent the reallocation routines from being
|
|
* reentered.
|
|
*
|
|
* TX handling can also be done without holding any spin lock, wheee
|
|
* this is fun! since tx_ret_csm is only written to by the interrupt
|
|
* handler. The case to be aware of is when shutting down the device
|
|
* and cleaning up where it is necessary to make sure that
|
|
* start_xmit() is not running while this is happening. Well DaveM
|
|
* informs me that this case is already protected against ... bye bye
|
|
* Mr. Spin Lock, it was nice to know you.
|
|
*
|
|
* TX interrupts are now partly disabled so the NIC will only generate
|
|
* TX interrupts for the number of coal ticks, not for the number of
|
|
* TX packets in the queue. This should reduce the number of TX only,
|
|
* ie. when no RX processing is done, interrupts seen.
|
|
*/
|
|
|
|
/*
|
|
* Threshold values for RX buffer allocation - the low water marks for
|
|
* when to start refilling the rings are set to 75% of the ring
|
|
* sizes. It seems to make sense to refill the rings entirely from the
|
|
* intrrupt handler once it gets below the panic threshold, that way
|
|
* we don't risk that the refilling is moved to another CPU when the
|
|
* one running the interrupt handler just got the slab code hot in its
|
|
* cache.
|
|
*/
|
|
#define RX_RING_SIZE 72
|
|
#define RX_MINI_SIZE 64
|
|
#define RX_JUMBO_SIZE 48
|
|
|
|
#define RX_PANIC_STD_THRES 16
|
|
#define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
|
|
#define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
|
|
#define RX_PANIC_MINI_THRES 12
|
|
#define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
|
|
#define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
|
|
#define RX_PANIC_JUMBO_THRES 6
|
|
#define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
|
|
#define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
|
|
|
|
|
|
/*
|
|
* Size of the mini ring entries, basically these just should be big
|
|
* enough to take TCP ACKs
|
|
*/
|
|
#define ACE_MINI_SIZE 100
|
|
|
|
#define ACE_MINI_BUFSIZE ACE_MINI_SIZE
|
|
#define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
|
|
#define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
|
|
|
|
/*
|
|
* There seems to be a magic difference in the effect between 995 and 996
|
|
* but little difference between 900 and 995 ... no idea why.
|
|
*
|
|
* There is now a default set of tuning parameters which is set, depending
|
|
* on whether or not the user enables Jumbo frames. It's assumed that if
|
|
* Jumbo frames are enabled, the user wants optimal tuning for that case.
|
|
*/
|
|
#define DEF_TX_COAL 400 /* 996 */
|
|
#define DEF_TX_MAX_DESC 60 /* was 40 */
|
|
#define DEF_RX_COAL 120 /* 1000 */
|
|
#define DEF_RX_MAX_DESC 25
|
|
#define DEF_TX_RATIO 21 /* 24 */
|
|
|
|
#define DEF_JUMBO_TX_COAL 20
|
|
#define DEF_JUMBO_TX_MAX_DESC 60
|
|
#define DEF_JUMBO_RX_COAL 30
|
|
#define DEF_JUMBO_RX_MAX_DESC 6
|
|
#define DEF_JUMBO_TX_RATIO 21
|
|
|
|
#if tigon2FwReleaseLocal < 20001118
|
|
/*
|
|
* Standard firmware and early modifications duplicate
|
|
* IRQ load without this flag (coal timer is never reset).
|
|
* Note that with this flag tx_coal should be less than
|
|
* time to xmit full tx ring.
|
|
* 400usec is not so bad for tx ring size of 128.
|
|
*/
|
|
#define TX_COAL_INTS_ONLY 1 /* worth it */
|
|
#else
|
|
/*
|
|
* With modified firmware, this is not necessary, but still useful.
|
|
*/
|
|
#define TX_COAL_INTS_ONLY 1
|
|
#endif
|
|
|
|
#define DEF_TRACE 0
|
|
#define DEF_STAT (2 * TICKS_PER_SEC)
|
|
|
|
|
|
static int link_state[ACE_MAX_MOD_PARMS];
|
|
static int trace[ACE_MAX_MOD_PARMS];
|
|
static int tx_coal_tick[ACE_MAX_MOD_PARMS];
|
|
static int rx_coal_tick[ACE_MAX_MOD_PARMS];
|
|
static int max_tx_desc[ACE_MAX_MOD_PARMS];
|
|
static int max_rx_desc[ACE_MAX_MOD_PARMS];
|
|
static int tx_ratio[ACE_MAX_MOD_PARMS];
|
|
static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
|
|
|
|
MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
|
|
|
|
module_param_array_named(link, link_state, int, NULL, 0);
|
|
module_param_array(trace, int, NULL, 0);
|
|
module_param_array(tx_coal_tick, int, NULL, 0);
|
|
module_param_array(max_tx_desc, int, NULL, 0);
|
|
module_param_array(rx_coal_tick, int, NULL, 0);
|
|
module_param_array(max_rx_desc, int, NULL, 0);
|
|
module_param_array(tx_ratio, int, NULL, 0);
|
|
MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
|
|
MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
|
|
MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
|
|
MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
|
|
MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
|
|
MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
|
|
MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
|
|
|
|
|
|
static char version[] __devinitdata =
|
|
"acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
|
|
" http://home.cern.ch/~jes/gige/acenic.html\n";
|
|
|
|
static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
|
|
static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
|
|
static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
|
|
|
|
static const struct ethtool_ops ace_ethtool_ops = {
|
|
.get_settings = ace_get_settings,
|
|
.set_settings = ace_set_settings,
|
|
.get_drvinfo = ace_get_drvinfo,
|
|
};
|
|
|
|
static void ace_watchdog(struct net_device *dev);
|
|
|
|
static int __devinit acenic_probe_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
struct net_device *dev;
|
|
struct ace_private *ap;
|
|
static int boards_found;
|
|
|
|
dev = alloc_etherdev(sizeof(struct ace_private));
|
|
if (dev == NULL) {
|
|
printk(KERN_ERR "acenic: Unable to allocate "
|
|
"net_device structure!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
ap = dev->priv;
|
|
ap->pdev = pdev;
|
|
ap->name = pci_name(pdev);
|
|
|
|
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
|
|
#if ACENIC_DO_VLAN
|
|
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
|
|
dev->vlan_rx_register = ace_vlan_rx_register;
|
|
#endif
|
|
|
|
dev->tx_timeout = &ace_watchdog;
|
|
dev->watchdog_timeo = 5*HZ;
|
|
|
|
dev->open = &ace_open;
|
|
dev->stop = &ace_close;
|
|
dev->hard_start_xmit = &ace_start_xmit;
|
|
dev->get_stats = &ace_get_stats;
|
|
dev->set_multicast_list = &ace_set_multicast_list;
|
|
SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
|
|
dev->set_mac_address = &ace_set_mac_addr;
|
|
dev->change_mtu = &ace_change_mtu;
|
|
|
|
/* we only display this string ONCE */
|
|
if (!boards_found)
|
|
printk(version);
|
|
|
|
if (pci_enable_device(pdev))
|
|
goto fail_free_netdev;
|
|
|
|
/*
|
|
* Enable master mode before we start playing with the
|
|
* pci_command word since pci_set_master() will modify
|
|
* it.
|
|
*/
|
|
pci_set_master(pdev);
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
|
|
|
|
/* OpenFirmware on Mac's does not set this - DOH.. */
|
|
if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
|
|
printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
|
|
"access - was not enabled by BIOS/Firmware\n",
|
|
ap->name);
|
|
ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
|
|
pci_write_config_word(ap->pdev, PCI_COMMAND,
|
|
ap->pci_command);
|
|
wmb();
|
|
}
|
|
|
|
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
|
|
if (ap->pci_latency <= 0x40) {
|
|
ap->pci_latency = 0x40;
|
|
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
|
|
}
|
|
|
|
/*
|
|
* Remap the regs into kernel space - this is abuse of
|
|
* dev->base_addr since it was means for I/O port
|
|
* addresses but who gives a damn.
|
|
*/
|
|
dev->base_addr = pci_resource_start(pdev, 0);
|
|
ap->regs = ioremap(dev->base_addr, 0x4000);
|
|
if (!ap->regs) {
|
|
printk(KERN_ERR "%s: Unable to map I/O register, "
|
|
"AceNIC %i will be disabled.\n",
|
|
ap->name, boards_found);
|
|
goto fail_free_netdev;
|
|
}
|
|
|
|
switch(pdev->vendor) {
|
|
case PCI_VENDOR_ID_ALTEON:
|
|
if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
|
|
printk(KERN_INFO "%s: Farallon PN9100-T ",
|
|
ap->name);
|
|
} else {
|
|
printk(KERN_INFO "%s: Alteon AceNIC ",
|
|
ap->name);
|
|
}
|
|
break;
|
|
case PCI_VENDOR_ID_3COM:
|
|
printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
|
|
break;
|
|
case PCI_VENDOR_ID_NETGEAR:
|
|
printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
|
|
break;
|
|
case PCI_VENDOR_ID_DEC:
|
|
if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
|
|
printk(KERN_INFO "%s: Farallon PN9000-SX ",
|
|
ap->name);
|
|
break;
|
|
}
|
|
case PCI_VENDOR_ID_SGI:
|
|
printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
|
|
break;
|
|
default:
|
|
printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
|
|
break;
|
|
}
|
|
|
|
printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
|
|
printk("irq %d\n", pdev->irq);
|
|
|
|
#ifdef CONFIG_ACENIC_OMIT_TIGON_I
|
|
if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
|
|
printk(KERN_ERR "%s: Driver compiled without Tigon I"
|
|
" support - NIC disabled\n", dev->name);
|
|
goto fail_uninit;
|
|
}
|
|
#endif
|
|
|
|
if (ace_allocate_descriptors(dev))
|
|
goto fail_free_netdev;
|
|
|
|
#ifdef MODULE
|
|
if (boards_found >= ACE_MAX_MOD_PARMS)
|
|
ap->board_idx = BOARD_IDX_OVERFLOW;
|
|
else
|
|
ap->board_idx = boards_found;
|
|
#else
|
|
ap->board_idx = BOARD_IDX_STATIC;
|
|
#endif
|
|
|
|
if (ace_init(dev))
|
|
goto fail_free_netdev;
|
|
|
|
if (register_netdev(dev)) {
|
|
printk(KERN_ERR "acenic: device registration failed\n");
|
|
goto fail_uninit;
|
|
}
|
|
ap->name = dev->name;
|
|
|
|
if (ap->pci_using_dac)
|
|
dev->features |= NETIF_F_HIGHDMA;
|
|
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
boards_found++;
|
|
return 0;
|
|
|
|
fail_uninit:
|
|
ace_init_cleanup(dev);
|
|
fail_free_netdev:
|
|
free_netdev(dev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void __devexit acenic_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
short i;
|
|
|
|
unregister_netdev(dev);
|
|
|
|
writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
|
|
if (ap->version >= 2)
|
|
writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
|
|
|
|
/*
|
|
* This clears any pending interrupts
|
|
*/
|
|
writel(1, ®s->Mb0Lo);
|
|
readl(®s->CpuCtrl); /* flush */
|
|
|
|
/*
|
|
* Make sure no other CPUs are processing interrupts
|
|
* on the card before the buffers are being released.
|
|
* Otherwise one might experience some `interesting'
|
|
* effects.
|
|
*
|
|
* Then release the RX buffers - jumbo buffers were
|
|
* already released in ace_close().
|
|
*/
|
|
ace_sync_irq(dev->irq);
|
|
|
|
for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
|
|
struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
|
|
|
|
if (skb) {
|
|
struct ring_info *ringp;
|
|
dma_addr_t mapping;
|
|
|
|
ringp = &ap->skb->rx_std_skbuff[i];
|
|
mapping = pci_unmap_addr(ringp, mapping);
|
|
pci_unmap_page(ap->pdev, mapping,
|
|
ACE_STD_BUFSIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
ap->rx_std_ring[i].size = 0;
|
|
ap->skb->rx_std_skbuff[i].skb = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
if (ap->version >= 2) {
|
|
for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
|
|
struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
|
|
|
|
if (skb) {
|
|
struct ring_info *ringp;
|
|
dma_addr_t mapping;
|
|
|
|
ringp = &ap->skb->rx_mini_skbuff[i];
|
|
mapping = pci_unmap_addr(ringp,mapping);
|
|
pci_unmap_page(ap->pdev, mapping,
|
|
ACE_MINI_BUFSIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
ap->rx_mini_ring[i].size = 0;
|
|
ap->skb->rx_mini_skbuff[i].skb = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
|
|
struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
|
|
if (skb) {
|
|
struct ring_info *ringp;
|
|
dma_addr_t mapping;
|
|
|
|
ringp = &ap->skb->rx_jumbo_skbuff[i];
|
|
mapping = pci_unmap_addr(ringp, mapping);
|
|
pci_unmap_page(ap->pdev, mapping,
|
|
ACE_JUMBO_BUFSIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
ap->rx_jumbo_ring[i].size = 0;
|
|
ap->skb->rx_jumbo_skbuff[i].skb = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
ace_init_cleanup(dev);
|
|
free_netdev(dev);
|
|
}
|
|
|
|
static struct pci_driver acenic_pci_driver = {
|
|
.name = "acenic",
|
|
.id_table = acenic_pci_tbl,
|
|
.probe = acenic_probe_one,
|
|
.remove = __devexit_p(acenic_remove_one),
|
|
};
|
|
|
|
static int __init acenic_init(void)
|
|
{
|
|
return pci_register_driver(&acenic_pci_driver);
|
|
}
|
|
|
|
static void __exit acenic_exit(void)
|
|
{
|
|
pci_unregister_driver(&acenic_pci_driver);
|
|
}
|
|
|
|
module_init(acenic_init);
|
|
module_exit(acenic_exit);
|
|
|
|
static void ace_free_descriptors(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
int size;
|
|
|
|
if (ap->rx_std_ring != NULL) {
|
|
size = (sizeof(struct rx_desc) *
|
|
(RX_STD_RING_ENTRIES +
|
|
RX_JUMBO_RING_ENTRIES +
|
|
RX_MINI_RING_ENTRIES +
|
|
RX_RETURN_RING_ENTRIES));
|
|
pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
|
|
ap->rx_ring_base_dma);
|
|
ap->rx_std_ring = NULL;
|
|
ap->rx_jumbo_ring = NULL;
|
|
ap->rx_mini_ring = NULL;
|
|
ap->rx_return_ring = NULL;
|
|
}
|
|
if (ap->evt_ring != NULL) {
|
|
size = (sizeof(struct event) * EVT_RING_ENTRIES);
|
|
pci_free_consistent(ap->pdev, size, ap->evt_ring,
|
|
ap->evt_ring_dma);
|
|
ap->evt_ring = NULL;
|
|
}
|
|
if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
|
|
size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
|
|
pci_free_consistent(ap->pdev, size, ap->tx_ring,
|
|
ap->tx_ring_dma);
|
|
}
|
|
ap->tx_ring = NULL;
|
|
|
|
if (ap->evt_prd != NULL) {
|
|
pci_free_consistent(ap->pdev, sizeof(u32),
|
|
(void *)ap->evt_prd, ap->evt_prd_dma);
|
|
ap->evt_prd = NULL;
|
|
}
|
|
if (ap->rx_ret_prd != NULL) {
|
|
pci_free_consistent(ap->pdev, sizeof(u32),
|
|
(void *)ap->rx_ret_prd,
|
|
ap->rx_ret_prd_dma);
|
|
ap->rx_ret_prd = NULL;
|
|
}
|
|
if (ap->tx_csm != NULL) {
|
|
pci_free_consistent(ap->pdev, sizeof(u32),
|
|
(void *)ap->tx_csm, ap->tx_csm_dma);
|
|
ap->tx_csm = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static int ace_allocate_descriptors(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
int size;
|
|
|
|
size = (sizeof(struct rx_desc) *
|
|
(RX_STD_RING_ENTRIES +
|
|
RX_JUMBO_RING_ENTRIES +
|
|
RX_MINI_RING_ENTRIES +
|
|
RX_RETURN_RING_ENTRIES));
|
|
|
|
ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
|
|
&ap->rx_ring_base_dma);
|
|
if (ap->rx_std_ring == NULL)
|
|
goto fail;
|
|
|
|
ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
|
|
ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
|
|
ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
|
|
|
|
size = (sizeof(struct event) * EVT_RING_ENTRIES);
|
|
|
|
ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
|
|
|
|
if (ap->evt_ring == NULL)
|
|
goto fail;
|
|
|
|
/*
|
|
* Only allocate a host TX ring for the Tigon II, the Tigon I
|
|
* has to use PCI registers for this ;-(
|
|
*/
|
|
if (!ACE_IS_TIGON_I(ap)) {
|
|
size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
|
|
|
|
ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
|
|
&ap->tx_ring_dma);
|
|
|
|
if (ap->tx_ring == NULL)
|
|
goto fail;
|
|
}
|
|
|
|
ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
|
|
&ap->evt_prd_dma);
|
|
if (ap->evt_prd == NULL)
|
|
goto fail;
|
|
|
|
ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
|
|
&ap->rx_ret_prd_dma);
|
|
if (ap->rx_ret_prd == NULL)
|
|
goto fail;
|
|
|
|
ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
|
|
&ap->tx_csm_dma);
|
|
if (ap->tx_csm == NULL)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
/* Clean up. */
|
|
ace_init_cleanup(dev);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Generic cleanup handling data allocated during init. Used when the
|
|
* module is unloaded or if an error occurs during initialization
|
|
*/
|
|
static void ace_init_cleanup(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap;
|
|
|
|
ap = netdev_priv(dev);
|
|
|
|
ace_free_descriptors(dev);
|
|
|
|
if (ap->info)
|
|
pci_free_consistent(ap->pdev, sizeof(struct ace_info),
|
|
ap->info, ap->info_dma);
|
|
kfree(ap->skb);
|
|
kfree(ap->trace_buf);
|
|
|
|
if (dev->irq)
|
|
free_irq(dev->irq, dev);
|
|
|
|
iounmap(ap->regs);
|
|
}
|
|
|
|
|
|
/*
|
|
* Commands are considered to be slow.
|
|
*/
|
|
static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
|
|
{
|
|
u32 idx;
|
|
|
|
idx = readl(®s->CmdPrd);
|
|
|
|
writel(*(u32 *)(cmd), ®s->CmdRng[idx]);
|
|
idx = (idx + 1) % CMD_RING_ENTRIES;
|
|
|
|
writel(idx, ®s->CmdPrd);
|
|
}
|
|
|
|
|
|
static int __devinit ace_init(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap;
|
|
struct ace_regs __iomem *regs;
|
|
struct ace_info *info = NULL;
|
|
struct pci_dev *pdev;
|
|
unsigned long myjif;
|
|
u64 tmp_ptr;
|
|
u32 tig_ver, mac1, mac2, tmp, pci_state;
|
|
int board_idx, ecode = 0;
|
|
short i;
|
|
unsigned char cache_size;
|
|
DECLARE_MAC_BUF(mac);
|
|
|
|
ap = netdev_priv(dev);
|
|
regs = ap->regs;
|
|
|
|
board_idx = ap->board_idx;
|
|
|
|
/*
|
|
* aman@sgi.com - its useful to do a NIC reset here to
|
|
* address the `Firmware not running' problem subsequent
|
|
* to any crashes involving the NIC
|
|
*/
|
|
writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl);
|
|
readl(®s->HostCtrl); /* PCI write posting */
|
|
udelay(5);
|
|
|
|
/*
|
|
* Don't access any other registers before this point!
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
/*
|
|
* This will most likely need BYTE_SWAP once we switch
|
|
* to using __raw_writel()
|
|
*/
|
|
writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
|
|
®s->HostCtrl);
|
|
#else
|
|
writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
|
|
®s->HostCtrl);
|
|
#endif
|
|
readl(®s->HostCtrl); /* PCI write posting */
|
|
|
|
/*
|
|
* Stop the NIC CPU and clear pending interrupts
|
|
*/
|
|
writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
|
|
readl(®s->CpuCtrl); /* PCI write posting */
|
|
writel(0, ®s->Mb0Lo);
|
|
|
|
tig_ver = readl(®s->HostCtrl) >> 28;
|
|
|
|
switch(tig_ver){
|
|
#ifndef CONFIG_ACENIC_OMIT_TIGON_I
|
|
case 4:
|
|
case 5:
|
|
printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
|
|
tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
|
|
tigonFwReleaseFix);
|
|
writel(0, ®s->LocalCtrl);
|
|
ap->version = 1;
|
|
ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
|
|
break;
|
|
#endif
|
|
case 6:
|
|
printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
|
|
tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
|
|
tigon2FwReleaseFix);
|
|
writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
|
|
readl(®s->CpuBCtrl); /* PCI write posting */
|
|
/*
|
|
* The SRAM bank size does _not_ indicate the amount
|
|
* of memory on the card, it controls the _bank_ size!
|
|
* Ie. a 1MB AceNIC will have two banks of 512KB.
|
|
*/
|
|
writel(SRAM_BANK_512K, ®s->LocalCtrl);
|
|
writel(SYNC_SRAM_TIMING, ®s->MiscCfg);
|
|
ap->version = 2;
|
|
ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING " Unsupported Tigon version detected "
|
|
"(%i)\n", tig_ver);
|
|
ecode = -ENODEV;
|
|
goto init_error;
|
|
}
|
|
|
|
/*
|
|
* ModeStat _must_ be set after the SRAM settings as this change
|
|
* seems to corrupt the ModeStat and possible other registers.
|
|
* The SRAM settings survive resets and setting it to the same
|
|
* value a second time works as well. This is what caused the
|
|
* `Firmware not running' problem on the Tigon II.
|
|
*/
|
|
#ifdef __BIG_ENDIAN
|
|
writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
|
|
ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
|
|
#else
|
|
writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
|
|
ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
|
|
#endif
|
|
readl(®s->ModeStat); /* PCI write posting */
|
|
|
|
mac1 = 0;
|
|
for(i = 0; i < 4; i++) {
|
|
int t;
|
|
|
|
mac1 = mac1 << 8;
|
|
t = read_eeprom_byte(dev, 0x8c+i);
|
|
if (t < 0) {
|
|
ecode = -EIO;
|
|
goto init_error;
|
|
} else
|
|
mac1 |= (t & 0xff);
|
|
}
|
|
mac2 = 0;
|
|
for(i = 4; i < 8; i++) {
|
|
int t;
|
|
|
|
mac2 = mac2 << 8;
|
|
t = read_eeprom_byte(dev, 0x8c+i);
|
|
if (t < 0) {
|
|
ecode = -EIO;
|
|
goto init_error;
|
|
} else
|
|
mac2 |= (t & 0xff);
|
|
}
|
|
|
|
writel(mac1, ®s->MacAddrHi);
|
|
writel(mac2, ®s->MacAddrLo);
|
|
|
|
dev->dev_addr[0] = (mac1 >> 8) & 0xff;
|
|
dev->dev_addr[1] = mac1 & 0xff;
|
|
dev->dev_addr[2] = (mac2 >> 24) & 0xff;
|
|
dev->dev_addr[3] = (mac2 >> 16) & 0xff;
|
|
dev->dev_addr[4] = (mac2 >> 8) & 0xff;
|
|
dev->dev_addr[5] = mac2 & 0xff;
|
|
|
|
printk("MAC: %s\n", print_mac(mac, dev->dev_addr));
|
|
|
|
/*
|
|
* Looks like this is necessary to deal with on all architectures,
|
|
* even this %$#%$# N440BX Intel based thing doesn't get it right.
|
|
* Ie. having two NICs in the machine, one will have the cache
|
|
* line set at boot time, the other will not.
|
|
*/
|
|
pdev = ap->pdev;
|
|
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
|
|
cache_size <<= 2;
|
|
if (cache_size != SMP_CACHE_BYTES) {
|
|
printk(KERN_INFO " PCI cache line size set incorrectly "
|
|
"(%i bytes) by BIOS/FW, ", cache_size);
|
|
if (cache_size > SMP_CACHE_BYTES)
|
|
printk("expecting %i\n", SMP_CACHE_BYTES);
|
|
else {
|
|
printk("correcting to %i\n", SMP_CACHE_BYTES);
|
|
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
|
|
SMP_CACHE_BYTES >> 2);
|
|
}
|
|
}
|
|
|
|
pci_state = readl(®s->PciState);
|
|
printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
|
|
"latency: %i clks\n",
|
|
(pci_state & PCI_32BIT) ? 32 : 64,
|
|
(pci_state & PCI_66MHZ) ? 66 : 33,
|
|
ap->pci_latency);
|
|
|
|
/*
|
|
* Set the max DMA transfer size. Seems that for most systems
|
|
* the performance is better when no MAX parameter is
|
|
* set. However for systems enabling PCI write and invalidate,
|
|
* DMA writes must be set to the L1 cache line size to get
|
|
* optimal performance.
|
|
*
|
|
* The default is now to turn the PCI write and invalidate off
|
|
* - that is what Alteon does for NT.
|
|
*/
|
|
tmp = READ_CMD_MEM | WRITE_CMD_MEM;
|
|
if (ap->version >= 2) {
|
|
tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
|
|
/*
|
|
* Tuning parameters only supported for 8 cards
|
|
*/
|
|
if (board_idx == BOARD_IDX_OVERFLOW ||
|
|
dis_pci_mem_inval[board_idx]) {
|
|
if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
|
|
ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
|
|
pci_write_config_word(pdev, PCI_COMMAND,
|
|
ap->pci_command);
|
|
printk(KERN_INFO " Disabling PCI memory "
|
|
"write and invalidate\n");
|
|
}
|
|
} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
|
|
printk(KERN_INFO " PCI memory write & invalidate "
|
|
"enabled by BIOS, enabling counter measures\n");
|
|
|
|
switch(SMP_CACHE_BYTES) {
|
|
case 16:
|
|
tmp |= DMA_WRITE_MAX_16;
|
|
break;
|
|
case 32:
|
|
tmp |= DMA_WRITE_MAX_32;
|
|
break;
|
|
case 64:
|
|
tmp |= DMA_WRITE_MAX_64;
|
|
break;
|
|
case 128:
|
|
tmp |= DMA_WRITE_MAX_128;
|
|
break;
|
|
default:
|
|
printk(KERN_INFO " Cache line size %i not "
|
|
"supported, PCI write and invalidate "
|
|
"disabled\n", SMP_CACHE_BYTES);
|
|
ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
|
|
pci_write_config_word(pdev, PCI_COMMAND,
|
|
ap->pci_command);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __sparc__
|
|
/*
|
|
* On this platform, we know what the best dma settings
|
|
* are. We use 64-byte maximum bursts, because if we
|
|
* burst larger than the cache line size (or even cross
|
|
* a 64byte boundary in a single burst) the UltraSparc
|
|
* PCI controller will disconnect at 64-byte multiples.
|
|
*
|
|
* Read-multiple will be properly enabled above, and when
|
|
* set will give the PCI controller proper hints about
|
|
* prefetching.
|
|
*/
|
|
tmp &= ~DMA_READ_WRITE_MASK;
|
|
tmp |= DMA_READ_MAX_64;
|
|
tmp |= DMA_WRITE_MAX_64;
|
|
#endif
|
|
#ifdef __alpha__
|
|
tmp &= ~DMA_READ_WRITE_MASK;
|
|
tmp |= DMA_READ_MAX_128;
|
|
/*
|
|
* All the docs say MUST NOT. Well, I did.
|
|
* Nothing terrible happens, if we load wrong size.
|
|
* Bit w&i still works better!
|
|
*/
|
|
tmp |= DMA_WRITE_MAX_128;
|
|
#endif
|
|
writel(tmp, ®s->PciState);
|
|
|
|
#if 0
|
|
/*
|
|
* The Host PCI bus controller driver has to set FBB.
|
|
* If all devices on that PCI bus support FBB, then the controller
|
|
* can enable FBB support in the Host PCI Bus controller (or on
|
|
* the PCI-PCI bridge if that applies).
|
|
* -ggg
|
|
*/
|
|
/*
|
|
* I have received reports from people having problems when this
|
|
* bit is enabled.
|
|
*/
|
|
if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
|
|
printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
|
|
ap->pci_command |= PCI_COMMAND_FAST_BACK;
|
|
pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Configure DMA attributes.
|
|
*/
|
|
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
|
|
ap->pci_using_dac = 1;
|
|
} else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
|
|
ap->pci_using_dac = 0;
|
|
} else {
|
|
ecode = -ENODEV;
|
|
goto init_error;
|
|
}
|
|
|
|
/*
|
|
* Initialize the generic info block and the command+event rings
|
|
* and the control blocks for the transmit and receive rings
|
|
* as they need to be setup once and for all.
|
|
*/
|
|
if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
|
|
&ap->info_dma))) {
|
|
ecode = -EAGAIN;
|
|
goto init_error;
|
|
}
|
|
ap->info = info;
|
|
|
|
/*
|
|
* Get the memory for the skb rings.
|
|
*/
|
|
if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
|
|
ecode = -EAGAIN;
|
|
goto init_error;
|
|
}
|
|
|
|
ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
|
|
DRV_NAME, dev);
|
|
if (ecode) {
|
|
printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
|
|
DRV_NAME, pdev->irq);
|
|
goto init_error;
|
|
} else
|
|
dev->irq = pdev->irq;
|
|
|
|
#ifdef INDEX_DEBUG
|
|
spin_lock_init(&ap->debug_lock);
|
|
ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
|
|
ap->last_std_rx = 0;
|
|
ap->last_mini_rx = 0;
|
|
#endif
|
|
|
|
memset(ap->info, 0, sizeof(struct ace_info));
|
|
memset(ap->skb, 0, sizeof(struct ace_skb));
|
|
|
|
ace_load_firmware(dev);
|
|
ap->fw_running = 0;
|
|
|
|
tmp_ptr = ap->info_dma;
|
|
writel(tmp_ptr >> 32, ®s->InfoPtrHi);
|
|
writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo);
|
|
|
|
memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
|
|
|
|
set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
|
|
info->evt_ctrl.flags = 0;
|
|
|
|
*(ap->evt_prd) = 0;
|
|
wmb();
|
|
set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
|
|
writel(0, ®s->EvtCsm);
|
|
|
|
set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
|
|
info->cmd_ctrl.flags = 0;
|
|
info->cmd_ctrl.max_len = 0;
|
|
|
|
for (i = 0; i < CMD_RING_ENTRIES; i++)
|
|
writel(0, ®s->CmdRng[i]);
|
|
|
|
writel(0, ®s->CmdPrd);
|
|
writel(0, ®s->CmdCsm);
|
|
|
|
tmp_ptr = ap->info_dma;
|
|
tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
|
|
set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
|
|
|
|
set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
|
|
info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
|
|
info->rx_std_ctrl.flags =
|
|
RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
|
|
|
|
memset(ap->rx_std_ring, 0,
|
|
RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
|
|
|
|
for (i = 0; i < RX_STD_RING_ENTRIES; i++)
|
|
ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
|
|
|
|
ap->rx_std_skbprd = 0;
|
|
atomic_set(&ap->cur_rx_bufs, 0);
|
|
|
|
set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
|
|
(ap->rx_ring_base_dma +
|
|
(sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
|
|
info->rx_jumbo_ctrl.max_len = 0;
|
|
info->rx_jumbo_ctrl.flags =
|
|
RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
|
|
|
|
memset(ap->rx_jumbo_ring, 0,
|
|
RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
|
|
|
|
for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
|
|
ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
|
|
|
|
ap->rx_jumbo_skbprd = 0;
|
|
atomic_set(&ap->cur_jumbo_bufs, 0);
|
|
|
|
memset(ap->rx_mini_ring, 0,
|
|
RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
|
|
|
|
if (ap->version >= 2) {
|
|
set_aceaddr(&info->rx_mini_ctrl.rngptr,
|
|
(ap->rx_ring_base_dma +
|
|
(sizeof(struct rx_desc) *
|
|
(RX_STD_RING_ENTRIES +
|
|
RX_JUMBO_RING_ENTRIES))));
|
|
info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
|
|
info->rx_mini_ctrl.flags =
|
|
RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
|
|
|
|
for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
|
|
ap->rx_mini_ring[i].flags =
|
|
BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
|
|
} else {
|
|
set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
|
|
info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
|
|
info->rx_mini_ctrl.max_len = 0;
|
|
}
|
|
|
|
ap->rx_mini_skbprd = 0;
|
|
atomic_set(&ap->cur_mini_bufs, 0);
|
|
|
|
set_aceaddr(&info->rx_return_ctrl.rngptr,
|
|
(ap->rx_ring_base_dma +
|
|
(sizeof(struct rx_desc) *
|
|
(RX_STD_RING_ENTRIES +
|
|
RX_JUMBO_RING_ENTRIES +
|
|
RX_MINI_RING_ENTRIES))));
|
|
info->rx_return_ctrl.flags = 0;
|
|
info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
|
|
|
|
memset(ap->rx_return_ring, 0,
|
|
RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
|
|
|
|
set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
|
|
*(ap->rx_ret_prd) = 0;
|
|
|
|
writel(TX_RING_BASE, ®s->WinBase);
|
|
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
ap->tx_ring = (__force struct tx_desc *) regs->Window;
|
|
for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
|
|
* sizeof(struct tx_desc)) / sizeof(u32); i++)
|
|
writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
|
|
|
|
set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
|
|
} else {
|
|
memset(ap->tx_ring, 0,
|
|
MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
|
|
|
|
set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
|
|
}
|
|
|
|
info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
|
|
tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
|
|
|
|
/*
|
|
* The Tigon I does not like having the TX ring in host memory ;-(
|
|
*/
|
|
if (!ACE_IS_TIGON_I(ap))
|
|
tmp |= RCB_FLG_TX_HOST_RING;
|
|
#if TX_COAL_INTS_ONLY
|
|
tmp |= RCB_FLG_COAL_INT_ONLY;
|
|
#endif
|
|
info->tx_ctrl.flags = tmp;
|
|
|
|
set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
|
|
|
|
/*
|
|
* Potential item for tuning parameter
|
|
*/
|
|
#if 0 /* NO */
|
|
writel(DMA_THRESH_16W, ®s->DmaReadCfg);
|
|
writel(DMA_THRESH_16W, ®s->DmaWriteCfg);
|
|
#else
|
|
writel(DMA_THRESH_8W, ®s->DmaReadCfg);
|
|
writel(DMA_THRESH_8W, ®s->DmaWriteCfg);
|
|
#endif
|
|
|
|
writel(0, ®s->MaskInt);
|
|
writel(1, ®s->IfIdx);
|
|
#if 0
|
|
/*
|
|
* McKinley boxes do not like us fiddling with AssistState
|
|
* this early
|
|
*/
|
|
writel(1, ®s->AssistState);
|
|
#endif
|
|
|
|
writel(DEF_STAT, ®s->TuneStatTicks);
|
|
writel(DEF_TRACE, ®s->TuneTrace);
|
|
|
|
ace_set_rxtx_parms(dev, 0);
|
|
|
|
if (board_idx == BOARD_IDX_OVERFLOW) {
|
|
printk(KERN_WARNING "%s: more than %i NICs detected, "
|
|
"ignoring module parameters!\n",
|
|
ap->name, ACE_MAX_MOD_PARMS);
|
|
} else if (board_idx >= 0) {
|
|
if (tx_coal_tick[board_idx])
|
|
writel(tx_coal_tick[board_idx],
|
|
®s->TuneTxCoalTicks);
|
|
if (max_tx_desc[board_idx])
|
|
writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc);
|
|
|
|
if (rx_coal_tick[board_idx])
|
|
writel(rx_coal_tick[board_idx],
|
|
®s->TuneRxCoalTicks);
|
|
if (max_rx_desc[board_idx])
|
|
writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc);
|
|
|
|
if (trace[board_idx])
|
|
writel(trace[board_idx], ®s->TuneTrace);
|
|
|
|
if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
|
|
writel(tx_ratio[board_idx], ®s->TxBufRat);
|
|
}
|
|
|
|
/*
|
|
* Default link parameters
|
|
*/
|
|
tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
|
|
LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
|
|
if(ap->version >= 2)
|
|
tmp |= LNK_TX_FLOW_CTL_Y;
|
|
|
|
/*
|
|
* Override link default parameters
|
|
*/
|
|
if ((board_idx >= 0) && link_state[board_idx]) {
|
|
int option = link_state[board_idx];
|
|
|
|
tmp = LNK_ENABLE;
|
|
|
|
if (option & 0x01) {
|
|
printk(KERN_INFO "%s: Setting half duplex link\n",
|
|
ap->name);
|
|
tmp &= ~LNK_FULL_DUPLEX;
|
|
}
|
|
if (option & 0x02)
|
|
tmp &= ~LNK_NEGOTIATE;
|
|
if (option & 0x10)
|
|
tmp |= LNK_10MB;
|
|
if (option & 0x20)
|
|
tmp |= LNK_100MB;
|
|
if (option & 0x40)
|
|
tmp |= LNK_1000MB;
|
|
if ((option & 0x70) == 0) {
|
|
printk(KERN_WARNING "%s: No media speed specified, "
|
|
"forcing auto negotiation\n", ap->name);
|
|
tmp |= LNK_NEGOTIATE | LNK_1000MB |
|
|
LNK_100MB | LNK_10MB;
|
|
}
|
|
if ((option & 0x100) == 0)
|
|
tmp |= LNK_NEG_FCTL;
|
|
else
|
|
printk(KERN_INFO "%s: Disabling flow control "
|
|
"negotiation\n", ap->name);
|
|
if (option & 0x200)
|
|
tmp |= LNK_RX_FLOW_CTL_Y;
|
|
if ((option & 0x400) && (ap->version >= 2)) {
|
|
printk(KERN_INFO "%s: Enabling TX flow control\n",
|
|
ap->name);
|
|
tmp |= LNK_TX_FLOW_CTL_Y;
|
|
}
|
|
}
|
|
|
|
ap->link = tmp;
|
|
writel(tmp, ®s->TuneLink);
|
|
if (ap->version >= 2)
|
|
writel(tmp, ®s->TuneFastLink);
|
|
|
|
if (ACE_IS_TIGON_I(ap))
|
|
writel(tigonFwStartAddr, ®s->Pc);
|
|
if (ap->version == 2)
|
|
writel(tigon2FwStartAddr, ®s->Pc);
|
|
|
|
writel(0, ®s->Mb0Lo);
|
|
|
|
/*
|
|
* Set tx_csm before we start receiving interrupts, otherwise
|
|
* the interrupt handler might think it is supposed to process
|
|
* tx ints before we are up and running, which may cause a null
|
|
* pointer access in the int handler.
|
|
*/
|
|
ap->cur_rx = 0;
|
|
ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
|
|
|
|
wmb();
|
|
ace_set_txprd(regs, ap, 0);
|
|
writel(0, ®s->RxRetCsm);
|
|
|
|
/*
|
|
* Zero the stats before starting the interface
|
|
*/
|
|
memset(&ap->stats, 0, sizeof(ap->stats));
|
|
|
|
/*
|
|
* Enable DMA engine now.
|
|
* If we do this sooner, Mckinley box pukes.
|
|
* I assume it's because Tigon II DMA engine wants to check
|
|
* *something* even before the CPU is started.
|
|
*/
|
|
writel(1, ®s->AssistState); /* enable DMA */
|
|
|
|
/*
|
|
* Start the NIC CPU
|
|
*/
|
|
writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl);
|
|
readl(®s->CpuCtrl);
|
|
|
|
/*
|
|
* Wait for the firmware to spin up - max 3 seconds.
|
|
*/
|
|
myjif = jiffies + 3 * HZ;
|
|
while (time_before(jiffies, myjif) && !ap->fw_running)
|
|
cpu_relax();
|
|
|
|
if (!ap->fw_running) {
|
|
printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
|
|
|
|
ace_dump_trace(ap);
|
|
writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
|
|
readl(®s->CpuCtrl);
|
|
|
|
/* aman@sgi.com - account for badly behaving firmware/NIC:
|
|
* - have observed that the NIC may continue to generate
|
|
* interrupts for some reason; attempt to stop it - halt
|
|
* second CPU for Tigon II cards, and also clear Mb0
|
|
* - if we're a module, we'll fail to load if this was
|
|
* the only GbE card in the system => if the kernel does
|
|
* see an interrupt from the NIC, code to handle it is
|
|
* gone and OOps! - so free_irq also
|
|
*/
|
|
if (ap->version >= 2)
|
|
writel(readl(®s->CpuBCtrl) | CPU_HALT,
|
|
®s->CpuBCtrl);
|
|
writel(0, ®s->Mb0Lo);
|
|
readl(®s->Mb0Lo);
|
|
|
|
ecode = -EBUSY;
|
|
goto init_error;
|
|
}
|
|
|
|
/*
|
|
* We load the ring here as there seem to be no way to tell the
|
|
* firmware to wipe the ring without re-initializing it.
|
|
*/
|
|
if (!test_and_set_bit(0, &ap->std_refill_busy))
|
|
ace_load_std_rx_ring(ap, RX_RING_SIZE);
|
|
else
|
|
printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
|
|
ap->name);
|
|
if (ap->version >= 2) {
|
|
if (!test_and_set_bit(0, &ap->mini_refill_busy))
|
|
ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
|
|
else
|
|
printk(KERN_ERR "%s: Someone is busy refilling "
|
|
"the RX mini ring\n", ap->name);
|
|
}
|
|
return 0;
|
|
|
|
init_error:
|
|
ace_init_cleanup(dev);
|
|
return ecode;
|
|
}
|
|
|
|
|
|
static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
int board_idx = ap->board_idx;
|
|
|
|
if (board_idx >= 0) {
|
|
if (!jumbo) {
|
|
if (!tx_coal_tick[board_idx])
|
|
writel(DEF_TX_COAL, ®s->TuneTxCoalTicks);
|
|
if (!max_tx_desc[board_idx])
|
|
writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc);
|
|
if (!rx_coal_tick[board_idx])
|
|
writel(DEF_RX_COAL, ®s->TuneRxCoalTicks);
|
|
if (!max_rx_desc[board_idx])
|
|
writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc);
|
|
if (!tx_ratio[board_idx])
|
|
writel(DEF_TX_RATIO, ®s->TxBufRat);
|
|
} else {
|
|
if (!tx_coal_tick[board_idx])
|
|
writel(DEF_JUMBO_TX_COAL,
|
|
®s->TuneTxCoalTicks);
|
|
if (!max_tx_desc[board_idx])
|
|
writel(DEF_JUMBO_TX_MAX_DESC,
|
|
®s->TuneMaxTxDesc);
|
|
if (!rx_coal_tick[board_idx])
|
|
writel(DEF_JUMBO_RX_COAL,
|
|
®s->TuneRxCoalTicks);
|
|
if (!max_rx_desc[board_idx])
|
|
writel(DEF_JUMBO_RX_MAX_DESC,
|
|
®s->TuneMaxRxDesc);
|
|
if (!tx_ratio[board_idx])
|
|
writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void ace_watchdog(struct net_device *data)
|
|
{
|
|
struct net_device *dev = data;
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
|
|
/*
|
|
* We haven't received a stats update event for more than 2.5
|
|
* seconds and there is data in the transmit queue, thus we
|
|
* asume the card is stuck.
|
|
*/
|
|
if (*ap->tx_csm != ap->tx_ret_csm) {
|
|
printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
|
|
dev->name, (unsigned int)readl(®s->HostCtrl));
|
|
/* This can happen due to ieee flow control. */
|
|
} else {
|
|
printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
|
|
dev->name);
|
|
#if 0
|
|
netif_wake_queue(dev);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
static void ace_tasklet(unsigned long dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv((struct net_device *)dev);
|
|
int cur_size;
|
|
|
|
cur_size = atomic_read(&ap->cur_rx_bufs);
|
|
if ((cur_size < RX_LOW_STD_THRES) &&
|
|
!test_and_set_bit(0, &ap->std_refill_busy)) {
|
|
#ifdef DEBUG
|
|
printk("refilling buffers (current %i)\n", cur_size);
|
|
#endif
|
|
ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
|
|
}
|
|
|
|
if (ap->version >= 2) {
|
|
cur_size = atomic_read(&ap->cur_mini_bufs);
|
|
if ((cur_size < RX_LOW_MINI_THRES) &&
|
|
!test_and_set_bit(0, &ap->mini_refill_busy)) {
|
|
#ifdef DEBUG
|
|
printk("refilling mini buffers (current %i)\n",
|
|
cur_size);
|
|
#endif
|
|
ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
|
|
}
|
|
}
|
|
|
|
cur_size = atomic_read(&ap->cur_jumbo_bufs);
|
|
if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
|
|
!test_and_set_bit(0, &ap->jumbo_refill_busy)) {
|
|
#ifdef DEBUG
|
|
printk("refilling jumbo buffers (current %i)\n", cur_size);
|
|
#endif
|
|
ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
|
|
}
|
|
ap->tasklet_pending = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Copy the contents of the NIC's trace buffer to kernel memory.
|
|
*/
|
|
static void ace_dump_trace(struct ace_private *ap)
|
|
{
|
|
#if 0
|
|
if (!ap->trace_buf)
|
|
if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Load the standard rx ring.
|
|
*
|
|
* Loading rings is safe without holding the spin lock since this is
|
|
* done only before the device is enabled, thus no interrupts are
|
|
* generated and by the interrupt handler/tasklet handler.
|
|
*/
|
|
static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
|
|
{
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
short i, idx;
|
|
|
|
|
|
prefetchw(&ap->cur_rx_bufs);
|
|
|
|
idx = ap->rx_std_skbprd;
|
|
|
|
for (i = 0; i < nr_bufs; i++) {
|
|
struct sk_buff *skb;
|
|
struct rx_desc *rd;
|
|
dma_addr_t mapping;
|
|
|
|
skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
|
|
if (!skb)
|
|
break;
|
|
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
|
|
offset_in_page(skb->data),
|
|
ACE_STD_BUFSIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
ap->skb->rx_std_skbuff[idx].skb = skb;
|
|
pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
|
|
mapping, mapping);
|
|
|
|
rd = &ap->rx_std_ring[idx];
|
|
set_aceaddr(&rd->addr, mapping);
|
|
rd->size = ACE_STD_BUFSIZE;
|
|
rd->idx = idx;
|
|
idx = (idx + 1) % RX_STD_RING_ENTRIES;
|
|
}
|
|
|
|
if (!i)
|
|
goto error_out;
|
|
|
|
atomic_add(i, &ap->cur_rx_bufs);
|
|
ap->rx_std_skbprd = idx;
|
|
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
struct cmd cmd;
|
|
cmd.evt = C_SET_RX_PRD_IDX;
|
|
cmd.code = 0;
|
|
cmd.idx = ap->rx_std_skbprd;
|
|
ace_issue_cmd(regs, &cmd);
|
|
} else {
|
|
writel(idx, ®s->RxStdPrd);
|
|
wmb();
|
|
}
|
|
|
|
out:
|
|
clear_bit(0, &ap->std_refill_busy);
|
|
return;
|
|
|
|
error_out:
|
|
printk(KERN_INFO "Out of memory when allocating "
|
|
"standard receive buffers\n");
|
|
goto out;
|
|
}
|
|
|
|
|
|
static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
|
|
{
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
short i, idx;
|
|
|
|
prefetchw(&ap->cur_mini_bufs);
|
|
|
|
idx = ap->rx_mini_skbprd;
|
|
for (i = 0; i < nr_bufs; i++) {
|
|
struct sk_buff *skb;
|
|
struct rx_desc *rd;
|
|
dma_addr_t mapping;
|
|
|
|
skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
|
|
if (!skb)
|
|
break;
|
|
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
|
|
offset_in_page(skb->data),
|
|
ACE_MINI_BUFSIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
ap->skb->rx_mini_skbuff[idx].skb = skb;
|
|
pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
|
|
mapping, mapping);
|
|
|
|
rd = &ap->rx_mini_ring[idx];
|
|
set_aceaddr(&rd->addr, mapping);
|
|
rd->size = ACE_MINI_BUFSIZE;
|
|
rd->idx = idx;
|
|
idx = (idx + 1) % RX_MINI_RING_ENTRIES;
|
|
}
|
|
|
|
if (!i)
|
|
goto error_out;
|
|
|
|
atomic_add(i, &ap->cur_mini_bufs);
|
|
|
|
ap->rx_mini_skbprd = idx;
|
|
|
|
writel(idx, ®s->RxMiniPrd);
|
|
wmb();
|
|
|
|
out:
|
|
clear_bit(0, &ap->mini_refill_busy);
|
|
return;
|
|
error_out:
|
|
printk(KERN_INFO "Out of memory when allocating "
|
|
"mini receive buffers\n");
|
|
goto out;
|
|
}
|
|
|
|
|
|
/*
|
|
* Load the jumbo rx ring, this may happen at any time if the MTU
|
|
* is changed to a value > 1500.
|
|
*/
|
|
static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
|
|
{
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
short i, idx;
|
|
|
|
idx = ap->rx_jumbo_skbprd;
|
|
|
|
for (i = 0; i < nr_bufs; i++) {
|
|
struct sk_buff *skb;
|
|
struct rx_desc *rd;
|
|
dma_addr_t mapping;
|
|
|
|
skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
|
|
if (!skb)
|
|
break;
|
|
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
|
|
offset_in_page(skb->data),
|
|
ACE_JUMBO_BUFSIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
ap->skb->rx_jumbo_skbuff[idx].skb = skb;
|
|
pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
|
|
mapping, mapping);
|
|
|
|
rd = &ap->rx_jumbo_ring[idx];
|
|
set_aceaddr(&rd->addr, mapping);
|
|
rd->size = ACE_JUMBO_BUFSIZE;
|
|
rd->idx = idx;
|
|
idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
|
|
}
|
|
|
|
if (!i)
|
|
goto error_out;
|
|
|
|
atomic_add(i, &ap->cur_jumbo_bufs);
|
|
ap->rx_jumbo_skbprd = idx;
|
|
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
struct cmd cmd;
|
|
cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
|
|
cmd.code = 0;
|
|
cmd.idx = ap->rx_jumbo_skbprd;
|
|
ace_issue_cmd(regs, &cmd);
|
|
} else {
|
|
writel(idx, ®s->RxJumboPrd);
|
|
wmb();
|
|
}
|
|
|
|
out:
|
|
clear_bit(0, &ap->jumbo_refill_busy);
|
|
return;
|
|
error_out:
|
|
if (net_ratelimit())
|
|
printk(KERN_INFO "Out of memory when allocating "
|
|
"jumbo receive buffers\n");
|
|
goto out;
|
|
}
|
|
|
|
|
|
/*
|
|
* All events are considered to be slow (RX/TX ints do not generate
|
|
* events) and are handled here, outside the main interrupt handler,
|
|
* to reduce the size of the handler.
|
|
*/
|
|
static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
|
|
{
|
|
struct ace_private *ap;
|
|
|
|
ap = netdev_priv(dev);
|
|
|
|
while (evtcsm != evtprd) {
|
|
switch (ap->evt_ring[evtcsm].evt) {
|
|
case E_FW_RUNNING:
|
|
printk(KERN_INFO "%s: Firmware up and running\n",
|
|
ap->name);
|
|
ap->fw_running = 1;
|
|
wmb();
|
|
break;
|
|
case E_STATS_UPDATED:
|
|
break;
|
|
case E_LNK_STATE:
|
|
{
|
|
u16 code = ap->evt_ring[evtcsm].code;
|
|
switch (code) {
|
|
case E_C_LINK_UP:
|
|
{
|
|
u32 state = readl(&ap->regs->GigLnkState);
|
|
printk(KERN_WARNING "%s: Optical link UP "
|
|
"(%s Duplex, Flow Control: %s%s)\n",
|
|
ap->name,
|
|
state & LNK_FULL_DUPLEX ? "Full":"Half",
|
|
state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
|
|
state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
|
|
break;
|
|
}
|
|
case E_C_LINK_DOWN:
|
|
printk(KERN_WARNING "%s: Optical link DOWN\n",
|
|
ap->name);
|
|
break;
|
|
case E_C_LINK_10_100:
|
|
printk(KERN_WARNING "%s: 10/100BaseT link "
|
|
"UP\n", ap->name);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: Unknown optical link "
|
|
"state %02x\n", ap->name, code);
|
|
}
|
|
break;
|
|
}
|
|
case E_ERROR:
|
|
switch(ap->evt_ring[evtcsm].code) {
|
|
case E_C_ERR_INVAL_CMD:
|
|
printk(KERN_ERR "%s: invalid command error\n",
|
|
ap->name);
|
|
break;
|
|
case E_C_ERR_UNIMP_CMD:
|
|
printk(KERN_ERR "%s: unimplemented command "
|
|
"error\n", ap->name);
|
|
break;
|
|
case E_C_ERR_BAD_CFG:
|
|
printk(KERN_ERR "%s: bad config error\n",
|
|
ap->name);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unknown error %02x\n",
|
|
ap->name, ap->evt_ring[evtcsm].code);
|
|
}
|
|
break;
|
|
case E_RESET_JUMBO_RNG:
|
|
{
|
|
int i;
|
|
for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
|
|
if (ap->skb->rx_jumbo_skbuff[i].skb) {
|
|
ap->rx_jumbo_ring[i].size = 0;
|
|
set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
|
|
dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
|
|
ap->skb->rx_jumbo_skbuff[i].skb = NULL;
|
|
}
|
|
}
|
|
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
struct cmd cmd;
|
|
cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(ap->regs, &cmd);
|
|
} else {
|
|
writel(0, &((ap->regs)->RxJumboPrd));
|
|
wmb();
|
|
}
|
|
|
|
ap->jumbo = 0;
|
|
ap->rx_jumbo_skbprd = 0;
|
|
printk(KERN_INFO "%s: Jumbo ring flushed\n",
|
|
ap->name);
|
|
clear_bit(0, &ap->jumbo_refill_busy);
|
|
break;
|
|
}
|
|
default:
|
|
printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
|
|
ap->name, ap->evt_ring[evtcsm].evt);
|
|
}
|
|
evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
|
|
}
|
|
|
|
return evtcsm;
|
|
}
|
|
|
|
|
|
static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
u32 idx;
|
|
int mini_count = 0, std_count = 0;
|
|
|
|
idx = rxretcsm;
|
|
|
|
prefetchw(&ap->cur_rx_bufs);
|
|
prefetchw(&ap->cur_mini_bufs);
|
|
|
|
while (idx != rxretprd) {
|
|
struct ring_info *rip;
|
|
struct sk_buff *skb;
|
|
struct rx_desc *rxdesc, *retdesc;
|
|
u32 skbidx;
|
|
int bd_flags, desc_type, mapsize;
|
|
u16 csum;
|
|
|
|
|
|
/* make sure the rx descriptor isn't read before rxretprd */
|
|
if (idx == rxretcsm)
|
|
rmb();
|
|
|
|
retdesc = &ap->rx_return_ring[idx];
|
|
skbidx = retdesc->idx;
|
|
bd_flags = retdesc->flags;
|
|
desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
|
|
|
|
switch(desc_type) {
|
|
/*
|
|
* Normal frames do not have any flags set
|
|
*
|
|
* Mini and normal frames arrive frequently,
|
|
* so use a local counter to avoid doing
|
|
* atomic operations for each packet arriving.
|
|
*/
|
|
case 0:
|
|
rip = &ap->skb->rx_std_skbuff[skbidx];
|
|
mapsize = ACE_STD_BUFSIZE;
|
|
rxdesc = &ap->rx_std_ring[skbidx];
|
|
std_count++;
|
|
break;
|
|
case BD_FLG_JUMBO:
|
|
rip = &ap->skb->rx_jumbo_skbuff[skbidx];
|
|
mapsize = ACE_JUMBO_BUFSIZE;
|
|
rxdesc = &ap->rx_jumbo_ring[skbidx];
|
|
atomic_dec(&ap->cur_jumbo_bufs);
|
|
break;
|
|
case BD_FLG_MINI:
|
|
rip = &ap->skb->rx_mini_skbuff[skbidx];
|
|
mapsize = ACE_MINI_BUFSIZE;
|
|
rxdesc = &ap->rx_mini_ring[skbidx];
|
|
mini_count++;
|
|
break;
|
|
default:
|
|
printk(KERN_INFO "%s: unknown frame type (0x%02x) "
|
|
"returned by NIC\n", dev->name,
|
|
retdesc->flags);
|
|
goto error;
|
|
}
|
|
|
|
skb = rip->skb;
|
|
rip->skb = NULL;
|
|
pci_unmap_page(ap->pdev,
|
|
pci_unmap_addr(rip, mapping),
|
|
mapsize,
|
|
PCI_DMA_FROMDEVICE);
|
|
skb_put(skb, retdesc->size);
|
|
|
|
/*
|
|
* Fly baby, fly!
|
|
*/
|
|
csum = retdesc->tcp_udp_csum;
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
/*
|
|
* Instead of forcing the poor tigon mips cpu to calculate
|
|
* pseudo hdr checksum, we do this ourselves.
|
|
*/
|
|
if (bd_flags & BD_FLG_TCP_UDP_SUM) {
|
|
skb->csum = htons(csum);
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
} else {
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
|
|
/* send it up */
|
|
#if ACENIC_DO_VLAN
|
|
if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
|
|
vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
|
|
} else
|
|
#endif
|
|
netif_rx(skb);
|
|
|
|
dev->last_rx = jiffies;
|
|
ap->stats.rx_packets++;
|
|
ap->stats.rx_bytes += retdesc->size;
|
|
|
|
idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
|
|
}
|
|
|
|
atomic_sub(std_count, &ap->cur_rx_bufs);
|
|
if (!ACE_IS_TIGON_I(ap))
|
|
atomic_sub(mini_count, &ap->cur_mini_bufs);
|
|
|
|
out:
|
|
/*
|
|
* According to the documentation RxRetCsm is obsolete with
|
|
* the 12.3.x Firmware - my Tigon I NICs seem to disagree!
|
|
*/
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
writel(idx, &ap->regs->RxRetCsm);
|
|
}
|
|
ap->cur_rx = idx;
|
|
|
|
return;
|
|
error:
|
|
idx = rxretprd;
|
|
goto out;
|
|
}
|
|
|
|
|
|
static inline void ace_tx_int(struct net_device *dev,
|
|
u32 txcsm, u32 idx)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
|
|
do {
|
|
struct sk_buff *skb;
|
|
dma_addr_t mapping;
|
|
struct tx_ring_info *info;
|
|
|
|
info = ap->skb->tx_skbuff + idx;
|
|
skb = info->skb;
|
|
mapping = pci_unmap_addr(info, mapping);
|
|
|
|
if (mapping) {
|
|
pci_unmap_page(ap->pdev, mapping,
|
|
pci_unmap_len(info, maplen),
|
|
PCI_DMA_TODEVICE);
|
|
pci_unmap_addr_set(info, mapping, 0);
|
|
}
|
|
|
|
if (skb) {
|
|
ap->stats.tx_packets++;
|
|
ap->stats.tx_bytes += skb->len;
|
|
dev_kfree_skb_irq(skb);
|
|
info->skb = NULL;
|
|
}
|
|
|
|
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
|
|
} while (idx != txcsm);
|
|
|
|
if (netif_queue_stopped(dev))
|
|
netif_wake_queue(dev);
|
|
|
|
wmb();
|
|
ap->tx_ret_csm = txcsm;
|
|
|
|
/* So... tx_ret_csm is advanced _after_ check for device wakeup.
|
|
*
|
|
* We could try to make it before. In this case we would get
|
|
* the following race condition: hard_start_xmit on other cpu
|
|
* enters after we advanced tx_ret_csm and fills space,
|
|
* which we have just freed, so that we make illegal device wakeup.
|
|
* There is no good way to workaround this (at entry
|
|
* to ace_start_xmit detects this condition and prevents
|
|
* ring corruption, but it is not a good workaround.)
|
|
*
|
|
* When tx_ret_csm is advanced after, we wake up device _only_
|
|
* if we really have some space in ring (though the core doing
|
|
* hard_start_xmit can see full ring for some period and has to
|
|
* synchronize.) Superb.
|
|
* BUT! We get another subtle race condition. hard_start_xmit
|
|
* may think that ring is full between wakeup and advancing
|
|
* tx_ret_csm and will stop device instantly! It is not so bad.
|
|
* We are guaranteed that there is something in ring, so that
|
|
* the next irq will resume transmission. To speedup this we could
|
|
* mark descriptor, which closes ring with BD_FLG_COAL_NOW
|
|
* (see ace_start_xmit).
|
|
*
|
|
* Well, this dilemma exists in all lock-free devices.
|
|
* We, following scheme used in drivers by Donald Becker,
|
|
* select the least dangerous.
|
|
* --ANK
|
|
*/
|
|
}
|
|
|
|
|
|
static irqreturn_t ace_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct net_device *dev = (struct net_device *)dev_id;
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
u32 idx;
|
|
u32 txcsm, rxretcsm, rxretprd;
|
|
u32 evtcsm, evtprd;
|
|
|
|
/*
|
|
* In case of PCI shared interrupts or spurious interrupts,
|
|
* we want to make sure it is actually our interrupt before
|
|
* spending any time in here.
|
|
*/
|
|
if (!(readl(®s->HostCtrl) & IN_INT))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* ACK intr now. Otherwise we will lose updates to rx_ret_prd,
|
|
* which happened _after_ rxretprd = *ap->rx_ret_prd; but before
|
|
* writel(0, ®s->Mb0Lo).
|
|
*
|
|
* "IRQ avoidance" recommended in docs applies to IRQs served
|
|
* threads and it is wrong even for that case.
|
|
*/
|
|
writel(0, ®s->Mb0Lo);
|
|
readl(®s->Mb0Lo);
|
|
|
|
/*
|
|
* There is no conflict between transmit handling in
|
|
* start_xmit and receive processing, thus there is no reason
|
|
* to take a spin lock for RX handling. Wait until we start
|
|
* working on the other stuff - hey we don't need a spin lock
|
|
* anymore.
|
|
*/
|
|
rxretprd = *ap->rx_ret_prd;
|
|
rxretcsm = ap->cur_rx;
|
|
|
|
if (rxretprd != rxretcsm)
|
|
ace_rx_int(dev, rxretprd, rxretcsm);
|
|
|
|
txcsm = *ap->tx_csm;
|
|
idx = ap->tx_ret_csm;
|
|
|
|
if (txcsm != idx) {
|
|
/*
|
|
* If each skb takes only one descriptor this check degenerates
|
|
* to identity, because new space has just been opened.
|
|
* But if skbs are fragmented we must check that this index
|
|
* update releases enough of space, otherwise we just
|
|
* wait for device to make more work.
|
|
*/
|
|
if (!tx_ring_full(ap, txcsm, ap->tx_prd))
|
|
ace_tx_int(dev, txcsm, idx);
|
|
}
|
|
|
|
evtcsm = readl(®s->EvtCsm);
|
|
evtprd = *ap->evt_prd;
|
|
|
|
if (evtcsm != evtprd) {
|
|
evtcsm = ace_handle_event(dev, evtcsm, evtprd);
|
|
writel(evtcsm, ®s->EvtCsm);
|
|
}
|
|
|
|
/*
|
|
* This has to go last in the interrupt handler and run with
|
|
* the spin lock released ... what lock?
|
|
*/
|
|
if (netif_running(dev)) {
|
|
int cur_size;
|
|
int run_tasklet = 0;
|
|
|
|
cur_size = atomic_read(&ap->cur_rx_bufs);
|
|
if (cur_size < RX_LOW_STD_THRES) {
|
|
if ((cur_size < RX_PANIC_STD_THRES) &&
|
|
!test_and_set_bit(0, &ap->std_refill_busy)) {
|
|
#ifdef DEBUG
|
|
printk("low on std buffers %i\n", cur_size);
|
|
#endif
|
|
ace_load_std_rx_ring(ap,
|
|
RX_RING_SIZE - cur_size);
|
|
} else
|
|
run_tasklet = 1;
|
|
}
|
|
|
|
if (!ACE_IS_TIGON_I(ap)) {
|
|
cur_size = atomic_read(&ap->cur_mini_bufs);
|
|
if (cur_size < RX_LOW_MINI_THRES) {
|
|
if ((cur_size < RX_PANIC_MINI_THRES) &&
|
|
!test_and_set_bit(0,
|
|
&ap->mini_refill_busy)) {
|
|
#ifdef DEBUG
|
|
printk("low on mini buffers %i\n",
|
|
cur_size);
|
|
#endif
|
|
ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
|
|
} else
|
|
run_tasklet = 1;
|
|
}
|
|
}
|
|
|
|
if (ap->jumbo) {
|
|
cur_size = atomic_read(&ap->cur_jumbo_bufs);
|
|
if (cur_size < RX_LOW_JUMBO_THRES) {
|
|
if ((cur_size < RX_PANIC_JUMBO_THRES) &&
|
|
!test_and_set_bit(0,
|
|
&ap->jumbo_refill_busy)){
|
|
#ifdef DEBUG
|
|
printk("low on jumbo buffers %i\n",
|
|
cur_size);
|
|
#endif
|
|
ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
|
|
} else
|
|
run_tasklet = 1;
|
|
}
|
|
}
|
|
if (run_tasklet && !ap->tasklet_pending) {
|
|
ap->tasklet_pending = 1;
|
|
tasklet_schedule(&ap->ace_tasklet);
|
|
}
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
#if ACENIC_DO_VLAN
|
|
static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
ace_mask_irq(dev);
|
|
|
|
ap->vlgrp = grp;
|
|
|
|
ace_unmask_irq(dev);
|
|
local_irq_restore(flags);
|
|
}
|
|
#endif /* ACENIC_DO_VLAN */
|
|
|
|
|
|
static int ace_open(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
struct cmd cmd;
|
|
|
|
if (!(ap->fw_running)) {
|
|
printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
|
|
return -EBUSY;
|
|
}
|
|
|
|
writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu);
|
|
|
|
cmd.evt = C_CLEAR_STATS;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
|
|
cmd.evt = C_HOST_STATE;
|
|
cmd.code = C_C_STACK_UP;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
|
|
if (ap->jumbo &&
|
|
!test_and_set_bit(0, &ap->jumbo_refill_busy))
|
|
ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
|
|
|
|
if (dev->flags & IFF_PROMISC) {
|
|
cmd.evt = C_SET_PROMISC_MODE;
|
|
cmd.code = C_C_PROMISC_ENABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
|
|
ap->promisc = 1;
|
|
}else
|
|
ap->promisc = 0;
|
|
ap->mcast_all = 0;
|
|
|
|
#if 0
|
|
cmd.evt = C_LNK_NEGOTIATION;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
#endif
|
|
|
|
netif_start_queue(dev);
|
|
|
|
/*
|
|
* Setup the bottom half rx ring refill handler
|
|
*/
|
|
tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int ace_close(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
struct cmd cmd;
|
|
unsigned long flags;
|
|
short i;
|
|
|
|
/*
|
|
* Without (or before) releasing irq and stopping hardware, this
|
|
* is an absolute non-sense, by the way. It will be reset instantly
|
|
* by the first irq.
|
|
*/
|
|
netif_stop_queue(dev);
|
|
|
|
|
|
if (ap->promisc) {
|
|
cmd.evt = C_SET_PROMISC_MODE;
|
|
cmd.code = C_C_PROMISC_DISABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
ap->promisc = 0;
|
|
}
|
|
|
|
cmd.evt = C_HOST_STATE;
|
|
cmd.code = C_C_STACK_DOWN;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
|
|
tasklet_kill(&ap->ace_tasklet);
|
|
|
|
/*
|
|
* Make sure one CPU is not processing packets while
|
|
* buffers are being released by another.
|
|
*/
|
|
|
|
local_irq_save(flags);
|
|
ace_mask_irq(dev);
|
|
|
|
for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
|
|
struct sk_buff *skb;
|
|
dma_addr_t mapping;
|
|
struct tx_ring_info *info;
|
|
|
|
info = ap->skb->tx_skbuff + i;
|
|
skb = info->skb;
|
|
mapping = pci_unmap_addr(info, mapping);
|
|
|
|
if (mapping) {
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
/* NB: TIGON_1 is special, tx_ring is in io space */
|
|
struct tx_desc __iomem *tx;
|
|
tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
|
|
writel(0, &tx->addr.addrhi);
|
|
writel(0, &tx->addr.addrlo);
|
|
writel(0, &tx->flagsize);
|
|
} else
|
|
memset(ap->tx_ring + i, 0,
|
|
sizeof(struct tx_desc));
|
|
pci_unmap_page(ap->pdev, mapping,
|
|
pci_unmap_len(info, maplen),
|
|
PCI_DMA_TODEVICE);
|
|
pci_unmap_addr_set(info, mapping, 0);
|
|
}
|
|
if (skb) {
|
|
dev_kfree_skb(skb);
|
|
info->skb = NULL;
|
|
}
|
|
}
|
|
|
|
if (ap->jumbo) {
|
|
cmd.evt = C_RESET_JUMBO_RNG;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
}
|
|
|
|
ace_unmask_irq(dev);
|
|
local_irq_restore(flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline dma_addr_t
|
|
ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
|
|
struct sk_buff *tail, u32 idx)
|
|
{
|
|
dma_addr_t mapping;
|
|
struct tx_ring_info *info;
|
|
|
|
mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
|
|
offset_in_page(skb->data),
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
|
|
info = ap->skb->tx_skbuff + idx;
|
|
info->skb = tail;
|
|
pci_unmap_addr_set(info, mapping, mapping);
|
|
pci_unmap_len_set(info, maplen, skb->len);
|
|
return mapping;
|
|
}
|
|
|
|
|
|
static inline void
|
|
ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
|
|
u32 flagsize, u32 vlan_tag)
|
|
{
|
|
#if !USE_TX_COAL_NOW
|
|
flagsize &= ~BD_FLG_COAL_NOW;
|
|
#endif
|
|
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
|
|
writel(addr >> 32, &io->addr.addrhi);
|
|
writel(addr & 0xffffffff, &io->addr.addrlo);
|
|
writel(flagsize, &io->flagsize);
|
|
#if ACENIC_DO_VLAN
|
|
writel(vlan_tag, &io->vlanres);
|
|
#endif
|
|
} else {
|
|
desc->addr.addrhi = addr >> 32;
|
|
desc->addr.addrlo = addr;
|
|
desc->flagsize = flagsize;
|
|
#if ACENIC_DO_VLAN
|
|
desc->vlanres = vlan_tag;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
struct tx_desc *desc;
|
|
u32 idx, flagsize;
|
|
unsigned long maxjiff = jiffies + 3*HZ;
|
|
|
|
restart:
|
|
idx = ap->tx_prd;
|
|
|
|
if (tx_ring_full(ap, ap->tx_ret_csm, idx))
|
|
goto overflow;
|
|
|
|
if (!skb_shinfo(skb)->nr_frags) {
|
|
dma_addr_t mapping;
|
|
u32 vlan_tag = 0;
|
|
|
|
mapping = ace_map_tx_skb(ap, skb, skb, idx);
|
|
flagsize = (skb->len << 16) | (BD_FLG_END);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
flagsize |= BD_FLG_TCP_UDP_SUM;
|
|
#if ACENIC_DO_VLAN
|
|
if (vlan_tx_tag_present(skb)) {
|
|
flagsize |= BD_FLG_VLAN_TAG;
|
|
vlan_tag = vlan_tx_tag_get(skb);
|
|
}
|
|
#endif
|
|
desc = ap->tx_ring + idx;
|
|
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
|
|
|
|
/* Look at ace_tx_int for explanations. */
|
|
if (tx_ring_full(ap, ap->tx_ret_csm, idx))
|
|
flagsize |= BD_FLG_COAL_NOW;
|
|
|
|
ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
|
|
} else {
|
|
dma_addr_t mapping;
|
|
u32 vlan_tag = 0;
|
|
int i, len = 0;
|
|
|
|
mapping = ace_map_tx_skb(ap, skb, NULL, idx);
|
|
flagsize = (skb_headlen(skb) << 16);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
flagsize |= BD_FLG_TCP_UDP_SUM;
|
|
#if ACENIC_DO_VLAN
|
|
if (vlan_tx_tag_present(skb)) {
|
|
flagsize |= BD_FLG_VLAN_TAG;
|
|
vlan_tag = vlan_tx_tag_get(skb);
|
|
}
|
|
#endif
|
|
|
|
ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
|
|
|
|
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
struct tx_ring_info *info;
|
|
|
|
len += frag->size;
|
|
info = ap->skb->tx_skbuff + idx;
|
|
desc = ap->tx_ring + idx;
|
|
|
|
mapping = pci_map_page(ap->pdev, frag->page,
|
|
frag->page_offset, frag->size,
|
|
PCI_DMA_TODEVICE);
|
|
|
|
flagsize = (frag->size << 16);
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
flagsize |= BD_FLG_TCP_UDP_SUM;
|
|
idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
|
|
|
|
if (i == skb_shinfo(skb)->nr_frags - 1) {
|
|
flagsize |= BD_FLG_END;
|
|
if (tx_ring_full(ap, ap->tx_ret_csm, idx))
|
|
flagsize |= BD_FLG_COAL_NOW;
|
|
|
|
/*
|
|
* Only the last fragment frees
|
|
* the skb!
|
|
*/
|
|
info->skb = skb;
|
|
} else {
|
|
info->skb = NULL;
|
|
}
|
|
pci_unmap_addr_set(info, mapping, mapping);
|
|
pci_unmap_len_set(info, maplen, frag->size);
|
|
ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
|
|
}
|
|
}
|
|
|
|
wmb();
|
|
ap->tx_prd = idx;
|
|
ace_set_txprd(regs, ap, idx);
|
|
|
|
if (flagsize & BD_FLG_COAL_NOW) {
|
|
netif_stop_queue(dev);
|
|
|
|
/*
|
|
* A TX-descriptor producer (an IRQ) might have gotten
|
|
* inbetween, making the ring free again. Since xmit is
|
|
* serialized, this is the only situation we have to
|
|
* re-test.
|
|
*/
|
|
if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
dev->trans_start = jiffies;
|
|
return NETDEV_TX_OK;
|
|
|
|
overflow:
|
|
/*
|
|
* This race condition is unavoidable with lock-free drivers.
|
|
* We wake up the queue _before_ tx_prd is advanced, so that we can
|
|
* enter hard_start_xmit too early, while tx ring still looks closed.
|
|
* This happens ~1-4 times per 100000 packets, so that we can allow
|
|
* to loop syncing to other CPU. Probably, we need an additional
|
|
* wmb() in ace_tx_intr as well.
|
|
*
|
|
* Note that this race is relieved by reserving one more entry
|
|
* in tx ring than it is necessary (see original non-SG driver).
|
|
* However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
|
|
* is already overkill.
|
|
*
|
|
* Alternative is to return with 1 not throttling queue. In this
|
|
* case loop becomes longer, no more useful effects.
|
|
*/
|
|
if (time_before(jiffies, maxjiff)) {
|
|
barrier();
|
|
cpu_relax();
|
|
goto restart;
|
|
}
|
|
|
|
/* The ring is stuck full. */
|
|
printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
|
|
static int ace_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
|
|
if (new_mtu > ACE_JUMBO_MTU)
|
|
return -EINVAL;
|
|
|
|
writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu);
|
|
dev->mtu = new_mtu;
|
|
|
|
if (new_mtu > ACE_STD_MTU) {
|
|
if (!(ap->jumbo)) {
|
|
printk(KERN_INFO "%s: Enabling Jumbo frame "
|
|
"support\n", dev->name);
|
|
ap->jumbo = 1;
|
|
if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
|
|
ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
|
|
ace_set_rxtx_parms(dev, 1);
|
|
}
|
|
} else {
|
|
while (test_and_set_bit(0, &ap->jumbo_refill_busy));
|
|
ace_sync_irq(dev->irq);
|
|
ace_set_rxtx_parms(dev, 0);
|
|
if (ap->jumbo) {
|
|
struct cmd cmd;
|
|
|
|
cmd.evt = C_RESET_JUMBO_RNG;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
u32 link;
|
|
|
|
memset(ecmd, 0, sizeof(struct ethtool_cmd));
|
|
ecmd->supported =
|
|
(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
|
|
SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_Autoneg | SUPPORTED_FIBRE);
|
|
|
|
ecmd->port = PORT_FIBRE;
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
|
|
link = readl(®s->GigLnkState);
|
|
if (link & LNK_1000MB)
|
|
ecmd->speed = SPEED_1000;
|
|
else {
|
|
link = readl(®s->FastLnkState);
|
|
if (link & LNK_100MB)
|
|
ecmd->speed = SPEED_100;
|
|
else if (link & LNK_10MB)
|
|
ecmd->speed = SPEED_10;
|
|
else
|
|
ecmd->speed = 0;
|
|
}
|
|
if (link & LNK_FULL_DUPLEX)
|
|
ecmd->duplex = DUPLEX_FULL;
|
|
else
|
|
ecmd->duplex = DUPLEX_HALF;
|
|
|
|
if (link & LNK_NEGOTIATE)
|
|
ecmd->autoneg = AUTONEG_ENABLE;
|
|
else
|
|
ecmd->autoneg = AUTONEG_DISABLE;
|
|
|
|
#if 0
|
|
/*
|
|
* Current struct ethtool_cmd is insufficient
|
|
*/
|
|
ecmd->trace = readl(®s->TuneTrace);
|
|
|
|
ecmd->txcoal = readl(®s->TuneTxCoalTicks);
|
|
ecmd->rxcoal = readl(®s->TuneRxCoalTicks);
|
|
#endif
|
|
ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc);
|
|
ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
u32 link, speed;
|
|
|
|
link = readl(®s->GigLnkState);
|
|
if (link & LNK_1000MB)
|
|
speed = SPEED_1000;
|
|
else {
|
|
link = readl(®s->FastLnkState);
|
|
if (link & LNK_100MB)
|
|
speed = SPEED_100;
|
|
else if (link & LNK_10MB)
|
|
speed = SPEED_10;
|
|
else
|
|
speed = SPEED_100;
|
|
}
|
|
|
|
link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
|
|
LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
|
|
if (!ACE_IS_TIGON_I(ap))
|
|
link |= LNK_TX_FLOW_CTL_Y;
|
|
if (ecmd->autoneg == AUTONEG_ENABLE)
|
|
link |= LNK_NEGOTIATE;
|
|
if (ecmd->speed != speed) {
|
|
link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
|
|
switch (speed) {
|
|
case SPEED_1000:
|
|
link |= LNK_1000MB;
|
|
break;
|
|
case SPEED_100:
|
|
link |= LNK_100MB;
|
|
break;
|
|
case SPEED_10:
|
|
link |= LNK_10MB;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ecmd->duplex == DUPLEX_FULL)
|
|
link |= LNK_FULL_DUPLEX;
|
|
|
|
if (link != ap->link) {
|
|
struct cmd cmd;
|
|
printk(KERN_INFO "%s: Renegotiating link state\n",
|
|
dev->name);
|
|
|
|
ap->link = link;
|
|
writel(link, ®s->TuneLink);
|
|
if (!ACE_IS_TIGON_I(ap))
|
|
writel(link, ®s->TuneFastLink);
|
|
wmb();
|
|
|
|
cmd.evt = C_LNK_NEGOTIATION;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ace_get_drvinfo(struct net_device *dev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
|
|
strlcpy(info->driver, "acenic", sizeof(info->driver));
|
|
snprintf(info->version, sizeof(info->version), "%i.%i.%i",
|
|
tigonFwReleaseMajor, tigonFwReleaseMinor,
|
|
tigonFwReleaseFix);
|
|
|
|
if (ap->pdev)
|
|
strlcpy(info->bus_info, pci_name(ap->pdev),
|
|
sizeof(info->bus_info));
|
|
|
|
}
|
|
|
|
/*
|
|
* Set the hardware MAC address.
|
|
*/
|
|
static int ace_set_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
struct sockaddr *addr=p;
|
|
u8 *da;
|
|
struct cmd cmd;
|
|
|
|
if(netif_running(dev))
|
|
return -EBUSY;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
|
|
|
|
da = (u8 *)dev->dev_addr;
|
|
|
|
writel(da[0] << 8 | da[1], ®s->MacAddrHi);
|
|
writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
|
|
®s->MacAddrLo);
|
|
|
|
cmd.evt = C_SET_MAC_ADDR;
|
|
cmd.code = 0;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void ace_set_multicast_list(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
struct cmd cmd;
|
|
|
|
if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
|
|
cmd.evt = C_SET_MULTICAST_MODE;
|
|
cmd.code = C_C_MCAST_ENABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
ap->mcast_all = 1;
|
|
} else if (ap->mcast_all) {
|
|
cmd.evt = C_SET_MULTICAST_MODE;
|
|
cmd.code = C_C_MCAST_DISABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
ap->mcast_all = 0;
|
|
}
|
|
|
|
if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
|
|
cmd.evt = C_SET_PROMISC_MODE;
|
|
cmd.code = C_C_PROMISC_ENABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
ap->promisc = 1;
|
|
}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
|
|
cmd.evt = C_SET_PROMISC_MODE;
|
|
cmd.code = C_C_PROMISC_DISABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
ap->promisc = 0;
|
|
}
|
|
|
|
/*
|
|
* For the time being multicast relies on the upper layers
|
|
* filtering it properly. The Firmware does not allow one to
|
|
* set the entire multicast list at a time and keeping track of
|
|
* it here is going to be messy.
|
|
*/
|
|
if ((dev->mc_count) && !(ap->mcast_all)) {
|
|
cmd.evt = C_SET_MULTICAST_MODE;
|
|
cmd.code = C_C_MCAST_ENABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
}else if (!ap->mcast_all) {
|
|
cmd.evt = C_SET_MULTICAST_MODE;
|
|
cmd.code = C_C_MCAST_DISABLE;
|
|
cmd.idx = 0;
|
|
ace_issue_cmd(regs, &cmd);
|
|
}
|
|
}
|
|
|
|
|
|
static struct net_device_stats *ace_get_stats(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_mac_stats __iomem *mac_stats =
|
|
(struct ace_mac_stats __iomem *)ap->regs->Stats;
|
|
|
|
ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
|
|
ap->stats.multicast = readl(&mac_stats->kept_mc);
|
|
ap->stats.collisions = readl(&mac_stats->coll);
|
|
|
|
return &ap->stats;
|
|
}
|
|
|
|
|
|
static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
|
|
u32 dest, int size)
|
|
{
|
|
void __iomem *tdest;
|
|
u32 *wsrc;
|
|
short tsize, i;
|
|
|
|
if (size <= 0)
|
|
return;
|
|
|
|
while (size > 0) {
|
|
tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
|
|
min_t(u32, size, ACE_WINDOW_SIZE));
|
|
tdest = (void __iomem *) ®s->Window +
|
|
(dest & (ACE_WINDOW_SIZE - 1));
|
|
writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
|
|
/*
|
|
* This requires byte swapping on big endian, however
|
|
* writel does that for us
|
|
*/
|
|
wsrc = src;
|
|
for (i = 0; i < (tsize / 4); i++) {
|
|
writel(wsrc[i], tdest + i*4);
|
|
}
|
|
dest += tsize;
|
|
src += tsize;
|
|
size -= tsize;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
|
|
{
|
|
void __iomem *tdest;
|
|
short tsize = 0, i;
|
|
|
|
if (size <= 0)
|
|
return;
|
|
|
|
while (size > 0) {
|
|
tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
|
|
min_t(u32, size, ACE_WINDOW_SIZE));
|
|
tdest = (void __iomem *) ®s->Window +
|
|
(dest & (ACE_WINDOW_SIZE - 1));
|
|
writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
|
|
|
|
for (i = 0; i < (tsize / 4); i++) {
|
|
writel(0, tdest + i*4);
|
|
}
|
|
|
|
dest += tsize;
|
|
size -= tsize;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Download the firmware into the SRAM on the NIC
|
|
*
|
|
* This operation requires the NIC to be halted and is performed with
|
|
* interrupts disabled and with the spinlock hold.
|
|
*/
|
|
static int __devinit ace_load_firmware(struct net_device *dev)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
|
|
if (!(readl(®s->CpuCtrl) & CPU_HALTED)) {
|
|
printk(KERN_ERR "%s: trying to download firmware while the "
|
|
"CPU is running!\n", ap->name);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Do not try to clear more than 512KB or we end up seeing
|
|
* funny things on NICs with only 512KB SRAM
|
|
*/
|
|
ace_clear(regs, 0x2000, 0x80000-0x2000);
|
|
if (ACE_IS_TIGON_I(ap)) {
|
|
ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
|
|
ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
|
|
ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
|
|
tigonFwRodataLen);
|
|
ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
|
|
ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
|
|
}else if (ap->version == 2) {
|
|
ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
|
|
ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
|
|
ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
|
|
ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
|
|
tigon2FwRodataLen);
|
|
ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* The eeprom on the AceNIC is an Atmel i2c EEPROM.
|
|
*
|
|
* Accessing the EEPROM is `interesting' to say the least - don't read
|
|
* this code right after dinner.
|
|
*
|
|
* This is all about black magic and bit-banging the device .... I
|
|
* wonder in what hospital they have put the guy who designed the i2c
|
|
* specs.
|
|
*
|
|
* Oh yes, this is only the beginning!
|
|
*
|
|
* Thanks to Stevarino Webinski for helping tracking down the bugs in the
|
|
* code i2c readout code by beta testing all my hacks.
|
|
*/
|
|
static void __devinit eeprom_start(struct ace_regs __iomem *regs)
|
|
{
|
|
u32 local;
|
|
|
|
readl(®s->LocalCtrl);
|
|
udelay(ACE_SHORT_DELAY);
|
|
local = readl(®s->LocalCtrl);
|
|
local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local |= EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local &= ~EEPROM_DATA_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local &= ~EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
}
|
|
|
|
|
|
static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
|
|
{
|
|
short i;
|
|
u32 local;
|
|
|
|
udelay(ACE_SHORT_DELAY);
|
|
local = readl(®s->LocalCtrl);
|
|
local &= ~EEPROM_DATA_OUT;
|
|
local |= EEPROM_WRITE_ENABLE;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
|
|
for (i = 0; i < 8; i++, magic <<= 1) {
|
|
udelay(ACE_SHORT_DELAY);
|
|
if (magic & 0x80)
|
|
local |= EEPROM_DATA_OUT;
|
|
else
|
|
local &= ~EEPROM_DATA_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
|
|
udelay(ACE_SHORT_DELAY);
|
|
local |= EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
}
|
|
}
|
|
|
|
|
|
static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
|
|
{
|
|
int state;
|
|
u32 local;
|
|
|
|
local = readl(®s->LocalCtrl);
|
|
local &= ~EEPROM_WRITE_ENABLE;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_LONG_DELAY);
|
|
local |= EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
/* sample data in middle of high clk */
|
|
state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0;
|
|
udelay(ACE_SHORT_DELAY);
|
|
mb();
|
|
writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
|
|
{
|
|
u32 local;
|
|
|
|
udelay(ACE_SHORT_DELAY);
|
|
local = readl(®s->LocalCtrl);
|
|
local |= EEPROM_WRITE_ENABLE;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local &= ~EEPROM_DATA_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local |= EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
local |= EEPROM_DATA_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_LONG_DELAY);
|
|
local &= ~EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
mb();
|
|
}
|
|
|
|
|
|
/*
|
|
* Read a whole byte from the EEPROM.
|
|
*/
|
|
static int __devinit read_eeprom_byte(struct net_device *dev,
|
|
unsigned long offset)
|
|
{
|
|
struct ace_private *ap = netdev_priv(dev);
|
|
struct ace_regs __iomem *regs = ap->regs;
|
|
unsigned long flags;
|
|
u32 local;
|
|
int result = 0;
|
|
short i;
|
|
|
|
/*
|
|
* Don't take interrupts on this CPU will bit banging
|
|
* the %#%#@$ I2C device
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
eeprom_start(regs);
|
|
|
|
eeprom_prep(regs, EEPROM_WRITE_SELECT);
|
|
if (eeprom_check_ack(regs)) {
|
|
local_irq_restore(flags);
|
|
printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
|
|
result = -EIO;
|
|
goto eeprom_read_error;
|
|
}
|
|
|
|
eeprom_prep(regs, (offset >> 8) & 0xff);
|
|
if (eeprom_check_ack(regs)) {
|
|
local_irq_restore(flags);
|
|
printk(KERN_ERR "%s: Unable to set address byte 0\n",
|
|
ap->name);
|
|
result = -EIO;
|
|
goto eeprom_read_error;
|
|
}
|
|
|
|
eeprom_prep(regs, offset & 0xff);
|
|
if (eeprom_check_ack(regs)) {
|
|
local_irq_restore(flags);
|
|
printk(KERN_ERR "%s: Unable to set address byte 1\n",
|
|
ap->name);
|
|
result = -EIO;
|
|
goto eeprom_read_error;
|
|
}
|
|
|
|
eeprom_start(regs);
|
|
eeprom_prep(regs, EEPROM_READ_SELECT);
|
|
if (eeprom_check_ack(regs)) {
|
|
local_irq_restore(flags);
|
|
printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
|
|
ap->name);
|
|
result = -EIO;
|
|
goto eeprom_read_error;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
local = readl(®s->LocalCtrl);
|
|
local &= ~EEPROM_WRITE_ENABLE;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
udelay(ACE_LONG_DELAY);
|
|
mb();
|
|
local |= EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
/* sample data mid high clk */
|
|
result = (result << 1) |
|
|
((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0);
|
|
udelay(ACE_SHORT_DELAY);
|
|
mb();
|
|
local = readl(®s->LocalCtrl);
|
|
local &= ~EEPROM_CLK_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
udelay(ACE_SHORT_DELAY);
|
|
mb();
|
|
if (i == 7) {
|
|
local |= EEPROM_WRITE_ENABLE;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
}
|
|
}
|
|
|
|
local |= EEPROM_DATA_OUT;
|
|
writel(local, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
udelay(ACE_LONG_DELAY);
|
|
writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
|
|
readl(®s->LocalCtrl);
|
|
mb();
|
|
udelay(ACE_SHORT_DELAY);
|
|
eeprom_stop(regs);
|
|
|
|
local_irq_restore(flags);
|
|
out:
|
|
return result;
|
|
|
|
eeprom_read_error:
|
|
printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
|
|
ap->name, offset);
|
|
goto out;
|
|
}
|
|
|
|
|
|
/*
|
|
* Local variables:
|
|
* compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
|
|
* End:
|
|
*/
|