mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 06:19:23 +07:00
52b544bd38
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAltLpVUeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGWisH/ikONMwV7OrSk36Y 5rxzTFUoBk0Qffct88gtSNuRVCxaVb1ofCndvFJE6A6HfJkWpbBzH6eq90aakmJi f7uFcu4YmsQpeQaf9lpftWmY2vDf2fIadVTV0RnSMXks57wMax1cpBe7LJGpz13e f+g5XRVs1MdlZVtr6tG2SU3Y5AqVVVsYe/0DBPonEqeh9/JJbPFCuNkFOxxzAqPu VTnjyoOqG8qtZzjklNtR5rZn0Gv592tWX36eiWTQdThNmVFkGEAJwsHCQlY4OQYK 61QN4UhOHiu8e1ZuGDNEDhNVRnKtaaYUPFeWL1wLRW73ul4P3ZkpvpS8QTMwcFJI JjzNOkI= =ckcO -----END PGP SIGNATURE----- Merge tag 'v4.18-rc5' into locking/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org>
380 lines
11 KiB
C
380 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Variant of atomic_t specialized for reference counts.
|
|
*
|
|
* The interface matches the atomic_t interface (to aid in porting) but only
|
|
* provides the few functions one should use for reference counting.
|
|
*
|
|
* It differs in that the counter saturates at UINT_MAX and will not move once
|
|
* there. This avoids wrapping the counter and causing 'spurious'
|
|
* use-after-free issues.
|
|
*
|
|
* Memory ordering rules are slightly relaxed wrt regular atomic_t functions
|
|
* and provide only what is strictly required for refcounts.
|
|
*
|
|
* The increments are fully relaxed; these will not provide ordering. The
|
|
* rationale is that whatever is used to obtain the object we're increasing the
|
|
* reference count on will provide the ordering. For locked data structures,
|
|
* its the lock acquire, for RCU/lockless data structures its the dependent
|
|
* load.
|
|
*
|
|
* Do note that inc_not_zero() provides a control dependency which will order
|
|
* future stores against the inc, this ensures we'll never modify the object
|
|
* if we did not in fact acquire a reference.
|
|
*
|
|
* The decrements will provide release order, such that all the prior loads and
|
|
* stores will be issued before, it also provides a control dependency, which
|
|
* will order us against the subsequent free().
|
|
*
|
|
* The control dependency is against the load of the cmpxchg (ll/sc) that
|
|
* succeeded. This means the stores aren't fully ordered, but this is fine
|
|
* because the 1->0 transition indicates no concurrency.
|
|
*
|
|
* Note that the allocator is responsible for ordering things between free()
|
|
* and alloc().
|
|
*
|
|
*/
|
|
|
|
#include <linux/mutex.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bug.h>
|
|
|
|
/**
|
|
* refcount_add_not_zero_checked - add a value to a refcount unless it is 0
|
|
* @i: the value to add to the refcount
|
|
* @r: the refcount
|
|
*
|
|
* Will saturate at UINT_MAX and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
|
* and thereby orders future stores. See the comment on top.
|
|
*
|
|
* Use of this function is not recommended for the normal reference counting
|
|
* use case in which references are taken and released one at a time. In these
|
|
* cases, refcount_inc(), or one of its variants, should instead be used to
|
|
* increment a reference count.
|
|
*
|
|
* Return: false if the passed refcount is 0, true otherwise
|
|
*/
|
|
bool refcount_add_not_zero_checked(unsigned int i, refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
if (!val)
|
|
return false;
|
|
|
|
if (unlikely(val == UINT_MAX))
|
|
return true;
|
|
|
|
new = val + i;
|
|
if (new < val)
|
|
new = UINT_MAX;
|
|
|
|
} while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new));
|
|
|
|
WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n");
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(refcount_add_not_zero_checked);
|
|
|
|
/**
|
|
* refcount_add_checked - add a value to a refcount
|
|
* @i: the value to add to the refcount
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_add(), but will saturate at UINT_MAX and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
|
* and thereby orders future stores. See the comment on top.
|
|
*
|
|
* Use of this function is not recommended for the normal reference counting
|
|
* use case in which references are taken and released one at a time. In these
|
|
* cases, refcount_inc(), or one of its variants, should instead be used to
|
|
* increment a reference count.
|
|
*/
|
|
void refcount_add_checked(unsigned int i, refcount_t *r)
|
|
{
|
|
WARN_ONCE(!refcount_add_not_zero_checked(i, r), "refcount_t: addition on 0; use-after-free.\n");
|
|
}
|
|
EXPORT_SYMBOL(refcount_add_checked);
|
|
|
|
/**
|
|
* refcount_inc_not_zero_checked - increment a refcount unless it is 0
|
|
* @r: the refcount to increment
|
|
*
|
|
* Similar to atomic_inc_not_zero(), but will saturate at UINT_MAX and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
|
* and thereby orders future stores. See the comment on top.
|
|
*
|
|
* Return: true if the increment was successful, false otherwise
|
|
*/
|
|
bool refcount_inc_not_zero_checked(refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
new = val + 1;
|
|
|
|
if (!val)
|
|
return false;
|
|
|
|
if (unlikely(!new))
|
|
return true;
|
|
|
|
} while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new));
|
|
|
|
WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n");
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(refcount_inc_not_zero_checked);
|
|
|
|
/**
|
|
* refcount_inc_checked - increment a refcount
|
|
* @r: the refcount to increment
|
|
*
|
|
* Similar to atomic_inc(), but will saturate at UINT_MAX and WARN.
|
|
*
|
|
* Provides no memory ordering, it is assumed the caller already has a
|
|
* reference on the object.
|
|
*
|
|
* Will WARN if the refcount is 0, as this represents a possible use-after-free
|
|
* condition.
|
|
*/
|
|
void refcount_inc_checked(refcount_t *r)
|
|
{
|
|
WARN_ONCE(!refcount_inc_not_zero_checked(r), "refcount_t: increment on 0; use-after-free.\n");
|
|
}
|
|
EXPORT_SYMBOL(refcount_inc_checked);
|
|
|
|
/**
|
|
* refcount_sub_and_test_checked - subtract from a refcount and test if it is 0
|
|
* @i: amount to subtract from the refcount
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_dec_and_test(), but it will WARN, return false and
|
|
* ultimately leak on underflow and will fail to decrement when saturated
|
|
* at UINT_MAX.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before, and provides a control dependency such that free() must come after.
|
|
* See the comment on top.
|
|
*
|
|
* Use of this function is not recommended for the normal reference counting
|
|
* use case in which references are taken and released one at a time. In these
|
|
* cases, refcount_dec(), or one of its variants, should instead be used to
|
|
* decrement a reference count.
|
|
*
|
|
* Return: true if the resulting refcount is 0, false otherwise
|
|
*/
|
|
bool refcount_sub_and_test_checked(unsigned int i, refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
if (unlikely(val == UINT_MAX))
|
|
return false;
|
|
|
|
new = val - i;
|
|
if (new > val) {
|
|
WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n");
|
|
return false;
|
|
}
|
|
|
|
} while (!atomic_try_cmpxchg_release(&r->refs, &val, new));
|
|
|
|
return !new;
|
|
}
|
|
EXPORT_SYMBOL(refcount_sub_and_test_checked);
|
|
|
|
/**
|
|
* refcount_dec_and_test_checked - decrement a refcount and test if it is 0
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
|
|
* decrement when saturated at UINT_MAX.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before, and provides a control dependency such that free() must come after.
|
|
* See the comment on top.
|
|
*
|
|
* Return: true if the resulting refcount is 0, false otherwise
|
|
*/
|
|
bool refcount_dec_and_test_checked(refcount_t *r)
|
|
{
|
|
return refcount_sub_and_test_checked(1, r);
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_and_test_checked);
|
|
|
|
/**
|
|
* refcount_dec_checked - decrement a refcount
|
|
* @r: the refcount
|
|
*
|
|
* Similar to atomic_dec(), it will WARN on underflow and fail to decrement
|
|
* when saturated at UINT_MAX.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before.
|
|
*/
|
|
void refcount_dec_checked(refcount_t *r)
|
|
{
|
|
WARN_ONCE(refcount_dec_and_test_checked(r), "refcount_t: decrement hit 0; leaking memory.\n");
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_checked);
|
|
|
|
/**
|
|
* refcount_dec_if_one - decrement a refcount if it is 1
|
|
* @r: the refcount
|
|
*
|
|
* No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the
|
|
* success thereof.
|
|
*
|
|
* Like all decrement operations, it provides release memory order and provides
|
|
* a control dependency.
|
|
*
|
|
* It can be used like a try-delete operator; this explicit case is provided
|
|
* and not cmpxchg in generic, because that would allow implementing unsafe
|
|
* operations.
|
|
*
|
|
* Return: true if the resulting refcount is 0, false otherwise
|
|
*/
|
|
bool refcount_dec_if_one(refcount_t *r)
|
|
{
|
|
int val = 1;
|
|
|
|
return atomic_try_cmpxchg_release(&r->refs, &val, 0);
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_if_one);
|
|
|
|
/**
|
|
* refcount_dec_not_one - decrement a refcount if it is not 1
|
|
* @r: the refcount
|
|
*
|
|
* No atomic_t counterpart, it decrements unless the value is 1, in which case
|
|
* it will return false.
|
|
*
|
|
* Was often done like: atomic_add_unless(&var, -1, 1)
|
|
*
|
|
* Return: true if the decrement operation was successful, false otherwise
|
|
*/
|
|
bool refcount_dec_not_one(refcount_t *r)
|
|
{
|
|
unsigned int new, val = atomic_read(&r->refs);
|
|
|
|
do {
|
|
if (unlikely(val == UINT_MAX))
|
|
return true;
|
|
|
|
if (val == 1)
|
|
return false;
|
|
|
|
new = val - 1;
|
|
if (new > val) {
|
|
WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n");
|
|
return true;
|
|
}
|
|
|
|
} while (!atomic_try_cmpxchg_release(&r->refs, &val, new));
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_not_one);
|
|
|
|
/**
|
|
* refcount_dec_and_mutex_lock - return holding mutex if able to decrement
|
|
* refcount to 0
|
|
* @r: the refcount
|
|
* @lock: the mutex to be locked
|
|
*
|
|
* Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail
|
|
* to decrement when saturated at UINT_MAX.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before, and provides a control dependency such that free() must come after.
|
|
* See the comment on top.
|
|
*
|
|
* Return: true and hold mutex if able to decrement refcount to 0, false
|
|
* otherwise
|
|
*/
|
|
bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock)
|
|
{
|
|
if (refcount_dec_not_one(r))
|
|
return false;
|
|
|
|
mutex_lock(lock);
|
|
if (!refcount_dec_and_test(r)) {
|
|
mutex_unlock(lock);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_and_mutex_lock);
|
|
|
|
/**
|
|
* refcount_dec_and_lock - return holding spinlock if able to decrement
|
|
* refcount to 0
|
|
* @r: the refcount
|
|
* @lock: the spinlock to be locked
|
|
*
|
|
* Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to
|
|
* decrement when saturated at UINT_MAX.
|
|
*
|
|
* Provides release memory ordering, such that prior loads and stores are done
|
|
* before, and provides a control dependency such that free() must come after.
|
|
* See the comment on top.
|
|
*
|
|
* Return: true and hold spinlock if able to decrement refcount to 0, false
|
|
* otherwise
|
|
*/
|
|
bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock)
|
|
{
|
|
if (refcount_dec_not_one(r))
|
|
return false;
|
|
|
|
spin_lock(lock);
|
|
if (!refcount_dec_and_test(r)) {
|
|
spin_unlock(lock);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_and_lock);
|
|
|
|
/**
|
|
* refcount_dec_and_lock_irqsave - return holding spinlock with disabled
|
|
* interrupts if able to decrement refcount to 0
|
|
* @r: the refcount
|
|
* @lock: the spinlock to be locked
|
|
* @flags: saved IRQ-flags if the is acquired
|
|
*
|
|
* Same as refcount_dec_and_lock() above except that the spinlock is acquired
|
|
* with disabled interupts.
|
|
*
|
|
* Return: true and hold spinlock if able to decrement refcount to 0, false
|
|
* otherwise
|
|
*/
|
|
bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock,
|
|
unsigned long *flags)
|
|
{
|
|
if (refcount_dec_not_one(r))
|
|
return false;
|
|
|
|
spin_lock_irqsave(lock, *flags);
|
|
if (!refcount_dec_and_test(r)) {
|
|
spin_unlock_irqrestore(lock, *flags);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(refcount_dec_and_lock_irqsave);
|