linux_dsm_epyc7002/arch/m68k/bvme6000/config.c
Stephen Warren c8d5ba1891 m68k: set arch_gettimeoffset directly
remove m68k's mach_gettimeoffset function pointer, and instead directly
set the arch_gettimeoffset function pointer. This requires multiplying
all function results by 1000, since the removed m68k_gettimeoffset() did
this. Also, s/unsigned long/u32/ just to make the function prototypes
exactly match that of arch_gettimeoffset.

Cc: Joshua Thompson <funaho@jurai.org>
Cc: Sam Creasey <sammy@sammy.net>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Phil Blundell <philb@gnu.org>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
2012-12-24 09:36:34 -07:00

350 lines
9.7 KiB
C

/*
* arch/m68k/bvme6000/config.c
*
* Copyright (C) 1997 Richard Hirst [richard@sleepie.demon.co.uk]
*
* Based on:
*
* linux/amiga/config.c
*
* Copyright (C) 1993 Hamish Macdonald
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file README.legal in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/console.h>
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/genhd.h>
#include <linux/rtc.h>
#include <linux/interrupt.h>
#include <linux/bcd.h>
#include <asm/bootinfo.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/traps.h>
#include <asm/rtc.h>
#include <asm/machdep.h>
#include <asm/bvme6000hw.h>
static void bvme6000_get_model(char *model);
extern void bvme6000_sched_init(irq_handler_t handler);
extern u32 bvme6000_gettimeoffset(void);
extern int bvme6000_hwclk (int, struct rtc_time *);
extern int bvme6000_set_clock_mmss (unsigned long);
extern void bvme6000_reset (void);
void bvme6000_set_vectors (void);
/* Save tick handler routine pointer, will point to xtime_update() in
* kernel/timer/timekeeping.c, called via bvme6000_process_int() */
static irq_handler_t tick_handler;
int bvme6000_parse_bootinfo(const struct bi_record *bi)
{
if (bi->tag == BI_VME_TYPE)
return 0;
else
return 1;
}
void bvme6000_reset(void)
{
volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
printk ("\r\n\nCalled bvme6000_reset\r\n"
"\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r");
/* The string of returns is to delay the reset until the whole
* message is output. */
/* Enable the watchdog, via PIT port C bit 4 */
pit->pcddr |= 0x10; /* WDOG enable */
while(1)
;
}
static void bvme6000_get_model(char *model)
{
sprintf(model, "BVME%d000", m68k_cputype == CPU_68060 ? 6 : 4);
}
/*
* This function is called during kernel startup to initialize
* the bvme6000 IRQ handling routines.
*/
static void __init bvme6000_init_IRQ(void)
{
m68k_setup_user_interrupt(VEC_USER, 192);
}
void __init config_bvme6000(void)
{
volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
/* Board type is only set by newer versions of vmelilo/tftplilo */
if (!vme_brdtype) {
if (m68k_cputype == CPU_68060)
vme_brdtype = VME_TYPE_BVME6000;
else
vme_brdtype = VME_TYPE_BVME4000;
}
#if 0
/* Call bvme6000_set_vectors() so ABORT will work, along with BVMBug
* debugger. Note trap_init() will splat the abort vector, but
* bvme6000_init_IRQ() will put it back again. Hopefully. */
bvme6000_set_vectors();
#endif
mach_max_dma_address = 0xffffffff;
mach_sched_init = bvme6000_sched_init;
mach_init_IRQ = bvme6000_init_IRQ;
arch_gettimeoffset = bvme6000_gettimeoffset;
mach_hwclk = bvme6000_hwclk;
mach_set_clock_mmss = bvme6000_set_clock_mmss;
mach_reset = bvme6000_reset;
mach_get_model = bvme6000_get_model;
printk ("Board is %sconfigured as a System Controller\n",
*config_reg_ptr & BVME_CONFIG_SW1 ? "" : "not ");
/* Now do the PIT configuration */
pit->pgcr = 0x00; /* Unidirectional 8 bit, no handshake for now */
pit->psrr = 0x18; /* PIACK and PIRQ functions enabled */
pit->pacr = 0x00; /* Sub Mode 00, H2 i/p, no DMA */
pit->padr = 0x00; /* Just to be tidy! */
pit->paddr = 0x00; /* All inputs for now (safest) */
pit->pbcr = 0x80; /* Sub Mode 1x, H4 i/p, no DMA */
pit->pbdr = 0xbc | (*config_reg_ptr & BVME_CONFIG_SW1 ? 0 : 0x40);
/* PRI, SYSCON?, Level3, SCC clks from xtal */
pit->pbddr = 0xf3; /* Mostly outputs */
pit->pcdr = 0x01; /* PA transceiver disabled */
pit->pcddr = 0x03; /* WDOG disable */
/* Disable snooping for Ethernet and VME accesses */
bvme_acr_addrctl = 0;
}
irqreturn_t bvme6000_abort_int (int irq, void *dev_id)
{
unsigned long *new = (unsigned long *)vectors;
unsigned long *old = (unsigned long *)0xf8000000;
/* Wait for button release */
while (*(volatile unsigned char *)BVME_LOCAL_IRQ_STAT & BVME_ABORT_STATUS)
;
*(new+4) = *(old+4); /* Illegal instruction */
*(new+9) = *(old+9); /* Trace */
*(new+47) = *(old+47); /* Trap #15 */
*(new+0x1f) = *(old+0x1f); /* ABORT switch */
return IRQ_HANDLED;
}
static irqreturn_t bvme6000_timer_int (int irq, void *dev_id)
{
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr = rtc->msr & 0xc0;
rtc->msr = msr | 0x20; /* Ack the interrupt */
return tick_handler(irq, dev_id);
}
/*
* Set up the RTC timer 1 to mode 2, so T1 output toggles every 5ms
* (40000 x 125ns). It will interrupt every 10ms, when T1 goes low.
* So, when reading the elapsed time, you should read timer1,
* subtract it from 39999, and then add 40000 if T1 is high.
* That gives you the number of 125ns ticks in to the 10ms period,
* so divide by 8 to get the microsecond result.
*/
void bvme6000_sched_init (irq_handler_t timer_routine)
{
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr = rtc->msr & 0xc0;
rtc->msr = 0; /* Ensure timer registers accessible */
tick_handler = timer_routine;
if (request_irq(BVME_IRQ_RTC, bvme6000_timer_int, 0,
"timer", bvme6000_timer_int))
panic ("Couldn't register timer int");
rtc->t1cr_omr = 0x04; /* Mode 2, ext clk */
rtc->t1msb = 39999 >> 8;
rtc->t1lsb = 39999 & 0xff;
rtc->irr_icr1 &= 0xef; /* Route timer 1 to INTR pin */
rtc->msr = 0x40; /* Access int.cntrl, etc */
rtc->pfr_icr0 = 0x80; /* Just timer 1 ints enabled */
rtc->irr_icr1 = 0;
rtc->t1cr_omr = 0x0a; /* INTR+T1 active lo, push-pull */
rtc->t0cr_rtmr &= 0xdf; /* Stop timers in standby */
rtc->msr = 0; /* Access timer 1 control */
rtc->t1cr_omr = 0x05; /* Mode 2, ext clk, GO */
rtc->msr = msr;
if (request_irq(BVME_IRQ_ABORT, bvme6000_abort_int, 0,
"abort", bvme6000_abort_int))
panic ("Couldn't register abort int");
}
/* This is always executed with interrupts disabled. */
/*
* NOTE: Don't accept any readings within 5us of rollover, as
* the T1INT bit may be a little slow getting set. There is also
* a fault in the chip, meaning that reads may produce invalid
* results...
*/
u32 bvme6000_gettimeoffset(void)
{
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
unsigned char msr = rtc->msr & 0xc0;
unsigned char t1int, t1op;
u32 v = 800000, ov;
rtc->msr = 0; /* Ensure timer registers accessible */
do {
ov = v;
t1int = rtc->msr & 0x20;
t1op = pit->pcdr & 0x04;
rtc->t1cr_omr |= 0x40; /* Latch timer1 */
v = rtc->t1msb << 8; /* Read timer1 */
v |= rtc->t1lsb; /* Read timer1 */
} while (t1int != (rtc->msr & 0x20) ||
t1op != (pit->pcdr & 0x04) ||
abs(ov-v) > 80 ||
v > 39960);
v = 39999 - v;
if (!t1op) /* If in second half cycle.. */
v += 40000;
v /= 8; /* Convert ticks to microseconds */
if (t1int)
v += 10000; /* Int pending, + 10ms */
rtc->msr = msr;
return v * 1000;
}
/*
* Looks like op is non-zero for setting the clock, and zero for
* reading the clock.
*
* struct hwclk_time {
* unsigned sec; 0..59
* unsigned min; 0..59
* unsigned hour; 0..23
* unsigned day; 1..31
* unsigned mon; 0..11
* unsigned year; 00...
* int wday; 0..6, 0 is Sunday, -1 means unknown/don't set
* };
*/
int bvme6000_hwclk(int op, struct rtc_time *t)
{
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr = rtc->msr & 0xc0;
rtc->msr = 0x40; /* Ensure clock and real-time-mode-register
* are accessible */
if (op)
{ /* Write.... */
rtc->t0cr_rtmr = t->tm_year%4;
rtc->bcd_tenms = 0;
rtc->bcd_sec = bin2bcd(t->tm_sec);
rtc->bcd_min = bin2bcd(t->tm_min);
rtc->bcd_hr = bin2bcd(t->tm_hour);
rtc->bcd_dom = bin2bcd(t->tm_mday);
rtc->bcd_mth = bin2bcd(t->tm_mon + 1);
rtc->bcd_year = bin2bcd(t->tm_year%100);
if (t->tm_wday >= 0)
rtc->bcd_dow = bin2bcd(t->tm_wday+1);
rtc->t0cr_rtmr = t->tm_year%4 | 0x08;
}
else
{ /* Read.... */
do {
t->tm_sec = bcd2bin(rtc->bcd_sec);
t->tm_min = bcd2bin(rtc->bcd_min);
t->tm_hour = bcd2bin(rtc->bcd_hr);
t->tm_mday = bcd2bin(rtc->bcd_dom);
t->tm_mon = bcd2bin(rtc->bcd_mth)-1;
t->tm_year = bcd2bin(rtc->bcd_year);
if (t->tm_year < 70)
t->tm_year += 100;
t->tm_wday = bcd2bin(rtc->bcd_dow)-1;
} while (t->tm_sec != bcd2bin(rtc->bcd_sec));
}
rtc->msr = msr;
return 0;
}
/*
* Set the minutes and seconds from seconds value 'nowtime'. Fail if
* clock is out by > 30 minutes. Logic lifted from atari code.
* Algorithm is to wait for the 10ms register to change, and then to
* wait a short while, and then set it.
*/
int bvme6000_set_clock_mmss (unsigned long nowtime)
{
int retval = 0;
short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
unsigned char rtc_minutes, rtc_tenms;
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr = rtc->msr & 0xc0;
unsigned long flags;
volatile int i;
rtc->msr = 0; /* Ensure clock accessible */
rtc_minutes = bcd2bin (rtc->bcd_min);
if ((rtc_minutes < real_minutes
? real_minutes - rtc_minutes
: rtc_minutes - real_minutes) < 30)
{
local_irq_save(flags);
rtc_tenms = rtc->bcd_tenms;
while (rtc_tenms == rtc->bcd_tenms)
;
for (i = 0; i < 1000; i++)
;
rtc->bcd_min = bin2bcd(real_minutes);
rtc->bcd_sec = bin2bcd(real_seconds);
local_irq_restore(flags);
}
else
retval = -1;
rtc->msr = msr;
return retval;
}