linux_dsm_epyc7002/arch/x86/kernel/tlb_uv.c
Linus Torvalds 537b60d178 Merge branch 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  x86, UV: uv_irq.c: Fix all sparse warnings
  x86, UV: Improve BAU performance and error recovery
  x86, UV: Delete unneeded boot messages
  x86, UV: Clean up UV headers for MMR definitions
2010-05-18 09:46:35 -07:00

1398 lines
38 KiB
C

/*
* SGI UltraViolet TLB flush routines.
*
* (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
*
* This code is released under the GNU General Public License version 2 or
* later.
*/
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <asm/mmu_context.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_bau.h>
#include <asm/apic.h>
#include <asm/idle.h>
#include <asm/tsc.h>
#include <asm/irq_vectors.h>
#include <asm/timer.h>
struct msg_desc {
struct bau_payload_queue_entry *msg;
int msg_slot;
int sw_ack_slot;
struct bau_payload_queue_entry *va_queue_first;
struct bau_payload_queue_entry *va_queue_last;
};
#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x000000000bUL
static int uv_bau_max_concurrent __read_mostly;
static int nobau;
static int __init setup_nobau(char *arg)
{
nobau = 1;
return 0;
}
early_param("nobau", setup_nobau);
/* base pnode in this partition */
static int uv_partition_base_pnode __read_mostly;
/* position of pnode (which is nasid>>1): */
static int uv_nshift __read_mostly;
static unsigned long uv_mmask __read_mostly;
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
struct reset_args {
int sender;
};
/*
* Determine the first node on a uvhub. 'Nodes' are used for kernel
* memory allocation.
*/
static int __init uvhub_to_first_node(int uvhub)
{
int node, b;
for_each_online_node(node) {
b = uv_node_to_blade_id(node);
if (uvhub == b)
return node;
}
return -1;
}
/*
* Determine the apicid of the first cpu on a uvhub.
*/
static int __init uvhub_to_first_apicid(int uvhub)
{
int cpu;
for_each_present_cpu(cpu)
if (uvhub == uv_cpu_to_blade_id(cpu))
return per_cpu(x86_cpu_to_apicid, cpu);
return -1;
}
/*
* Free a software acknowledge hardware resource by clearing its Pending
* bit. This will return a reply to the sender.
* If the message has timed out, a reply has already been sent by the
* hardware but the resource has not been released. In that case our
* clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message).
*/
static inline void uv_reply_to_message(struct msg_desc *mdp,
struct bau_control *bcp)
{
unsigned long dw;
struct bau_payload_queue_entry *msg;
msg = mdp->msg;
if (!msg->canceled) {
dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
msg->sw_ack_vector;
uv_write_local_mmr(
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
}
msg->replied_to = 1;
msg->sw_ack_vector = 0;
}
/*
* Process the receipt of a RETRY message
*/
static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
struct bau_control *bcp)
{
int i;
int cancel_count = 0;
int slot2;
unsigned long msg_res;
unsigned long mmr = 0;
struct bau_payload_queue_entry *msg;
struct bau_payload_queue_entry *msg2;
struct ptc_stats *stat;
msg = mdp->msg;
stat = &per_cpu(ptcstats, bcp->cpu);
stat->d_retries++;
/*
* cancel any message from msg+1 to the retry itself
*/
for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
if (msg2 > mdp->va_queue_last)
msg2 = mdp->va_queue_first;
if (msg2 == msg)
break;
/* same conditions for cancellation as uv_do_reset */
if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
(msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
msg->sw_ack_vector) == 0) &&
(msg2->sending_cpu == msg->sending_cpu) &&
(msg2->msg_type != MSG_NOOP)) {
slot2 = msg2 - mdp->va_queue_first;
mmr = uv_read_local_mmr
(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
msg_res = ((msg2->sw_ack_vector << 8) |
msg2->sw_ack_vector);
/*
* This is a message retry; clear the resources held
* by the previous message only if they timed out.
* If it has not timed out we have an unexpected
* situation to report.
*/
if (mmr & (msg_res << 8)) {
/*
* is the resource timed out?
* make everyone ignore the cancelled message.
*/
msg2->canceled = 1;
stat->d_canceled++;
cancel_count++;
uv_write_local_mmr(
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
(msg_res << 8) | msg_res);
} else
printk(KERN_INFO "note bau retry: no effect\n");
}
}
if (!cancel_count)
stat->d_nocanceled++;
}
/*
* Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message.
*/
static void uv_bau_process_message(struct msg_desc *mdp,
struct bau_control *bcp)
{
int msg_ack_count;
short socket_ack_count = 0;
struct ptc_stats *stat;
struct bau_payload_queue_entry *msg;
struct bau_control *smaster = bcp->socket_master;
/*
* This must be a normal message, or retry of a normal message
*/
msg = mdp->msg;
stat = &per_cpu(ptcstats, bcp->cpu);
if (msg->address == TLB_FLUSH_ALL) {
local_flush_tlb();
stat->d_alltlb++;
} else {
__flush_tlb_one(msg->address);
stat->d_onetlb++;
}
stat->d_requestee++;
/*
* One cpu on each uvhub has the additional job on a RETRY
* of releasing the resource held by the message that is
* being retried. That message is identified by sending
* cpu number.
*/
if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
uv_bau_process_retry_msg(mdp, bcp);
/*
* This is a sw_ack message, so we have to reply to it.
* Count each responding cpu on the socket. This avoids
* pinging the count's cache line back and forth between
* the sockets.
*/
socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
&smaster->socket_acknowledge_count[mdp->msg_slot]);
if (socket_ack_count == bcp->cpus_in_socket) {
/*
* Both sockets dump their completed count total into
* the message's count.
*/
smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
msg_ack_count = atomic_add_short_return(socket_ack_count,
(struct atomic_short *)&msg->acknowledge_count);
if (msg_ack_count == bcp->cpus_in_uvhub) {
/*
* All cpus in uvhub saw it; reply
*/
uv_reply_to_message(mdp, bcp);
}
}
return;
}
/*
* Determine the first cpu on a uvhub.
*/
static int uvhub_to_first_cpu(int uvhub)
{
int cpu;
for_each_present_cpu(cpu)
if (uvhub == uv_cpu_to_blade_id(cpu))
return cpu;
return -1;
}
/*
* Last resort when we get a large number of destination timeouts is
* to clear resources held by a given cpu.
* Do this with IPI so that all messages in the BAU message queue
* can be identified by their nonzero sw_ack_vector field.
*
* This is entered for a single cpu on the uvhub.
* The sender want's this uvhub to free a specific message's
* sw_ack resources.
*/
static void
uv_do_reset(void *ptr)
{
int i;
int slot;
int count = 0;
unsigned long mmr;
unsigned long msg_res;
struct bau_control *bcp;
struct reset_args *rap;
struct bau_payload_queue_entry *msg;
struct ptc_stats *stat;
bcp = &per_cpu(bau_control, smp_processor_id());
rap = (struct reset_args *)ptr;
stat = &per_cpu(ptcstats, bcp->cpu);
stat->d_resets++;
/*
* We're looking for the given sender, and
* will free its sw_ack resource.
* If all cpu's finally responded after the timeout, its
* message 'replied_to' was set.
*/
for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
/* uv_do_reset: same conditions for cancellation as
uv_bau_process_retry_msg() */
if ((msg->replied_to == 0) &&
(msg->canceled == 0) &&
(msg->sending_cpu == rap->sender) &&
(msg->sw_ack_vector) &&
(msg->msg_type != MSG_NOOP)) {
/*
* make everyone else ignore this message
*/
msg->canceled = 1;
slot = msg - bcp->va_queue_first;
count++;
/*
* only reset the resource if it is still pending
*/
mmr = uv_read_local_mmr
(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
msg_res = ((msg->sw_ack_vector << 8) |
msg->sw_ack_vector);
if (mmr & msg_res) {
stat->d_rcanceled++;
uv_write_local_mmr(
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
msg_res);
}
}
}
return;
}
/*
* Use IPI to get all target uvhubs to release resources held by
* a given sending cpu number.
*/
static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
int sender)
{
int uvhub;
int cpu;
cpumask_t mask;
struct reset_args reset_args;
reset_args.sender = sender;
cpus_clear(mask);
/* find a single cpu for each uvhub in this distribution mask */
for (uvhub = 0;
uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
uvhub++) {
if (!bau_uvhub_isset(uvhub, distribution))
continue;
/* find a cpu for this uvhub */
cpu = uvhub_to_first_cpu(uvhub);
cpu_set(cpu, mask);
}
/* IPI all cpus; Preemption is already disabled */
smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
return;
}
static inline unsigned long
cycles_2_us(unsigned long long cyc)
{
unsigned long long ns;
unsigned long us;
ns = (cyc * per_cpu(cyc2ns, smp_processor_id()))
>> CYC2NS_SCALE_FACTOR;
us = ns / 1000;
return us;
}
/*
* wait for all cpus on this hub to finish their sends and go quiet
* leaves uvhub_quiesce set so that no new broadcasts are started by
* bau_flush_send_and_wait()
*/
static inline void
quiesce_local_uvhub(struct bau_control *hmaster)
{
atomic_add_short_return(1, (struct atomic_short *)
&hmaster->uvhub_quiesce);
}
/*
* mark this quiet-requestor as done
*/
static inline void
end_uvhub_quiesce(struct bau_control *hmaster)
{
atomic_add_short_return(-1, (struct atomic_short *)
&hmaster->uvhub_quiesce);
}
/*
* Wait for completion of a broadcast software ack message
* return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
*/
static int uv_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift, int this_cpu,
struct bau_control *bcp, struct bau_control *smaster, long try)
{
int relaxes = 0;
unsigned long descriptor_status;
unsigned long mmr;
unsigned long mask;
cycles_t ttime;
cycles_t timeout_time;
struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu);
struct bau_control *hmaster;
hmaster = bcp->uvhub_master;
timeout_time = get_cycles() + bcp->timeout_interval;
/* spin on the status MMR, waiting for it to go idle */
while ((descriptor_status = (((unsigned long)
uv_read_local_mmr(mmr_offset) >>
right_shift) & UV_ACT_STATUS_MASK)) !=
DESC_STATUS_IDLE) {
/*
* Our software ack messages may be blocked because there are
* no swack resources available. As long as none of them
* has timed out hardware will NACK our message and its
* state will stay IDLE.
*/
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
stat->s_stimeout++;
return FLUSH_GIVEUP;
} else if (descriptor_status ==
DESC_STATUS_DESTINATION_TIMEOUT) {
stat->s_dtimeout++;
ttime = get_cycles();
/*
* Our retries may be blocked by all destination
* swack resources being consumed, and a timeout
* pending. In that case hardware returns the
* ERROR that looks like a destination timeout.
*/
if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) {
bcp->conseccompletes = 0;
return FLUSH_RETRY_PLUGGED;
}
bcp->conseccompletes = 0;
return FLUSH_RETRY_TIMEOUT;
} else {
/*
* descriptor_status is still BUSY
*/
cpu_relax();
relaxes++;
if (relaxes >= 10000) {
relaxes = 0;
if (get_cycles() > timeout_time) {
quiesce_local_uvhub(hmaster);
/* single-thread the register change */
spin_lock(&hmaster->masks_lock);
mmr = uv_read_local_mmr(mmr_offset);
mask = 0UL;
mask |= (3UL < right_shift);
mask = ~mask;
mmr &= mask;
uv_write_local_mmr(mmr_offset, mmr);
spin_unlock(&hmaster->masks_lock);
end_uvhub_quiesce(hmaster);
stat->s_busy++;
return FLUSH_GIVEUP;
}
}
}
}
bcp->conseccompletes++;
return FLUSH_COMPLETE;
}
static inline cycles_t
sec_2_cycles(unsigned long sec)
{
unsigned long ns;
cycles_t cyc;
ns = sec * 1000000000;
cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
return cyc;
}
/*
* conditionally add 1 to *v, unless *v is >= u
* return 0 if we cannot add 1 to *v because it is >= u
* return 1 if we can add 1 to *v because it is < u
* the add is atomic
*
* This is close to atomic_add_unless(), but this allows the 'u' value
* to be lowered below the current 'v'. atomic_add_unless can only stop
* on equal.
*/
static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
{
spin_lock(lock);
if (atomic_read(v) >= u) {
spin_unlock(lock);
return 0;
}
atomic_inc(v);
spin_unlock(lock);
return 1;
}
/**
* uv_flush_send_and_wait
*
* Send a broadcast and wait for it to complete.
*
* The flush_mask contains the cpus the broadcast is to be sent to, plus
* cpus that are on the local uvhub.
*
* Returns NULL if all flushing represented in the mask was done. The mask
* is zeroed.
* Returns @flush_mask if some remote flushing remains to be done. The
* mask will have some bits still set, representing any cpus on the local
* uvhub (not current cpu) and any on remote uvhubs if the broadcast failed.
*/
const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc,
struct cpumask *flush_mask,
struct bau_control *bcp)
{
int right_shift;
int uvhub;
int bit;
int completion_status = 0;
int seq_number = 0;
long try = 0;
int cpu = bcp->uvhub_cpu;
int this_cpu = bcp->cpu;
int this_uvhub = bcp->uvhub;
unsigned long mmr_offset;
unsigned long index;
cycles_t time1;
cycles_t time2;
struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu);
struct bau_control *smaster = bcp->socket_master;
struct bau_control *hmaster = bcp->uvhub_master;
/*
* Spin here while there are hmaster->max_concurrent or more active
* descriptors. This is the per-uvhub 'throttle'.
*/
if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
&hmaster->active_descriptor_count,
hmaster->max_concurrent)) {
stat->s_throttles++;
do {
cpu_relax();
} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
&hmaster->active_descriptor_count,
hmaster->max_concurrent));
}
while (hmaster->uvhub_quiesce)
cpu_relax();
if (cpu < UV_CPUS_PER_ACT_STATUS) {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
} else {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
right_shift =
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
}
time1 = get_cycles();
do {
/*
* Every message from any given cpu gets a unique message
* sequence number. But retries use that same number.
* Our message may have timed out at the destination because
* all sw-ack resources are in use and there is a timeout
* pending there. In that case, our last send never got
* placed into the queue and we need to persist until it
* does.
*
* Make any retry a type MSG_RETRY so that the destination will
* free any resource held by a previous message from this cpu.
*/
if (try == 0) {
/* use message type set by the caller the first time */
seq_number = bcp->message_number++;
} else {
/* use RETRY type on all the rest; same sequence */
bau_desc->header.msg_type = MSG_RETRY;
stat->s_retry_messages++;
}
bau_desc->header.sequence = seq_number;
index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
bcp->uvhub_cpu;
bcp->send_message = get_cycles();
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
try++;
completion_status = uv_wait_completion(bau_desc, mmr_offset,
right_shift, this_cpu, bcp, smaster, try);
if (completion_status == FLUSH_RETRY_PLUGGED) {
/*
* Our retries may be blocked by all destination swack
* resources being consumed, and a timeout pending. In
* that case hardware immediately returns the ERROR
* that looks like a destination timeout.
*/
udelay(TIMEOUT_DELAY);
bcp->plugged_tries++;
if (bcp->plugged_tries >= PLUGSB4RESET) {
bcp->plugged_tries = 0;
quiesce_local_uvhub(hmaster);
spin_lock(&hmaster->queue_lock);
uv_reset_with_ipi(&bau_desc->distribution,
this_cpu);
spin_unlock(&hmaster->queue_lock);
end_uvhub_quiesce(hmaster);
bcp->ipi_attempts++;
stat->s_resets_plug++;
}
} else if (completion_status == FLUSH_RETRY_TIMEOUT) {
hmaster->max_concurrent = 1;
bcp->timeout_tries++;
udelay(TIMEOUT_DELAY);
if (bcp->timeout_tries >= TIMEOUTSB4RESET) {
bcp->timeout_tries = 0;
quiesce_local_uvhub(hmaster);
spin_lock(&hmaster->queue_lock);
uv_reset_with_ipi(&bau_desc->distribution,
this_cpu);
spin_unlock(&hmaster->queue_lock);
end_uvhub_quiesce(hmaster);
bcp->ipi_attempts++;
stat->s_resets_timeout++;
}
}
if (bcp->ipi_attempts >= 3) {
bcp->ipi_attempts = 0;
completion_status = FLUSH_GIVEUP;
break;
}
cpu_relax();
} while ((completion_status == FLUSH_RETRY_PLUGGED) ||
(completion_status == FLUSH_RETRY_TIMEOUT));
time2 = get_cycles();
if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5)
&& (hmaster->max_concurrent < hmaster->max_concurrent_constant))
hmaster->max_concurrent++;
/*
* hold any cpu not timing out here; no other cpu currently held by
* the 'throttle' should enter the activation code
*/
while (hmaster->uvhub_quiesce)
cpu_relax();
atomic_dec(&hmaster->active_descriptor_count);
/* guard against cycles wrap */
if (time2 > time1)
stat->s_time += (time2 - time1);
else
stat->s_requestor--; /* don't count this one */
if (completion_status == FLUSH_COMPLETE && try > 1)
stat->s_retriesok++;
else if (completion_status == FLUSH_GIVEUP) {
/*
* Cause the caller to do an IPI-style TLB shootdown on
* the target cpu's, all of which are still in the mask.
*/
stat->s_giveup++;
return flush_mask;
}
/*
* Success, so clear the remote cpu's from the mask so we don't
* use the IPI method of shootdown on them.
*/
for_each_cpu(bit, flush_mask) {
uvhub = uv_cpu_to_blade_id(bit);
if (uvhub == this_uvhub)
continue;
cpumask_clear_cpu(bit, flush_mask);
}
if (!cpumask_empty(flush_mask))
return flush_mask;
return NULL;
}
/**
* uv_flush_tlb_others - globally purge translation cache of a virtual
* address or all TLB's
* @cpumask: mask of all cpu's in which the address is to be removed
* @mm: mm_struct containing virtual address range
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
* @cpu: the current cpu
*
* This is the entry point for initiating any UV global TLB shootdown.
*
* Purges the translation caches of all specified processors of the given
* virtual address, or purges all TLB's on specified processors.
*
* The caller has derived the cpumask from the mm_struct. This function
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
*
* The cpumask is converted into a uvhubmask of the uvhubs containing
* those cpus.
*
* Note that this function should be called with preemption disabled.
*
* Returns NULL if all remote flushing was done.
* Returns pointer to cpumask if some remote flushing remains to be
* done. The returned pointer is valid till preemption is re-enabled.
*/
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
struct mm_struct *mm,
unsigned long va, unsigned int cpu)
{
int remotes;
int tcpu;
int uvhub;
int locals = 0;
struct bau_desc *bau_desc;
struct cpumask *flush_mask;
struct ptc_stats *stat;
struct bau_control *bcp;
if (nobau)
return cpumask;
bcp = &per_cpu(bau_control, cpu);
/*
* Each sending cpu has a per-cpu mask which it fills from the caller's
* cpu mask. Only remote cpus are converted to uvhubs and copied.
*/
flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
/*
* copy cpumask to flush_mask, removing current cpu
* (current cpu should already have been flushed by the caller and
* should never be returned if we return flush_mask)
*/
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
if (cpu_isset(cpu, *cpumask))
locals++; /* current cpu was targeted */
bau_desc = bcp->descriptor_base;
bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
remotes = 0;
for_each_cpu(tcpu, flush_mask) {
uvhub = uv_cpu_to_blade_id(tcpu);
if (uvhub == bcp->uvhub) {
locals++;
continue;
}
bau_uvhub_set(uvhub, &bau_desc->distribution);
remotes++;
}
if (remotes == 0) {
/*
* No off_hub flushing; return status for local hub.
* Return the caller's mask if all were local (the current
* cpu may be in that mask).
*/
if (locals)
return cpumask;
else
return NULL;
}
stat = &per_cpu(ptcstats, cpu);
stat->s_requestor++;
stat->s_ntargcpu += remotes;
remotes = bau_uvhub_weight(&bau_desc->distribution);
stat->s_ntarguvhub += remotes;
if (remotes >= 16)
stat->s_ntarguvhub16++;
else if (remotes >= 8)
stat->s_ntarguvhub8++;
else if (remotes >= 4)
stat->s_ntarguvhub4++;
else if (remotes >= 2)
stat->s_ntarguvhub2++;
else
stat->s_ntarguvhub1++;
bau_desc->payload.address = va;
bau_desc->payload.sending_cpu = cpu;
/*
* uv_flush_send_and_wait returns null if all cpu's were messaged, or
* the adjusted flush_mask if any cpu's were not messaged.
*/
return uv_flush_send_and_wait(bau_desc, flush_mask, bcp);
}
/*
* The BAU message interrupt comes here. (registered by set_intr_gate)
* See entry_64.S
*
* We received a broadcast assist message.
*
* Interrupts are disabled; this interrupt could represent
* the receipt of several messages.
*
* All cores/threads on this hub get this interrupt.
* The last one to see it does the software ack.
* (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware may timeout the s/w ack and reply ERROR)
*/
void uv_bau_message_interrupt(struct pt_regs *regs)
{
int count = 0;
cycles_t time_start;
struct bau_payload_queue_entry *msg;
struct bau_control *bcp;
struct ptc_stats *stat;
struct msg_desc msgdesc;
time_start = get_cycles();
bcp = &per_cpu(bau_control, smp_processor_id());
stat = &per_cpu(ptcstats, smp_processor_id());
msgdesc.va_queue_first = bcp->va_queue_first;
msgdesc.va_queue_last = bcp->va_queue_last;
msg = bcp->bau_msg_head;
while (msg->sw_ack_vector) {
count++;
msgdesc.msg_slot = msg - msgdesc.va_queue_first;
msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
msgdesc.msg = msg;
uv_bau_process_message(&msgdesc, bcp);
msg++;
if (msg > msgdesc.va_queue_last)
msg = msgdesc.va_queue_first;
bcp->bau_msg_head = msg;
}
stat->d_time += (get_cycles() - time_start);
if (!count)
stat->d_nomsg++;
else if (count > 1)
stat->d_multmsg++;
ack_APIC_irq();
}
/*
* uv_enable_timeouts
*
* Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
* shootdown message timeouts enabled. The timeout does not cause
* an interrupt, but causes an error message to be returned to
* the sender.
*/
static void uv_enable_timeouts(void)
{
int uvhub;
int nuvhubs;
int pnode;
unsigned long mmr_image;
nuvhubs = uv_num_possible_blades();
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
if (!uv_blade_nr_possible_cpus(uvhub))
continue;
pnode = uv_blade_to_pnode(uvhub);
mmr_image =
uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
/*
* Set the timeout period and then lock it in, in three
* steps; captures and locks in the period.
*
* To program the period, the SOFT_ACK_MODE must be off.
*/
mmr_image &= ~((unsigned long)1 <<
UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* Set the 4-bit period.
*/
mmr_image &= ~((unsigned long)0xf <<
UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* Subsequent reversals of the timebase bit (3) cause an
* immediate timeout of one or all INTD resources as
* indicated in bits 2:0 (7 causes all of them to timeout).
*/
mmr_image |= ((unsigned long)1 <<
UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
}
}
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
{
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
{
}
static inline unsigned long long
millisec_2_cycles(unsigned long millisec)
{
unsigned long ns;
unsigned long long cyc;
ns = millisec * 1000;
cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
return cyc;
}
/*
* Display the statistics thru /proc.
* 'data' points to the cpu number
*/
static int uv_ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
int cpu;
cpu = *(loff_t *)data;
if (!cpu) {
seq_printf(file,
"# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 ");
seq_printf(file,
"numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto ");
seq_printf(file,
"retries rok resetp resett giveup sto bz throt ");
seq_printf(file,
"sw_ack recv rtime all ");
seq_printf(file,
"one mult none retry canc nocan reset rcan\n");
}
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
stat = &per_cpu(ptcstats, cpu);
/* source side statistics */
seq_printf(file,
"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
cpu, stat->s_requestor, cycles_2_us(stat->s_time),
stat->s_ntarguvhub, stat->s_ntarguvhub16,
stat->s_ntarguvhub8, stat->s_ntarguvhub4,
stat->s_ntarguvhub2, stat->s_ntarguvhub1,
stat->s_ntargcpu, stat->s_dtimeout);
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
stat->s_retry_messages, stat->s_retriesok,
stat->s_resets_plug, stat->s_resets_timeout,
stat->s_giveup, stat->s_stimeout,
stat->s_busy, stat->s_throttles);
/* destination side statistics */
seq_printf(file,
"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
stat->d_requestee, cycles_2_us(stat->d_time),
stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
stat->d_nomsg, stat->d_retries, stat->d_canceled,
stat->d_nocanceled, stat->d_resets,
stat->d_rcanceled);
}
return 0;
}
/*
* -1: resetf the statistics
* 0: display meaning of the statistics
* >0: maximum concurrent active descriptors per uvhub (throttle)
*/
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
int cpu;
long input_arg;
char optstr[64];
struct ptc_stats *stat;
struct bau_control *bcp;
if (count == 0 || count > sizeof(optstr))
return -EINVAL;
if (copy_from_user(optstr, user, count))
return -EFAULT;
optstr[count - 1] = '\0';
if (strict_strtol(optstr, 10, &input_arg) < 0) {
printk(KERN_DEBUG "%s is invalid\n", optstr);
return -EINVAL;
}
if (input_arg == 0) {
printk(KERN_DEBUG "# cpu: cpu number\n");
printk(KERN_DEBUG "Sender statistics:\n");
printk(KERN_DEBUG
"sent: number of shootdown messages sent\n");
printk(KERN_DEBUG
"stime: time spent sending messages\n");
printk(KERN_DEBUG
"numuvhubs: number of hubs targeted with shootdown\n");
printk(KERN_DEBUG
"numuvhubs16: number times 16 or more hubs targeted\n");
printk(KERN_DEBUG
"numuvhubs8: number times 8 or more hubs targeted\n");
printk(KERN_DEBUG
"numuvhubs4: number times 4 or more hubs targeted\n");
printk(KERN_DEBUG
"numuvhubs2: number times 2 or more hubs targeted\n");
printk(KERN_DEBUG
"numuvhubs1: number times 1 hub targeted\n");
printk(KERN_DEBUG
"numcpus: number of cpus targeted with shootdown\n");
printk(KERN_DEBUG
"dto: number of destination timeouts\n");
printk(KERN_DEBUG
"retries: destination timeout retries sent\n");
printk(KERN_DEBUG
"rok: : destination timeouts successfully retried\n");
printk(KERN_DEBUG
"resetp: ipi-style resource resets for plugs\n");
printk(KERN_DEBUG
"resett: ipi-style resource resets for timeouts\n");
printk(KERN_DEBUG
"giveup: fall-backs to ipi-style shootdowns\n");
printk(KERN_DEBUG
"sto: number of source timeouts\n");
printk(KERN_DEBUG
"bz: number of stay-busy's\n");
printk(KERN_DEBUG
"throt: number times spun in throttle\n");
printk(KERN_DEBUG "Destination side statistics:\n");
printk(KERN_DEBUG
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
printk(KERN_DEBUG
"recv: shootdown messages received\n");
printk(KERN_DEBUG
"rtime: time spent processing messages\n");
printk(KERN_DEBUG
"all: shootdown all-tlb messages\n");
printk(KERN_DEBUG
"one: shootdown one-tlb messages\n");
printk(KERN_DEBUG
"mult: interrupts that found multiple messages\n");
printk(KERN_DEBUG
"none: interrupts that found no messages\n");
printk(KERN_DEBUG
"retry: number of retry messages processed\n");
printk(KERN_DEBUG
"canc: number messages canceled by retries\n");
printk(KERN_DEBUG
"nocan: number retries that found nothing to cancel\n");
printk(KERN_DEBUG
"reset: number of ipi-style reset requests processed\n");
printk(KERN_DEBUG
"rcan: number messages canceled by reset requests\n");
} else if (input_arg == -1) {
for_each_present_cpu(cpu) {
stat = &per_cpu(ptcstats, cpu);
memset(stat, 0, sizeof(struct ptc_stats));
}
} else {
uv_bau_max_concurrent = input_arg;
bcp = &per_cpu(bau_control, smp_processor_id());
if (uv_bau_max_concurrent < 1 ||
uv_bau_max_concurrent > bcp->cpus_in_uvhub) {
printk(KERN_DEBUG
"Error: BAU max concurrent %d; %d is invalid\n",
bcp->max_concurrent, uv_bau_max_concurrent);
return -EINVAL;
}
printk(KERN_DEBUG "Set BAU max concurrent:%d\n",
uv_bau_max_concurrent);
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->max_concurrent = uv_bau_max_concurrent;
}
}
return count;
}
static const struct seq_operations uv_ptc_seq_ops = {
.start = uv_ptc_seq_start,
.next = uv_ptc_seq_next,
.stop = uv_ptc_seq_stop,
.show = uv_ptc_seq_show
};
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &uv_ptc_seq_ops);
}
static const struct file_operations proc_uv_ptc_operations = {
.open = uv_ptc_proc_open,
.read = seq_read,
.write = uv_ptc_proc_write,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init uv_ptc_init(void)
{
struct proc_dir_entry *proc_uv_ptc;
if (!is_uv_system())
return 0;
proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
&proc_uv_ptc_operations);
if (!proc_uv_ptc) {
printk(KERN_ERR "unable to create %s proc entry\n",
UV_PTC_BASENAME);
return -EINVAL;
}
return 0;
}
/*
* initialize the sending side's sending buffers
*/
static void
uv_activation_descriptor_init(int node, int pnode)
{
int i;
int cpu;
unsigned long pa;
unsigned long m;
unsigned long n;
struct bau_desc *bau_desc;
struct bau_desc *bd2;
struct bau_control *bcp;
/*
* each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
* per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub
*/
bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
BUG_ON(!bau_desc);
pa = uv_gpa(bau_desc); /* need the real nasid*/
n = pa >> uv_nshift;
m = pa & uv_mmask;
uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
(n << UV_DESC_BASE_PNODE_SHIFT | m));
/*
* initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
* cpu even though we only use the first one; one descriptor can
* describe a broadcast to 256 uv hubs.
*/
for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
i++, bd2++) {
memset(bd2, 0, sizeof(struct bau_desc));
bd2->header.sw_ack_flag = 1;
/*
* base_dest_nodeid is the nasid (pnode<<1) of the first uvhub
* in the partition. The bit map will indicate uvhub numbers,
* which are 0-N in a partition. Pnodes are unique system-wide.
*/
bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
bd2->header.dest_subnodeid = 0x10; /* the LB */
bd2->header.command = UV_NET_ENDPOINT_INTD;
bd2->header.int_both = 1;
/*
* all others need to be set to zero:
* fairness chaining multilevel count replied_to
*/
}
for_each_present_cpu(cpu) {
if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
continue;
bcp = &per_cpu(bau_control, cpu);
bcp->descriptor_base = bau_desc;
}
}
/*
* initialize the destination side's receiving buffers
* entered for each uvhub in the partition
* - node is first node (kernel memory notion) on the uvhub
* - pnode is the uvhub's physical identifier
*/
static void
uv_payload_queue_init(int node, int pnode)
{
int pn;
int cpu;
char *cp;
unsigned long pa;
struct bau_payload_queue_entry *pqp;
struct bau_payload_queue_entry *pqp_malloc;
struct bau_control *bcp;
pqp = (struct bau_payload_queue_entry *) kmalloc_node(
(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
GFP_KERNEL, node);
BUG_ON(!pqp);
pqp_malloc = pqp;
cp = (char *)pqp + 31;
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
for_each_present_cpu(cpu) {
if (pnode != uv_cpu_to_pnode(cpu))
continue;
/* for every cpu on this pnode: */
bcp = &per_cpu(bau_control, cpu);
bcp->va_queue_first = pqp;
bcp->bau_msg_head = pqp;
bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
}
/*
* need the pnode of where the memory was really allocated
*/
pa = uv_gpa(pqp);
pn = pa >> uv_nshift;
uv_write_global_mmr64(pnode,
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
(unsigned long)
uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
/* in effect, all msg_type's are set to MSG_NOOP */
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
}
/*
* Initialization of each UV hub's structures
*/
static void __init uv_init_uvhub(int uvhub, int vector)
{
int node;
int pnode;
unsigned long apicid;
node = uvhub_to_first_node(uvhub);
pnode = uv_blade_to_pnode(uvhub);
uv_activation_descriptor_init(node, pnode);
uv_payload_queue_init(node, pnode);
/*
* the below initialization can't be in firmware because the
* messaging IRQ will be determined by the OS
*/
apicid = uvhub_to_first_apicid(uvhub);
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
((apicid << 32) | vector));
}
/*
* initialize the bau_control structure for each cpu
*/
static void uv_init_per_cpu(int nuvhubs)
{
int i, j, k;
int cpu;
int pnode;
int uvhub;
short socket = 0;
struct bau_control *bcp;
struct uvhub_desc *bdp;
struct socket_desc *sdp;
struct bau_control *hmaster = NULL;
struct bau_control *smaster = NULL;
struct socket_desc {
short num_cpus;
short cpu_number[16];
};
struct uvhub_desc {
short num_sockets;
short num_cpus;
short uvhub;
short pnode;
struct socket_desc socket[2];
};
struct uvhub_desc *uvhub_descs;
uvhub_descs = (struct uvhub_desc *)
kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
memset(bcp, 0, sizeof(struct bau_control));
spin_lock_init(&bcp->masks_lock);
bcp->max_concurrent = uv_bau_max_concurrent;
pnode = uv_cpu_hub_info(cpu)->pnode;
uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
bdp = &uvhub_descs[uvhub];
bdp->num_cpus++;
bdp->uvhub = uvhub;
bdp->pnode = pnode;
/* time interval to catch a hardware stay-busy bug */
bcp->timeout_interval = millisec_2_cycles(3);
/* kludge: assume uv_hub.h is constant */
socket = (cpu_physical_id(cpu)>>5)&1;
if (socket >= bdp->num_sockets)
bdp->num_sockets = socket+1;
sdp = &bdp->socket[socket];
sdp->cpu_number[sdp->num_cpus] = cpu;
sdp->num_cpus++;
}
socket = 0;
for_each_possible_blade(uvhub) {
bdp = &uvhub_descs[uvhub];
for (i = 0; i < bdp->num_sockets; i++) {
sdp = &bdp->socket[i];
for (j = 0; j < sdp->num_cpus; j++) {
cpu = sdp->cpu_number[j];
bcp = &per_cpu(bau_control, cpu);
bcp->cpu = cpu;
if (j == 0) {
smaster = bcp;
if (i == 0)
hmaster = bcp;
}
bcp->cpus_in_uvhub = bdp->num_cpus;
bcp->cpus_in_socket = sdp->num_cpus;
bcp->socket_master = smaster;
bcp->uvhub_master = hmaster;
for (k = 0; k < DEST_Q_SIZE; k++)
bcp->socket_acknowledge_count[k] = 0;
bcp->uvhub_cpu =
uv_cpu_hub_info(cpu)->blade_processor_id;
}
socket++;
}
}
kfree(uvhub_descs);
}
/*
* Initialization of BAU-related structures
*/
static int __init uv_bau_init(void)
{
int uvhub;
int pnode;
int nuvhubs;
int cur_cpu;
int vector;
unsigned long mmr;
if (!is_uv_system())
return 0;
if (nobau)
return 0;
for_each_possible_cpu(cur_cpu)
zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
GFP_KERNEL, cpu_to_node(cur_cpu));
uv_bau_max_concurrent = MAX_BAU_CONCURRENT;
uv_nshift = uv_hub_info->m_val;
uv_mmask = (1UL << uv_hub_info->m_val) - 1;
nuvhubs = uv_num_possible_blades();
uv_init_per_cpu(nuvhubs);
uv_partition_base_pnode = 0x7fffffff;
for (uvhub = 0; uvhub < nuvhubs; uvhub++)
if (uv_blade_nr_possible_cpus(uvhub) &&
(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
vector = UV_BAU_MESSAGE;
for_each_possible_blade(uvhub)
if (uv_blade_nr_possible_cpus(uvhub))
uv_init_uvhub(uvhub, vector);
uv_enable_timeouts();
alloc_intr_gate(vector, uv_bau_message_intr1);
for_each_possible_blade(uvhub) {
pnode = uv_blade_to_pnode(uvhub);
/* INIT the bau */
uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL,
((unsigned long)1 << 63));
mmr = 1; /* should be 1 to broadcast to both sockets */
uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr);
}
return 0;
}
core_initcall(uv_bau_init);
core_initcall(uv_ptc_init);