mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 23:56:45 +07:00
04db4caf5c
When the radeon driver resets a gpu, it attempts to test whether all the rings can successfully handle an IB. If these rings fail to respond, the process will wait forever. Another gpu reset can't happen at this point, as the current reset holds a lock required to do so. Instead, make all the IB tests run with a timeout, so the system can attempt to recover in this case. While this doesn't fix the underlying issue with card resets failing, it gives the system a higher chance of recovering. These timeouts have been confirmed to help both a Tathi and Hawaii card recover after a gpu reset. This also adds a new function, radeon_fence_wait_timeout, that behaves like fence_wait_timeout. It is used instead of fence_wait_timeout as it continues to work during a reset. radeon_fence_wait is changed to be implemented using this function. V2: - Changed the timeout to 1s, as the default 10s from radeon_wait_timeout was too long. A timeout of 100ms was tested and found to be too short. - Changed radeon_fence_wait_timeout to behave more like fence_wait_timeout. Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Matthew Dawson <matthew@mjdsystems.ca> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1002 lines
28 KiB
C
1002 lines
28 KiB
C
/*
|
|
* Copyright 2013 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Alex Deucher
|
|
*/
|
|
#include <linux/firmware.h>
|
|
#include <drm/drmP.h>
|
|
#include "radeon.h"
|
|
#include "radeon_ucode.h"
|
|
#include "radeon_asic.h"
|
|
#include "radeon_trace.h"
|
|
#include "cikd.h"
|
|
|
|
/* sdma */
|
|
#define CIK_SDMA_UCODE_SIZE 1050
|
|
#define CIK_SDMA_UCODE_VERSION 64
|
|
|
|
u32 cik_gpu_check_soft_reset(struct radeon_device *rdev);
|
|
|
|
/*
|
|
* sDMA - System DMA
|
|
* Starting with CIK, the GPU has new asynchronous
|
|
* DMA engines. These engines are used for compute
|
|
* and gfx. There are two DMA engines (SDMA0, SDMA1)
|
|
* and each one supports 1 ring buffer used for gfx
|
|
* and 2 queues used for compute.
|
|
*
|
|
* The programming model is very similar to the CP
|
|
* (ring buffer, IBs, etc.), but sDMA has it's own
|
|
* packet format that is different from the PM4 format
|
|
* used by the CP. sDMA supports copying data, writing
|
|
* embedded data, solid fills, and a number of other
|
|
* things. It also has support for tiling/detiling of
|
|
* buffers.
|
|
*/
|
|
|
|
/**
|
|
* cik_sdma_get_rptr - get the current read pointer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon ring pointer
|
|
*
|
|
* Get the current rptr from the hardware (CIK+).
|
|
*/
|
|
uint32_t cik_sdma_get_rptr(struct radeon_device *rdev,
|
|
struct radeon_ring *ring)
|
|
{
|
|
u32 rptr, reg;
|
|
|
|
if (rdev->wb.enabled) {
|
|
rptr = rdev->wb.wb[ring->rptr_offs/4];
|
|
} else {
|
|
if (ring->idx == R600_RING_TYPE_DMA_INDEX)
|
|
reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET;
|
|
else
|
|
reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET;
|
|
|
|
rptr = RREG32(reg);
|
|
}
|
|
|
|
return (rptr & 0x3fffc) >> 2;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_get_wptr - get the current write pointer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon ring pointer
|
|
*
|
|
* Get the current wptr from the hardware (CIK+).
|
|
*/
|
|
uint32_t cik_sdma_get_wptr(struct radeon_device *rdev,
|
|
struct radeon_ring *ring)
|
|
{
|
|
u32 reg;
|
|
|
|
if (ring->idx == R600_RING_TYPE_DMA_INDEX)
|
|
reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET;
|
|
else
|
|
reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET;
|
|
|
|
return (RREG32(reg) & 0x3fffc) >> 2;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_set_wptr - commit the write pointer
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon ring pointer
|
|
*
|
|
* Write the wptr back to the hardware (CIK+).
|
|
*/
|
|
void cik_sdma_set_wptr(struct radeon_device *rdev,
|
|
struct radeon_ring *ring)
|
|
{
|
|
u32 reg;
|
|
|
|
if (ring->idx == R600_RING_TYPE_DMA_INDEX)
|
|
reg = SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET;
|
|
else
|
|
reg = SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET;
|
|
|
|
WREG32(reg, (ring->wptr << 2) & 0x3fffc);
|
|
(void)RREG32(reg);
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: IB object to schedule
|
|
*
|
|
* Schedule an IB in the DMA ring (CIK).
|
|
*/
|
|
void cik_sdma_ring_ib_execute(struct radeon_device *rdev,
|
|
struct radeon_ib *ib)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[ib->ring];
|
|
u32 extra_bits = (ib->vm ? ib->vm->ids[ib->ring].id : 0) & 0xf;
|
|
|
|
if (rdev->wb.enabled) {
|
|
u32 next_rptr = ring->wptr + 5;
|
|
while ((next_rptr & 7) != 4)
|
|
next_rptr++;
|
|
next_rptr += 4;
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
|
|
radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
|
|
radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
|
|
radeon_ring_write(ring, 1); /* number of DWs to follow */
|
|
radeon_ring_write(ring, next_rptr);
|
|
}
|
|
|
|
/* IB packet must end on a 8 DW boundary */
|
|
while ((ring->wptr & 7) != 4)
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits));
|
|
radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */
|
|
radeon_ring_write(ring, upper_32_bits(ib->gpu_addr));
|
|
radeon_ring_write(ring, ib->length_dw);
|
|
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ridx: radeon ring index
|
|
*
|
|
* Emit an hdp flush packet on the requested DMA ring.
|
|
*/
|
|
static void cik_sdma_hdp_flush_ring_emit(struct radeon_device *rdev,
|
|
int ridx)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[ridx];
|
|
u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
|
|
SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
|
|
u32 ref_and_mask;
|
|
|
|
if (ridx == R600_RING_TYPE_DMA_INDEX)
|
|
ref_and_mask = SDMA0;
|
|
else
|
|
ref_and_mask = SDMA1;
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
|
|
radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
|
|
radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
|
|
radeon_ring_write(ring, ref_and_mask); /* reference */
|
|
radeon_ring_write(ring, ref_and_mask); /* mask */
|
|
radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_fence_ring_emit - emit a fence on the DMA ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @fence: radeon fence object
|
|
*
|
|
* Add a DMA fence packet to the ring to write
|
|
* the fence seq number and DMA trap packet to generate
|
|
* an interrupt if needed (CIK).
|
|
*/
|
|
void cik_sdma_fence_ring_emit(struct radeon_device *rdev,
|
|
struct radeon_fence *fence)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[fence->ring];
|
|
u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
|
|
|
|
/* write the fence */
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
|
|
radeon_ring_write(ring, lower_32_bits(addr));
|
|
radeon_ring_write(ring, upper_32_bits(addr));
|
|
radeon_ring_write(ring, fence->seq);
|
|
/* generate an interrupt */
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0));
|
|
/* flush HDP */
|
|
cik_sdma_hdp_flush_ring_emit(rdev, fence->ring);
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
* @semaphore: radeon semaphore object
|
|
* @emit_wait: wait or signal semaphore
|
|
*
|
|
* Add a DMA semaphore packet to the ring wait on or signal
|
|
* other rings (CIK).
|
|
*/
|
|
bool cik_sdma_semaphore_ring_emit(struct radeon_device *rdev,
|
|
struct radeon_ring *ring,
|
|
struct radeon_semaphore *semaphore,
|
|
bool emit_wait)
|
|
{
|
|
u64 addr = semaphore->gpu_addr;
|
|
u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S;
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits));
|
|
radeon_ring_write(ring, addr & 0xfffffff8);
|
|
radeon_ring_write(ring, upper_32_bits(addr));
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_gfx_stop - stop the gfx async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Stop the gfx async dma ring buffers (CIK).
|
|
*/
|
|
static void cik_sdma_gfx_stop(struct radeon_device *rdev)
|
|
{
|
|
u32 rb_cntl, reg_offset;
|
|
int i;
|
|
|
|
if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
|
|
(rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
|
|
radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (i == 0)
|
|
reg_offset = SDMA0_REGISTER_OFFSET;
|
|
else
|
|
reg_offset = SDMA1_REGISTER_OFFSET;
|
|
rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset);
|
|
rb_cntl &= ~SDMA_RB_ENABLE;
|
|
WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
|
|
WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0);
|
|
}
|
|
rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
|
|
rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false;
|
|
|
|
/* FIXME use something else than big hammer but after few days can not
|
|
* seem to find good combination so reset SDMA blocks as it seems we
|
|
* do not shut them down properly. This fix hibernation and does not
|
|
* affect suspend to ram.
|
|
*/
|
|
WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1);
|
|
(void)RREG32(SRBM_SOFT_RESET);
|
|
udelay(50);
|
|
WREG32(SRBM_SOFT_RESET, 0);
|
|
(void)RREG32(SRBM_SOFT_RESET);
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_rlc_stop - stop the compute async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Stop the compute async dma queues (CIK).
|
|
*/
|
|
static void cik_sdma_rlc_stop(struct radeon_device *rdev)
|
|
{
|
|
/* XXX todo */
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_ctx_switch_enable - enable/disable sdma engine preemption
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @enable: enable/disable preemption.
|
|
*
|
|
* Halt or unhalt the async dma engines (CIK).
|
|
*/
|
|
static void cik_sdma_ctx_switch_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
uint32_t reg_offset, value;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (i == 0)
|
|
reg_offset = SDMA0_REGISTER_OFFSET;
|
|
else
|
|
reg_offset = SDMA1_REGISTER_OFFSET;
|
|
value = RREG32(SDMA0_CNTL + reg_offset);
|
|
if (enable)
|
|
value |= AUTO_CTXSW_ENABLE;
|
|
else
|
|
value &= ~AUTO_CTXSW_ENABLE;
|
|
WREG32(SDMA0_CNTL + reg_offset, value);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_enable - stop the async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @enable: enable/disable the DMA MEs.
|
|
*
|
|
* Halt or unhalt the async dma engines (CIK).
|
|
*/
|
|
void cik_sdma_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
u32 me_cntl, reg_offset;
|
|
int i;
|
|
|
|
if (enable == false) {
|
|
cik_sdma_gfx_stop(rdev);
|
|
cik_sdma_rlc_stop(rdev);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (i == 0)
|
|
reg_offset = SDMA0_REGISTER_OFFSET;
|
|
else
|
|
reg_offset = SDMA1_REGISTER_OFFSET;
|
|
me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset);
|
|
if (enable)
|
|
me_cntl &= ~SDMA_HALT;
|
|
else
|
|
me_cntl |= SDMA_HALT;
|
|
WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl);
|
|
}
|
|
|
|
cik_sdma_ctx_switch_enable(rdev, enable);
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_gfx_resume - setup and start the async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Set up the gfx DMA ring buffers and enable them (CIK).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int cik_sdma_gfx_resume(struct radeon_device *rdev)
|
|
{
|
|
struct radeon_ring *ring;
|
|
u32 rb_cntl, ib_cntl;
|
|
u32 rb_bufsz;
|
|
u32 reg_offset, wb_offset;
|
|
int i, r;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (i == 0) {
|
|
ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
|
|
reg_offset = SDMA0_REGISTER_OFFSET;
|
|
wb_offset = R600_WB_DMA_RPTR_OFFSET;
|
|
} else {
|
|
ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
|
|
reg_offset = SDMA1_REGISTER_OFFSET;
|
|
wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
|
|
}
|
|
|
|
WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
|
|
WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);
|
|
|
|
/* Set ring buffer size in dwords */
|
|
rb_bufsz = order_base_2(ring->ring_size / 4);
|
|
rb_cntl = rb_bufsz << 1;
|
|
#ifdef __BIG_ENDIAN
|
|
rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE;
|
|
#endif
|
|
WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
|
|
|
|
/* Initialize the ring buffer's read and write pointers */
|
|
WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0);
|
|
WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0);
|
|
|
|
/* set the wb address whether it's enabled or not */
|
|
WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset,
|
|
upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
|
|
WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset,
|
|
((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));
|
|
|
|
if (rdev->wb.enabled)
|
|
rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE;
|
|
|
|
WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8);
|
|
WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40);
|
|
|
|
ring->wptr = 0;
|
|
WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2);
|
|
|
|
/* enable DMA RB */
|
|
WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE);
|
|
|
|
ib_cntl = SDMA_IB_ENABLE;
|
|
#ifdef __BIG_ENDIAN
|
|
ib_cntl |= SDMA_IB_SWAP_ENABLE;
|
|
#endif
|
|
/* enable DMA IBs */
|
|
WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl);
|
|
|
|
ring->ready = true;
|
|
|
|
r = radeon_ring_test(rdev, ring->idx, ring);
|
|
if (r) {
|
|
ring->ready = false;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
if ((rdev->asic->copy.copy_ring_index == R600_RING_TYPE_DMA_INDEX) ||
|
|
(rdev->asic->copy.copy_ring_index == CAYMAN_RING_TYPE_DMA1_INDEX))
|
|
radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_rlc_resume - setup and start the async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Set up the compute DMA queues and enable them (CIK).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
static int cik_sdma_rlc_resume(struct radeon_device *rdev)
|
|
{
|
|
/* XXX todo */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_load_microcode - load the sDMA ME ucode
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Loads the sDMA0/1 ucode.
|
|
* Returns 0 for success, -EINVAL if the ucode is not available.
|
|
*/
|
|
static int cik_sdma_load_microcode(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
|
|
if (!rdev->sdma_fw)
|
|
return -EINVAL;
|
|
|
|
/* halt the MEs */
|
|
cik_sdma_enable(rdev, false);
|
|
|
|
if (rdev->new_fw) {
|
|
const struct sdma_firmware_header_v1_0 *hdr =
|
|
(const struct sdma_firmware_header_v1_0 *)rdev->sdma_fw->data;
|
|
const __le32 *fw_data;
|
|
u32 fw_size;
|
|
|
|
radeon_ucode_print_sdma_hdr(&hdr->header);
|
|
|
|
/* sdma0 */
|
|
fw_data = (const __le32 *)
|
|
(rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
|
|
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
|
|
WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
|
|
for (i = 0; i < fw_size; i++)
|
|
WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, le32_to_cpup(fw_data++));
|
|
WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
|
|
|
|
/* sdma1 */
|
|
fw_data = (const __le32 *)
|
|
(rdev->sdma_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
|
|
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
|
|
WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
|
|
for (i = 0; i < fw_size; i++)
|
|
WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, le32_to_cpup(fw_data++));
|
|
WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
|
|
} else {
|
|
const __be32 *fw_data;
|
|
|
|
/* sdma0 */
|
|
fw_data = (const __be32 *)rdev->sdma_fw->data;
|
|
WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
|
|
for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
|
|
WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++));
|
|
WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
|
|
|
|
/* sdma1 */
|
|
fw_data = (const __be32 *)rdev->sdma_fw->data;
|
|
WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
|
|
for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
|
|
WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++));
|
|
WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);
|
|
}
|
|
|
|
WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
|
|
WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_resume - setup and start the async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Set up the DMA engines and enable them (CIK).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
int cik_sdma_resume(struct radeon_device *rdev)
|
|
{
|
|
int r;
|
|
|
|
r = cik_sdma_load_microcode(rdev);
|
|
if (r)
|
|
return r;
|
|
|
|
/* unhalt the MEs */
|
|
cik_sdma_enable(rdev, true);
|
|
|
|
/* start the gfx rings and rlc compute queues */
|
|
r = cik_sdma_gfx_resume(rdev);
|
|
if (r)
|
|
return r;
|
|
r = cik_sdma_rlc_resume(rdev);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_fini - tear down the async dma engines
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Stop the async dma engines and free the rings (CIK).
|
|
*/
|
|
void cik_sdma_fini(struct radeon_device *rdev)
|
|
{
|
|
/* halt the MEs */
|
|
cik_sdma_enable(rdev, false);
|
|
radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
|
|
radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
|
|
/* XXX - compute dma queue tear down */
|
|
}
|
|
|
|
/**
|
|
* cik_copy_dma - copy pages using the DMA engine
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @src_offset: src GPU address
|
|
* @dst_offset: dst GPU address
|
|
* @num_gpu_pages: number of GPU pages to xfer
|
|
* @resv: reservation object to sync to
|
|
*
|
|
* Copy GPU paging using the DMA engine (CIK).
|
|
* Used by the radeon ttm implementation to move pages if
|
|
* registered as the asic copy callback.
|
|
*/
|
|
struct radeon_fence *cik_copy_dma(struct radeon_device *rdev,
|
|
uint64_t src_offset, uint64_t dst_offset,
|
|
unsigned num_gpu_pages,
|
|
struct reservation_object *resv)
|
|
{
|
|
struct radeon_fence *fence;
|
|
struct radeon_sync sync;
|
|
int ring_index = rdev->asic->copy.dma_ring_index;
|
|
struct radeon_ring *ring = &rdev->ring[ring_index];
|
|
u32 size_in_bytes, cur_size_in_bytes;
|
|
int i, num_loops;
|
|
int r = 0;
|
|
|
|
radeon_sync_create(&sync);
|
|
|
|
size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT);
|
|
num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff);
|
|
r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14);
|
|
if (r) {
|
|
DRM_ERROR("radeon: moving bo (%d).\n", r);
|
|
radeon_sync_free(rdev, &sync, NULL);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
radeon_sync_resv(rdev, &sync, resv, false);
|
|
radeon_sync_rings(rdev, &sync, ring->idx);
|
|
|
|
for (i = 0; i < num_loops; i++) {
|
|
cur_size_in_bytes = size_in_bytes;
|
|
if (cur_size_in_bytes > 0x1fffff)
|
|
cur_size_in_bytes = 0x1fffff;
|
|
size_in_bytes -= cur_size_in_bytes;
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0));
|
|
radeon_ring_write(ring, cur_size_in_bytes);
|
|
radeon_ring_write(ring, 0); /* src/dst endian swap */
|
|
radeon_ring_write(ring, lower_32_bits(src_offset));
|
|
radeon_ring_write(ring, upper_32_bits(src_offset));
|
|
radeon_ring_write(ring, lower_32_bits(dst_offset));
|
|
radeon_ring_write(ring, upper_32_bits(dst_offset));
|
|
src_offset += cur_size_in_bytes;
|
|
dst_offset += cur_size_in_bytes;
|
|
}
|
|
|
|
r = radeon_fence_emit(rdev, &fence, ring->idx);
|
|
if (r) {
|
|
radeon_ring_unlock_undo(rdev, ring);
|
|
radeon_sync_free(rdev, &sync, NULL);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
radeon_ring_unlock_commit(rdev, ring, false);
|
|
radeon_sync_free(rdev, &sync, fence);
|
|
|
|
return fence;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_ring_test - simple async dma engine test
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Test the DMA engine by writing using it to write an
|
|
* value to memory. (CIK).
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
int cik_sdma_ring_test(struct radeon_device *rdev,
|
|
struct radeon_ring *ring)
|
|
{
|
|
unsigned i;
|
|
int r;
|
|
unsigned index;
|
|
u32 tmp;
|
|
u64 gpu_addr;
|
|
|
|
if (ring->idx == R600_RING_TYPE_DMA_INDEX)
|
|
index = R600_WB_DMA_RING_TEST_OFFSET;
|
|
else
|
|
index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;
|
|
|
|
gpu_addr = rdev->wb.gpu_addr + index;
|
|
|
|
tmp = 0xCAFEDEAD;
|
|
rdev->wb.wb[index/4] = cpu_to_le32(tmp);
|
|
|
|
r = radeon_ring_lock(rdev, ring, 5);
|
|
if (r) {
|
|
DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r);
|
|
return r;
|
|
}
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
|
|
radeon_ring_write(ring, lower_32_bits(gpu_addr));
|
|
radeon_ring_write(ring, upper_32_bits(gpu_addr));
|
|
radeon_ring_write(ring, 1); /* number of DWs to follow */
|
|
radeon_ring_write(ring, 0xDEADBEEF);
|
|
radeon_ring_unlock_commit(rdev, ring, false);
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
tmp = le32_to_cpu(rdev->wb.wb[index/4]);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
|
|
if (i < rdev->usec_timeout) {
|
|
DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
|
|
} else {
|
|
DRM_ERROR("radeon: ring %d test failed (0x%08X)\n",
|
|
ring->idx, tmp);
|
|
r = -EINVAL;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_ib_test - test an IB on the DMA engine
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Test a simple IB in the DMA ring (CIK).
|
|
* Returns 0 on success, error on failure.
|
|
*/
|
|
int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
struct radeon_ib ib;
|
|
unsigned i;
|
|
unsigned index;
|
|
int r;
|
|
u32 tmp = 0;
|
|
u64 gpu_addr;
|
|
|
|
if (ring->idx == R600_RING_TYPE_DMA_INDEX)
|
|
index = R600_WB_DMA_RING_TEST_OFFSET;
|
|
else
|
|
index = CAYMAN_WB_DMA1_RING_TEST_OFFSET;
|
|
|
|
gpu_addr = rdev->wb.gpu_addr + index;
|
|
|
|
tmp = 0xCAFEDEAD;
|
|
rdev->wb.wb[index/4] = cpu_to_le32(tmp);
|
|
|
|
r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
|
|
if (r) {
|
|
DRM_ERROR("radeon: failed to get ib (%d).\n", r);
|
|
return r;
|
|
}
|
|
|
|
ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
|
|
ib.ptr[1] = lower_32_bits(gpu_addr);
|
|
ib.ptr[2] = upper_32_bits(gpu_addr);
|
|
ib.ptr[3] = 1;
|
|
ib.ptr[4] = 0xDEADBEEF;
|
|
ib.length_dw = 5;
|
|
|
|
r = radeon_ib_schedule(rdev, &ib, NULL, false);
|
|
if (r) {
|
|
radeon_ib_free(rdev, &ib);
|
|
DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
|
|
return r;
|
|
}
|
|
r = radeon_fence_wait_timeout(ib.fence, false, usecs_to_jiffies(
|
|
RADEON_USEC_IB_TEST_TIMEOUT));
|
|
if (r < 0) {
|
|
DRM_ERROR("radeon: fence wait failed (%d).\n", r);
|
|
return r;
|
|
} else if (r == 0) {
|
|
DRM_ERROR("radeon: fence wait timed out.\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
r = 0;
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
tmp = le32_to_cpu(rdev->wb.wb[index/4]);
|
|
if (tmp == 0xDEADBEEF)
|
|
break;
|
|
DRM_UDELAY(1);
|
|
}
|
|
if (i < rdev->usec_timeout) {
|
|
DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
|
|
} else {
|
|
DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp);
|
|
r = -EINVAL;
|
|
}
|
|
radeon_ib_free(rdev, &ib);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_is_lockup - Check if the DMA engine is locked up
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Check if the async DMA engine is locked up (CIK).
|
|
* Returns true if the engine appears to be locked up, false if not.
|
|
*/
|
|
bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
u32 reset_mask = cik_gpu_check_soft_reset(rdev);
|
|
u32 mask;
|
|
|
|
if (ring->idx == R600_RING_TYPE_DMA_INDEX)
|
|
mask = RADEON_RESET_DMA;
|
|
else
|
|
mask = RADEON_RESET_DMA1;
|
|
|
|
if (!(reset_mask & mask)) {
|
|
radeon_ring_lockup_update(rdev, ring);
|
|
return false;
|
|
}
|
|
return radeon_ring_test_lockup(rdev, ring);
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_vm_copy_pages - update PTEs by copying them from the GART
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @src: src addr to copy from
|
|
* @count: number of page entries to update
|
|
*
|
|
* Update PTEs by copying them from the GART using sDMA (CIK).
|
|
*/
|
|
void cik_sdma_vm_copy_pages(struct radeon_device *rdev,
|
|
struct radeon_ib *ib,
|
|
uint64_t pe, uint64_t src,
|
|
unsigned count)
|
|
{
|
|
while (count) {
|
|
unsigned bytes = count * 8;
|
|
if (bytes > 0x1FFFF8)
|
|
bytes = 0x1FFFF8;
|
|
|
|
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY,
|
|
SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
|
|
ib->ptr[ib->length_dw++] = bytes;
|
|
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(src);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(src);
|
|
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
|
|
pe += bytes;
|
|
src += bytes;
|
|
count -= bytes / 8;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_vm_write_pages - update PTEs by writing them manually
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @addr: dst addr to write into pe
|
|
* @count: number of page entries to update
|
|
* @incr: increase next addr by incr bytes
|
|
* @flags: access flags
|
|
*
|
|
* Update PTEs by writing them manually using sDMA (CIK).
|
|
*/
|
|
void cik_sdma_vm_write_pages(struct radeon_device *rdev,
|
|
struct radeon_ib *ib,
|
|
uint64_t pe,
|
|
uint64_t addr, unsigned count,
|
|
uint32_t incr, uint32_t flags)
|
|
{
|
|
uint64_t value;
|
|
unsigned ndw;
|
|
|
|
while (count) {
|
|
ndw = count * 2;
|
|
if (ndw > 0xFFFFE)
|
|
ndw = 0xFFFFE;
|
|
|
|
/* for non-physically contiguous pages (system) */
|
|
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE,
|
|
SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
|
|
ib->ptr[ib->length_dw++] = pe;
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = ndw;
|
|
for (; ndw > 0; ndw -= 2, --count, pe += 8) {
|
|
if (flags & R600_PTE_SYSTEM) {
|
|
value = radeon_vm_map_gart(rdev, addr);
|
|
} else if (flags & R600_PTE_VALID) {
|
|
value = addr;
|
|
} else {
|
|
value = 0;
|
|
}
|
|
addr += incr;
|
|
value |= flags;
|
|
ib->ptr[ib->length_dw++] = value;
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_vm_set_pages - update the page tables using sDMA
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: indirect buffer to fill with commands
|
|
* @pe: addr of the page entry
|
|
* @addr: dst addr to write into pe
|
|
* @count: number of page entries to update
|
|
* @incr: increase next addr by incr bytes
|
|
* @flags: access flags
|
|
*
|
|
* Update the page tables using sDMA (CIK).
|
|
*/
|
|
void cik_sdma_vm_set_pages(struct radeon_device *rdev,
|
|
struct radeon_ib *ib,
|
|
uint64_t pe,
|
|
uint64_t addr, unsigned count,
|
|
uint32_t incr, uint32_t flags)
|
|
{
|
|
uint64_t value;
|
|
unsigned ndw;
|
|
|
|
while (count) {
|
|
ndw = count;
|
|
if (ndw > 0x7FFFF)
|
|
ndw = 0x7FFFF;
|
|
|
|
if (flags & R600_PTE_VALID)
|
|
value = addr;
|
|
else
|
|
value = 0;
|
|
|
|
/* for physically contiguous pages (vram) */
|
|
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0);
|
|
ib->ptr[ib->length_dw++] = pe; /* dst addr */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
|
|
ib->ptr[ib->length_dw++] = flags; /* mask */
|
|
ib->ptr[ib->length_dw++] = 0;
|
|
ib->ptr[ib->length_dw++] = value; /* value */
|
|
ib->ptr[ib->length_dw++] = upper_32_bits(value);
|
|
ib->ptr[ib->length_dw++] = incr; /* increment size */
|
|
ib->ptr[ib->length_dw++] = 0;
|
|
ib->ptr[ib->length_dw++] = ndw; /* number of entries */
|
|
|
|
pe += ndw * 8;
|
|
addr += ndw * incr;
|
|
count -= ndw;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cik_sdma_vm_pad_ib - pad the IB to the required number of dw
|
|
*
|
|
* @ib: indirect buffer to fill with padding
|
|
*
|
|
*/
|
|
void cik_sdma_vm_pad_ib(struct radeon_ib *ib)
|
|
{
|
|
while (ib->length_dw & 0x7)
|
|
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* cik_dma_vm_flush - cik vm flush using sDMA
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
*
|
|
* Update the page table base and flush the VM TLB
|
|
* using sDMA (CIK).
|
|
*/
|
|
void cik_dma_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring,
|
|
unsigned vm_id, uint64_t pd_addr)
|
|
{
|
|
u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) |
|
|
SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
if (vm_id < 8) {
|
|
radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2);
|
|
} else {
|
|
radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2);
|
|
}
|
|
radeon_ring_write(ring, pd_addr >> 12);
|
|
|
|
/* update SH_MEM_* regs */
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
|
|
radeon_ring_write(ring, VMID(vm_id));
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, SH_MEM_BASES >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, SH_MEM_CONFIG >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2);
|
|
radeon_ring_write(ring, 1);
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
|
|
radeon_ring_write(ring, VMID(0));
|
|
|
|
/* flush HDP */
|
|
cik_sdma_hdp_flush_ring_emit(rdev, ring->idx);
|
|
|
|
/* flush TLB */
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
|
|
radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
|
|
radeon_ring_write(ring, 1 << vm_id);
|
|
|
|
radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
|
|
radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
|
|
radeon_ring_write(ring, 0);
|
|
radeon_ring_write(ring, 0); /* reference */
|
|
radeon_ring_write(ring, 0); /* mask */
|
|
radeon_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
|
|
}
|
|
|