mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-20 12:17:41 +07:00
b9fa6442f7
The IPI code of x86 needs to evaluate whether the target cpumask is equal to the cpu_online_mask or equal except for the calling CPU. To replace the current implementation which requires the usage of a temporary cpumask, which might involve allocations, add a new function which compares a cpumask to the result of two other cpumasks which are or'ed together before comparison. This allows to make the required decision in one go and the calling code then can check for the calling CPU being set in the target mask with cpumask_test_cpu(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190722105220.585449120@linutronix.de
494 lines
18 KiB
C
494 lines
18 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_BITMAP_H
|
|
#define __LINUX_BITMAP_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
|
|
/*
|
|
* bitmaps provide bit arrays that consume one or more unsigned
|
|
* longs. The bitmap interface and available operations are listed
|
|
* here, in bitmap.h
|
|
*
|
|
* Function implementations generic to all architectures are in
|
|
* lib/bitmap.c. Functions implementations that are architecture
|
|
* specific are in various include/asm-<arch>/bitops.h headers
|
|
* and other arch/<arch> specific files.
|
|
*
|
|
* See lib/bitmap.c for more details.
|
|
*/
|
|
|
|
/**
|
|
* DOC: bitmap overview
|
|
*
|
|
* The available bitmap operations and their rough meaning in the
|
|
* case that the bitmap is a single unsigned long are thus:
|
|
*
|
|
* The generated code is more efficient when nbits is known at
|
|
* compile-time and at most BITS_PER_LONG.
|
|
*
|
|
* ::
|
|
*
|
|
* bitmap_zero(dst, nbits) *dst = 0UL
|
|
* bitmap_fill(dst, nbits) *dst = ~0UL
|
|
* bitmap_copy(dst, src, nbits) *dst = *src
|
|
* bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
|
|
* bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
|
|
* bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
|
|
* bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
|
|
* bitmap_complement(dst, src, nbits) *dst = ~(*src)
|
|
* bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
|
|
* bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
|
|
* bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
|
|
* bitmap_empty(src, nbits) Are all bits zero in *src?
|
|
* bitmap_full(src, nbits) Are all bits set in *src?
|
|
* bitmap_weight(src, nbits) Hamming Weight: number set bits
|
|
* bitmap_set(dst, pos, nbits) Set specified bit area
|
|
* bitmap_clear(dst, pos, nbits) Clear specified bit area
|
|
* bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
|
|
* bitmap_find_next_zero_area_off(buf, len, pos, n, mask) as above
|
|
* bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
|
|
* bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
|
|
* bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
|
|
* bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
|
|
* bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
|
|
* bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
|
|
* bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf
|
|
* bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
|
|
* bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf
|
|
* bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
|
|
* bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region
|
|
* bitmap_release_region(bitmap, pos, order) Free specified bit region
|
|
* bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
|
|
* bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst
|
|
* bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst
|
|
*
|
|
* Note, bitmap_zero() and bitmap_fill() operate over the region of
|
|
* unsigned longs, that is, bits behind bitmap till the unsigned long
|
|
* boundary will be zeroed or filled as well. Consider to use
|
|
* bitmap_clear() or bitmap_set() to make explicit zeroing or filling
|
|
* respectively.
|
|
*/
|
|
|
|
/**
|
|
* DOC: bitmap bitops
|
|
*
|
|
* Also the following operations in asm/bitops.h apply to bitmaps.::
|
|
*
|
|
* set_bit(bit, addr) *addr |= bit
|
|
* clear_bit(bit, addr) *addr &= ~bit
|
|
* change_bit(bit, addr) *addr ^= bit
|
|
* test_bit(bit, addr) Is bit set in *addr?
|
|
* test_and_set_bit(bit, addr) Set bit and return old value
|
|
* test_and_clear_bit(bit, addr) Clear bit and return old value
|
|
* test_and_change_bit(bit, addr) Change bit and return old value
|
|
* find_first_zero_bit(addr, nbits) Position first zero bit in *addr
|
|
* find_first_bit(addr, nbits) Position first set bit in *addr
|
|
* find_next_zero_bit(addr, nbits, bit)
|
|
* Position next zero bit in *addr >= bit
|
|
* find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
|
|
* find_next_and_bit(addr1, addr2, nbits, bit)
|
|
* Same as find_next_bit, but in
|
|
* (*addr1 & *addr2)
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: declare bitmap
|
|
* The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
|
|
* to declare an array named 'name' of just enough unsigned longs to
|
|
* contain all bit positions from 0 to 'bits' - 1.
|
|
*/
|
|
|
|
/*
|
|
* Allocation and deallocation of bitmap.
|
|
* Provided in lib/bitmap.c to avoid circular dependency.
|
|
*/
|
|
extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
|
|
extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
|
|
extern void bitmap_free(const unsigned long *bitmap);
|
|
|
|
/*
|
|
* lib/bitmap.c provides these functions:
|
|
*/
|
|
|
|
extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits);
|
|
extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits);
|
|
extern int __bitmap_equal(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern bool __pure __bitmap_or_equal(const unsigned long *src1,
|
|
const unsigned long *src2,
|
|
const unsigned long *src3,
|
|
unsigned int nbits);
|
|
extern void __bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
unsigned int nbits);
|
|
extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits);
|
|
extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits);
|
|
extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern int __bitmap_intersects(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern int __bitmap_subset(const unsigned long *bitmap1,
|
|
const unsigned long *bitmap2, unsigned int nbits);
|
|
extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
|
|
extern void __bitmap_set(unsigned long *map, unsigned int start, int len);
|
|
extern void __bitmap_clear(unsigned long *map, unsigned int start, int len);
|
|
|
|
extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned int nr,
|
|
unsigned long align_mask,
|
|
unsigned long align_offset);
|
|
|
|
/**
|
|
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @align_mask: Alignment mask for zero area
|
|
*
|
|
* The @align_mask should be one less than a power of 2; the effect is that
|
|
* the bit offset of all zero areas this function finds is multiples of that
|
|
* power of 2. A @align_mask of 0 means no alignment is required.
|
|
*/
|
|
static inline unsigned long
|
|
bitmap_find_next_zero_area(unsigned long *map,
|
|
unsigned long size,
|
|
unsigned long start,
|
|
unsigned int nr,
|
|
unsigned long align_mask)
|
|
{
|
|
return bitmap_find_next_zero_area_off(map, size, start, nr,
|
|
align_mask, 0);
|
|
}
|
|
|
|
extern int __bitmap_parse(const char *buf, unsigned int buflen, int is_user,
|
|
unsigned long *dst, int nbits);
|
|
extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
|
|
unsigned long *dst, int nbits);
|
|
extern int bitmap_parselist(const char *buf, unsigned long *maskp,
|
|
int nmaskbits);
|
|
extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
|
|
unsigned long *dst, int nbits);
|
|
extern void bitmap_remap(unsigned long *dst, const unsigned long *src,
|
|
const unsigned long *old, const unsigned long *new, unsigned int nbits);
|
|
extern int bitmap_bitremap(int oldbit,
|
|
const unsigned long *old, const unsigned long *new, int bits);
|
|
extern void bitmap_onto(unsigned long *dst, const unsigned long *orig,
|
|
const unsigned long *relmap, unsigned int bits);
|
|
extern void bitmap_fold(unsigned long *dst, const unsigned long *orig,
|
|
unsigned int sz, unsigned int nbits);
|
|
extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
|
|
extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
|
|
extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
|
|
#else
|
|
#define bitmap_copy_le bitmap_copy
|
|
#endif
|
|
extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
|
|
extern int bitmap_print_to_pagebuf(bool list, char *buf,
|
|
const unsigned long *maskp, int nmaskbits);
|
|
|
|
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
|
|
#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
|
|
|
|
/*
|
|
* The static inlines below do not handle constant nbits==0 correctly,
|
|
* so make such users (should any ever turn up) call the out-of-line
|
|
* versions.
|
|
*/
|
|
#define small_const_nbits(nbits) \
|
|
(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0)
|
|
|
|
static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
|
|
{
|
|
unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
|
|
memset(dst, 0, len);
|
|
}
|
|
|
|
static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
|
|
{
|
|
unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
|
|
memset(dst, 0xff, len);
|
|
}
|
|
|
|
static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
|
|
unsigned int nbits)
|
|
{
|
|
unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
|
|
memcpy(dst, src, len);
|
|
}
|
|
|
|
/*
|
|
* Copy bitmap and clear tail bits in last word.
|
|
*/
|
|
static inline void bitmap_copy_clear_tail(unsigned long *dst,
|
|
const unsigned long *src, unsigned int nbits)
|
|
{
|
|
bitmap_copy(dst, src, nbits);
|
|
if (nbits % BITS_PER_LONG)
|
|
dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
|
|
}
|
|
|
|
/*
|
|
* On 32-bit systems bitmaps are represented as u32 arrays internally, and
|
|
* therefore conversion is not needed when copying data from/to arrays of u32.
|
|
*/
|
|
#if BITS_PER_LONG == 64
|
|
extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
|
|
unsigned int nbits);
|
|
extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
|
|
unsigned int nbits);
|
|
#else
|
|
#define bitmap_from_arr32(bitmap, buf, nbits) \
|
|
bitmap_copy_clear_tail((unsigned long *) (bitmap), \
|
|
(const unsigned long *) (buf), (nbits))
|
|
#define bitmap_to_arr32(buf, bitmap, nbits) \
|
|
bitmap_copy_clear_tail((unsigned long *) (buf), \
|
|
(const unsigned long *) (bitmap), (nbits))
|
|
#endif
|
|
|
|
static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
|
|
return __bitmap_and(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = *src1 | *src2;
|
|
else
|
|
__bitmap_or(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = *src1 ^ *src2;
|
|
else
|
|
__bitmap_xor(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
|
|
return __bitmap_andnot(dst, src1, src2, nbits);
|
|
}
|
|
|
|
static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
|
|
unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = ~(*src);
|
|
else
|
|
__bitmap_complement(dst, src, nbits);
|
|
}
|
|
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define BITMAP_MEM_ALIGNMENT 8
|
|
#else
|
|
#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
|
|
#endif
|
|
#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
|
|
|
|
static inline int bitmap_equal(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
|
|
if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
|
|
return !memcmp(src1, src2, nbits / 8);
|
|
return __bitmap_equal(src1, src2, nbits);
|
|
}
|
|
|
|
/**
|
|
* bitmap_or_equal - Check whether the or of two bitnaps is equal to a third
|
|
* @src1: Pointer to bitmap 1
|
|
* @src2: Pointer to bitmap 2 will be or'ed with bitmap 1
|
|
* @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
|
|
*
|
|
* Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
|
|
*/
|
|
static inline bool bitmap_or_equal(const unsigned long *src1,
|
|
const unsigned long *src2,
|
|
const unsigned long *src3,
|
|
unsigned int nbits)
|
|
{
|
|
if (!small_const_nbits(nbits))
|
|
return __bitmap_or_equal(src1, src2, src3, nbits);
|
|
|
|
return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
|
|
}
|
|
|
|
static inline int bitmap_intersects(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
|
|
else
|
|
return __bitmap_intersects(src1, src2, nbits);
|
|
}
|
|
|
|
static inline int bitmap_subset(const unsigned long *src1,
|
|
const unsigned long *src2, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
|
|
else
|
|
return __bitmap_subset(src1, src2, nbits);
|
|
}
|
|
|
|
static inline int bitmap_empty(const unsigned long *src, unsigned nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
|
|
|
|
return find_first_bit(src, nbits) == nbits;
|
|
}
|
|
|
|
static inline int bitmap_full(const unsigned long *src, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
|
|
|
|
return find_first_zero_bit(src, nbits) == nbits;
|
|
}
|
|
|
|
static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
|
|
return __bitmap_weight(src, nbits);
|
|
}
|
|
|
|
static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
|
|
unsigned int nbits)
|
|
{
|
|
if (__builtin_constant_p(nbits) && nbits == 1)
|
|
__set_bit(start, map);
|
|
else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
|
|
__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
|
|
memset((char *)map + start / 8, 0xff, nbits / 8);
|
|
else
|
|
__bitmap_set(map, start, nbits);
|
|
}
|
|
|
|
static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
|
|
unsigned int nbits)
|
|
{
|
|
if (__builtin_constant_p(nbits) && nbits == 1)
|
|
__clear_bit(start, map);
|
|
else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
|
|
__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
|
|
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
|
|
memset((char *)map + start / 8, 0, nbits / 8);
|
|
else
|
|
__bitmap_clear(map, start, nbits);
|
|
}
|
|
|
|
static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
|
|
else
|
|
__bitmap_shift_right(dst, src, shift, nbits);
|
|
}
|
|
|
|
static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
|
|
unsigned int shift, unsigned int nbits)
|
|
{
|
|
if (small_const_nbits(nbits))
|
|
*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
|
|
else
|
|
__bitmap_shift_left(dst, src, shift, nbits);
|
|
}
|
|
|
|
static inline int bitmap_parse(const char *buf, unsigned int buflen,
|
|
unsigned long *maskp, int nmaskbits)
|
|
{
|
|
return __bitmap_parse(buf, buflen, 0, maskp, nmaskbits);
|
|
}
|
|
|
|
/**
|
|
* BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
|
|
* @n: u64 value
|
|
*
|
|
* Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
|
|
* integers in 32-bit environment, and 64-bit integers in 64-bit one.
|
|
*
|
|
* There are four combinations of endianness and length of the word in linux
|
|
* ABIs: LE64, BE64, LE32 and BE32.
|
|
*
|
|
* On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
|
|
* bitmaps and therefore don't require any special handling.
|
|
*
|
|
* On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
|
|
* prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
|
|
* other hand is represented as an array of 32-bit words and the position of
|
|
* bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
|
|
* word. For example, bit #42 is located at 10th position of 2nd word.
|
|
* It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
|
|
* values in memory as it usually does. But for BE we need to swap hi and lo
|
|
* words manually.
|
|
*
|
|
* With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
|
|
* lo parts of u64. For LE32 it does nothing, and for BE environment it swaps
|
|
* hi and lo words, as is expected by bitmap.
|
|
*/
|
|
#if __BITS_PER_LONG == 64
|
|
#define BITMAP_FROM_U64(n) (n)
|
|
#else
|
|
#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
|
|
((unsigned long) ((u64)(n) >> 32))
|
|
#endif
|
|
|
|
/**
|
|
* bitmap_from_u64 - Check and swap words within u64.
|
|
* @mask: source bitmap
|
|
* @dst: destination bitmap
|
|
*
|
|
* In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
|
|
* to read u64 mask, we will get the wrong word.
|
|
* That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
|
|
* but we expect the lower 32-bits of u64.
|
|
*/
|
|
static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
|
|
{
|
|
dst[0] = mask & ULONG_MAX;
|
|
|
|
if (sizeof(mask) > sizeof(unsigned long))
|
|
dst[1] = mask >> 32;
|
|
}
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* __LINUX_BITMAP_H */
|