linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_gem_gtt.c
Chris Wilson db9309a526 drm/i915/guc: Exclude the upper end of the Global GTT for the GuC
The GuC uses a special mapping for the upper end of the Global GTT,
similar to the way it uses a special mapping for the lower end, so
exclude it from our drm_mm to prevent us using it.

v2: Rename to reflect that it is unmappable similar to the region at the
bottom of the GGTT, and couple it into the assertion that we don't feed
unmappable addresses to the GuC.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michal Wajdeczko <michal.wajdeczko@intel.com>
Cc: Arkadiusz Hiler <arkadiusz.hiler@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Arkadiusz Hiler <arkadiusz.hiler@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170105153023.30575-5-chris@chris-wilson.co.uk
2017-01-05 15:34:46 +00:00

3566 lines
93 KiB
C

/*
* Copyright © 2010 Daniel Vetter
* Copyright © 2011-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/seq_file.h>
#include <linux/stop_machine.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_vgpu.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include "intel_frontbuffer.h"
#define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
/**
* DOC: Global GTT views
*
* Background and previous state
*
* Historically objects could exists (be bound) in global GTT space only as
* singular instances with a view representing all of the object's backing pages
* in a linear fashion. This view will be called a normal view.
*
* To support multiple views of the same object, where the number of mapped
* pages is not equal to the backing store, or where the layout of the pages
* is not linear, concept of a GGTT view was added.
*
* One example of an alternative view is a stereo display driven by a single
* image. In this case we would have a framebuffer looking like this
* (2x2 pages):
*
* 12
* 34
*
* Above would represent a normal GGTT view as normally mapped for GPU or CPU
* rendering. In contrast, fed to the display engine would be an alternative
* view which could look something like this:
*
* 1212
* 3434
*
* In this example both the size and layout of pages in the alternative view is
* different from the normal view.
*
* Implementation and usage
*
* GGTT views are implemented using VMAs and are distinguished via enum
* i915_ggtt_view_type and struct i915_ggtt_view.
*
* A new flavour of core GEM functions which work with GGTT bound objects were
* added with the _ggtt_ infix, and sometimes with _view postfix to avoid
* renaming in large amounts of code. They take the struct i915_ggtt_view
* parameter encapsulating all metadata required to implement a view.
*
* As a helper for callers which are only interested in the normal view,
* globally const i915_ggtt_view_normal singleton instance exists. All old core
* GEM API functions, the ones not taking the view parameter, are operating on,
* or with the normal GGTT view.
*
* Code wanting to add or use a new GGTT view needs to:
*
* 1. Add a new enum with a suitable name.
* 2. Extend the metadata in the i915_ggtt_view structure if required.
* 3. Add support to i915_get_vma_pages().
*
* New views are required to build a scatter-gather table from within the
* i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
* exists for the lifetime of an VMA.
*
* Core API is designed to have copy semantics which means that passed in
* struct i915_ggtt_view does not need to be persistent (left around after
* calling the core API functions).
*
*/
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);
const struct i915_ggtt_view i915_ggtt_view_normal = {
.type = I915_GGTT_VIEW_NORMAL,
};
const struct i915_ggtt_view i915_ggtt_view_rotated = {
.type = I915_GGTT_VIEW_ROTATED,
};
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
int enable_ppgtt)
{
bool has_aliasing_ppgtt;
bool has_full_ppgtt;
bool has_full_48bit_ppgtt;
has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
has_full_ppgtt = dev_priv->info.has_full_ppgtt;
has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
if (intel_vgpu_active(dev_priv)) {
/* emulation is too hard */
has_full_ppgtt = false;
has_full_48bit_ppgtt = false;
}
if (!has_aliasing_ppgtt)
return 0;
/*
* We don't allow disabling PPGTT for gen9+ as it's a requirement for
* execlists, the sole mechanism available to submit work.
*/
if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
return 0;
if (enable_ppgtt == 1)
return 1;
if (enable_ppgtt == 2 && has_full_ppgtt)
return 2;
if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
return 3;
#ifdef CONFIG_INTEL_IOMMU
/* Disable ppgtt on SNB if VT-d is on. */
if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
DRM_INFO("Disabling PPGTT because VT-d is on\n");
return 0;
}
#endif
/* Early VLV doesn't have this */
if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
return 0;
}
if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
return has_full_48bit_ppgtt ? 3 : 2;
else
return has_aliasing_ppgtt ? 1 : 0;
}
static int ppgtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
u32 pte_flags = 0;
vma->pages = vma->obj->mm.pages;
/* Currently applicable only to VLV */
if (vma->obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
cache_level, pte_flags);
return 0;
}
static void ppgtt_unbind_vma(struct i915_vma *vma)
{
vma->vm->clear_range(vma->vm,
vma->node.start,
vma->size);
}
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
enum i915_cache_level level)
{
gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
pte |= addr;
switch (level) {
case I915_CACHE_NONE:
pte |= PPAT_UNCACHED_INDEX;
break;
case I915_CACHE_WT:
pte |= PPAT_DISPLAY_ELLC_INDEX;
break;
default:
pte |= PPAT_CACHED_INDEX;
break;
}
return pte;
}
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
const enum i915_cache_level level)
{
gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
pde |= addr;
if (level != I915_CACHE_NONE)
pde |= PPAT_CACHED_PDE_INDEX;
else
pde |= PPAT_UNCACHED_INDEX;
return pde;
}
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
pte |= GEN7_PTE_CACHE_L3_LLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
if (!(flags & PTE_READ_ONLY))
pte |= BYT_PTE_WRITEABLE;
if (level != I915_CACHE_NONE)
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
return pte;
}
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= HSW_PTE_ADDR_ENCODE(addr);
if (level != I915_CACHE_NONE)
pte |= HSW_WB_LLC_AGE3;
return pte;
}
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 unused)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= HSW_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_NONE:
break;
case I915_CACHE_WT:
pte |= HSW_WT_ELLC_LLC_AGE3;
break;
default:
pte |= HSW_WB_ELLC_LLC_AGE3;
break;
}
return pte;
}
static int __setup_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p, gfp_t flags)
{
struct device *kdev = &dev_priv->drm.pdev->dev;
p->page = alloc_page(flags);
if (!p->page)
return -ENOMEM;
p->daddr = dma_map_page(kdev,
p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(kdev, p->daddr)) {
__free_page(p->page);
return -EINVAL;
}
return 0;
}
static int setup_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p)
{
return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
}
static void cleanup_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
if (WARN_ON(!p->page))
return;
dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(p->page);
memset(p, 0, sizeof(*p));
}
static void *kmap_page_dma(struct i915_page_dma *p)
{
return kmap_atomic(p->page);
}
/* We use the flushing unmap only with ppgtt structures:
* page directories, page tables and scratch pages.
*/
static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
{
/* There are only few exceptions for gen >=6. chv and bxt.
* And we are not sure about the latter so play safe for now.
*/
if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
drm_clflush_virt_range(vaddr, PAGE_SIZE);
kunmap_atomic(vaddr);
}
#define kmap_px(px) kmap_page_dma(px_base(px))
#define kunmap_px(ppgtt, vaddr) \
kunmap_page_dma((ppgtt)->base.i915, (vaddr))
#define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
#define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
#define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
#define fill32_px(dev_priv, px, v) \
fill_page_dma_32((dev_priv), px_base(px), (v))
static void fill_page_dma(struct drm_i915_private *dev_priv,
struct i915_page_dma *p, const uint64_t val)
{
int i;
uint64_t * const vaddr = kmap_page_dma(p);
for (i = 0; i < 512; i++)
vaddr[i] = val;
kunmap_page_dma(dev_priv, vaddr);
}
static void fill_page_dma_32(struct drm_i915_private *dev_priv,
struct i915_page_dma *p, const uint32_t val32)
{
uint64_t v = val32;
v = v << 32 | val32;
fill_page_dma(dev_priv, p, v);
}
static int
setup_scratch_page(struct drm_i915_private *dev_priv,
struct i915_page_dma *scratch,
gfp_t gfp)
{
return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
}
static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
struct i915_page_dma *scratch)
{
cleanup_page_dma(dev_priv, scratch);
}
static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
{
struct i915_page_table *pt;
const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
int ret = -ENOMEM;
pt = kzalloc(sizeof(*pt), GFP_KERNEL);
if (!pt)
return ERR_PTR(-ENOMEM);
pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
GFP_KERNEL);
if (!pt->used_ptes)
goto fail_bitmap;
ret = setup_px(dev_priv, pt);
if (ret)
goto fail_page_m;
return pt;
fail_page_m:
kfree(pt->used_ptes);
fail_bitmap:
kfree(pt);
return ERR_PTR(ret);
}
static void free_pt(struct drm_i915_private *dev_priv,
struct i915_page_table *pt)
{
cleanup_px(dev_priv, pt);
kfree(pt->used_ptes);
kfree(pt);
}
static void gen8_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
gen8_pte_t scratch_pte;
scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
fill_px(vm->i915, pt, scratch_pte);
}
static void gen6_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
gen6_pte_t scratch_pte;
WARN_ON(vm->scratch_page.daddr == 0);
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
fill32_px(vm->i915, pt, scratch_pte);
}
static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
{
struct i915_page_directory *pd;
int ret = -ENOMEM;
pd = kzalloc(sizeof(*pd), GFP_KERNEL);
if (!pd)
return ERR_PTR(-ENOMEM);
pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
sizeof(*pd->used_pdes), GFP_KERNEL);
if (!pd->used_pdes)
goto fail_bitmap;
ret = setup_px(dev_priv, pd);
if (ret)
goto fail_page_m;
return pd;
fail_page_m:
kfree(pd->used_pdes);
fail_bitmap:
kfree(pd);
return ERR_PTR(ret);
}
static void free_pd(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd)
{
if (px_page(pd)) {
cleanup_px(dev_priv, pd);
kfree(pd->used_pdes);
kfree(pd);
}
}
static void gen8_initialize_pd(struct i915_address_space *vm,
struct i915_page_directory *pd)
{
gen8_pde_t scratch_pde;
scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
fill_px(vm->i915, pd, scratch_pde);
}
static int __pdp_init(struct drm_i915_private *dev_priv,
struct i915_page_directory_pointer *pdp)
{
size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
sizeof(unsigned long),
GFP_KERNEL);
if (!pdp->used_pdpes)
return -ENOMEM;
pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
GFP_KERNEL);
if (!pdp->page_directory) {
kfree(pdp->used_pdpes);
/* the PDP might be the statically allocated top level. Keep it
* as clean as possible */
pdp->used_pdpes = NULL;
return -ENOMEM;
}
return 0;
}
static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
kfree(pdp->used_pdpes);
kfree(pdp->page_directory);
pdp->page_directory = NULL;
}
static struct
i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
{
struct i915_page_directory_pointer *pdp;
int ret = -ENOMEM;
WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
if (!pdp)
return ERR_PTR(-ENOMEM);
ret = __pdp_init(dev_priv, pdp);
if (ret)
goto fail_bitmap;
ret = setup_px(dev_priv, pdp);
if (ret)
goto fail_page_m;
return pdp;
fail_page_m:
__pdp_fini(pdp);
fail_bitmap:
kfree(pdp);
return ERR_PTR(ret);
}
static void free_pdp(struct drm_i915_private *dev_priv,
struct i915_page_directory_pointer *pdp)
{
__pdp_fini(pdp);
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
cleanup_px(dev_priv, pdp);
kfree(pdp);
}
}
static void gen8_initialize_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp)
{
gen8_ppgtt_pdpe_t scratch_pdpe;
scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
fill_px(vm->i915, pdp, scratch_pdpe);
}
static void gen8_initialize_pml4(struct i915_address_space *vm,
struct i915_pml4 *pml4)
{
gen8_ppgtt_pml4e_t scratch_pml4e;
scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
I915_CACHE_LLC);
fill_px(vm->i915, pml4, scratch_pml4e);
}
static void
gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
struct i915_page_directory_pointer *pdp,
struct i915_page_directory *pd,
int index)
{
gen8_ppgtt_pdpe_t *page_directorypo;
if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
return;
page_directorypo = kmap_px(pdp);
page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
kunmap_px(ppgtt, page_directorypo);
}
static void
gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
struct i915_pml4 *pml4,
struct i915_page_directory_pointer *pdp,
int index)
{
gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
kunmap_px(ppgtt, pagemap);
}
/* Broadwell Page Directory Pointer Descriptors */
static int gen8_write_pdp(struct drm_i915_gem_request *req,
unsigned entry,
dma_addr_t addr)
{
struct intel_ring *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
BUG_ON(entry >= 4);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
intel_ring_emit(ring, upper_32_bits(addr));
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
intel_ring_emit(ring, lower_32_bits(addr));
intel_ring_advance(ring);
return 0;
}
static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
int i, ret;
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
ret = gen8_write_pdp(req, i, pd_daddr);
if (ret)
return ret;
}
return 0;
}
static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
}
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
* the page table structures, we mark them dirty so that
* context switching/execlist queuing code takes extra steps
* to ensure that tlbs are flushed.
*/
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
}
/* Removes entries from a single page table, releasing it if it's empty.
* Caller can use the return value to update higher-level entries.
*/
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
struct i915_page_table *pt,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned int num_entries = gen8_pte_count(start, length);
unsigned int pte = gen8_pte_index(start);
unsigned int pte_end = pte + num_entries;
gen8_pte_t *pt_vaddr;
gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
if (WARN_ON(!px_page(pt)))
return false;
GEM_BUG_ON(pte_end > GEN8_PTES);
bitmap_clear(pt->used_ptes, pte, num_entries);
if (bitmap_empty(pt->used_ptes, GEN8_PTES))
return true;
pt_vaddr = kmap_px(pt);
while (pte < pte_end)
pt_vaddr[pte++] = scratch_pte;
kunmap_px(ppgtt, pt_vaddr);
return false;
}
/* Removes entries from a single page dir, releasing it if it's empty.
* Caller can use the return value to update higher-level entries
*/
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
struct i915_page_directory *pd,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_table *pt;
uint64_t pde;
gen8_pde_t *pde_vaddr;
gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
I915_CACHE_LLC);
gen8_for_each_pde(pt, pd, start, length, pde) {
if (WARN_ON(!pd->page_table[pde]))
break;
if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
__clear_bit(pde, pd->used_pdes);
pde_vaddr = kmap_px(pd);
pde_vaddr[pde] = scratch_pde;
kunmap_px(ppgtt, pde_vaddr);
free_pt(vm->i915, pt);
}
}
if (bitmap_empty(pd->used_pdes, I915_PDES))
return true;
return false;
}
/* Removes entries from a single page dir pointer, releasing it if it's empty.
* Caller can use the return value to update higher-level entries
*/
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory *pd;
uint64_t pdpe;
gen8_ppgtt_pdpe_t *pdpe_vaddr;
gen8_ppgtt_pdpe_t scratch_pdpe =
gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
if (WARN_ON(!pdp->page_directory[pdpe]))
break;
if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
__clear_bit(pdpe, pdp->used_pdpes);
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
pdpe_vaddr = kmap_px(pdp);
pdpe_vaddr[pdpe] = scratch_pdpe;
kunmap_px(ppgtt, pdpe_vaddr);
}
free_pd(vm->i915, pd);
}
}
mark_tlbs_dirty(ppgtt);
if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
return true;
return false;
}
/* Removes entries from a single pml4.
* This is the top-level structure in 4-level page tables used on gen8+.
* Empty entries are always scratch pml4e.
*/
static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
struct i915_pml4 *pml4,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory_pointer *pdp;
uint64_t pml4e;
gen8_ppgtt_pml4e_t *pml4e_vaddr;
gen8_ppgtt_pml4e_t scratch_pml4e =
gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915));
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (WARN_ON(!pml4->pdps[pml4e]))
break;
if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
__clear_bit(pml4e, pml4->used_pml4es);
pml4e_vaddr = kmap_px(pml4);
pml4e_vaddr[pml4e] = scratch_pml4e;
kunmap_px(ppgtt, pml4e_vaddr);
free_pdp(vm->i915, pdp);
}
}
}
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (USES_FULL_48BIT_PPGTT(vm->i915))
gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
else
gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
}
static void
gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
struct sg_page_iter *sg_iter,
uint64_t start,
enum i915_cache_level cache_level)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
gen8_pte_t *pt_vaddr;
unsigned pdpe = gen8_pdpe_index(start);
unsigned pde = gen8_pde_index(start);
unsigned pte = gen8_pte_index(start);
pt_vaddr = NULL;
while (__sg_page_iter_next(sg_iter)) {
if (pt_vaddr == NULL) {
struct i915_page_directory *pd = pdp->page_directory[pdpe];
struct i915_page_table *pt = pd->page_table[pde];
pt_vaddr = kmap_px(pt);
}
pt_vaddr[pte] =
gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
cache_level);
if (++pte == GEN8_PTES) {
kunmap_px(ppgtt, pt_vaddr);
pt_vaddr = NULL;
if (++pde == I915_PDES) {
if (++pdpe == I915_PDPES_PER_PDP(vm->i915))
break;
pde = 0;
}
pte = 0;
}
}
if (pt_vaddr)
kunmap_px(ppgtt, pt_vaddr);
}
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level,
u32 unused)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct sg_page_iter sg_iter;
__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
cache_level);
} else {
struct i915_page_directory_pointer *pdp;
uint64_t pml4e;
uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
start, cache_level);
}
}
}
static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd)
{
int i;
if (!px_page(pd))
return;
for_each_set_bit(i, pd->used_pdes, I915_PDES) {
if (WARN_ON(!pd->page_table[i]))
continue;
free_pt(dev_priv, pd->page_table[i]);
pd->page_table[i] = NULL;
}
}
static int gen8_init_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
int ret;
ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
if (ret)
return ret;
vm->scratch_pt = alloc_pt(dev_priv);
if (IS_ERR(vm->scratch_pt)) {
ret = PTR_ERR(vm->scratch_pt);
goto free_scratch_page;
}
vm->scratch_pd = alloc_pd(dev_priv);
if (IS_ERR(vm->scratch_pd)) {
ret = PTR_ERR(vm->scratch_pd);
goto free_pt;
}
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
vm->scratch_pdp = alloc_pdp(dev_priv);
if (IS_ERR(vm->scratch_pdp)) {
ret = PTR_ERR(vm->scratch_pdp);
goto free_pd;
}
}
gen8_initialize_pt(vm, vm->scratch_pt);
gen8_initialize_pd(vm, vm->scratch_pd);
if (USES_FULL_48BIT_PPGTT(dev_priv))
gen8_initialize_pdp(vm, vm->scratch_pdp);
return 0;
free_pd:
free_pd(dev_priv, vm->scratch_pd);
free_pt:
free_pt(dev_priv, vm->scratch_pt);
free_scratch_page:
cleanup_scratch_page(dev_priv, &vm->scratch_page);
return ret;
}
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
enum vgt_g2v_type msg;
struct drm_i915_private *dev_priv = ppgtt->base.i915;
int i;
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
u64 daddr = px_dma(&ppgtt->pml4);
I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
} else {
for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
}
msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
}
I915_WRITE(vgtif_reg(g2v_notify), msg);
return 0;
}
static void gen8_free_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
if (USES_FULL_48BIT_PPGTT(dev_priv))
free_pdp(dev_priv, vm->scratch_pdp);
free_pd(dev_priv, vm->scratch_pd);
free_pt(dev_priv, vm->scratch_pt);
cleanup_scratch_page(dev_priv, &vm->scratch_page);
}
static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
struct i915_page_directory_pointer *pdp)
{
int i;
for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
if (WARN_ON(!pdp->page_directory[i]))
continue;
gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
free_pd(dev_priv, pdp->page_directory[i]);
}
free_pdp(dev_priv, pdp);
}
static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = ppgtt->base.i915;
int i;
for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
if (WARN_ON(!ppgtt->pml4.pdps[i]))
continue;
gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
}
cleanup_px(dev_priv, &ppgtt->pml4);
}
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (intel_vgpu_active(dev_priv))
gen8_ppgtt_notify_vgt(ppgtt, false);
if (!USES_FULL_48BIT_PPGTT(dev_priv))
gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
else
gen8_ppgtt_cleanup_4lvl(ppgtt);
gen8_free_scratch(vm);
}
/**
* gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
* @vm: Master vm structure.
* @pd: Page directory for this address range.
* @start: Starting virtual address to begin allocations.
* @length: Size of the allocations.
* @new_pts: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page tables. Extremely similar to
* gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
* the page directory boundary (instead of the page directory pointer). That
* boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
* possible, and likely that the caller will need to use multiple calls of this
* function to achieve the appropriate allocation.
*
* Return: 0 if success; negative error code otherwise.
*/
static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
struct i915_page_directory *pd,
uint64_t start,
uint64_t length,
unsigned long *new_pts)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_page_table *pt;
uint32_t pde;
gen8_for_each_pde(pt, pd, start, length, pde) {
/* Don't reallocate page tables */
if (test_bit(pde, pd->used_pdes)) {
/* Scratch is never allocated this way */
WARN_ON(pt == vm->scratch_pt);
continue;
}
pt = alloc_pt(dev_priv);
if (IS_ERR(pt))
goto unwind_out;
gen8_initialize_pt(vm, pt);
pd->page_table[pde] = pt;
__set_bit(pde, new_pts);
trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
}
return 0;
unwind_out:
for_each_set_bit(pde, new_pts, I915_PDES)
free_pt(dev_priv, pd->page_table[pde]);
return -ENOMEM;
}
/**
* gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
* @vm: Master vm structure.
* @pdp: Page directory pointer for this address range.
* @start: Starting virtual address to begin allocations.
* @length: Size of the allocations.
* @new_pds: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page directories starting at the pde index of
* @start, and ending at the pde index @start + @length. This function will skip
* over already allocated page directories within the range, and only allocate
* new ones, setting the appropriate pointer within the pdp as well as the
* correct position in the bitmap @new_pds.
*
* The function will only allocate the pages within the range for a give page
* directory pointer. In other words, if @start + @length straddles a virtually
* addressed PDP boundary (512GB for 4k pages), there will be more allocations
* required by the caller, This is not currently possible, and the BUG in the
* code will prevent it.
*
* Return: 0 if success; negative error code otherwise.
*/
static int
gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length,
unsigned long *new_pds)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_page_directory *pd;
uint32_t pdpe;
uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
WARN_ON(!bitmap_empty(new_pds, pdpes));
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
if (test_bit(pdpe, pdp->used_pdpes))
continue;
pd = alloc_pd(dev_priv);
if (IS_ERR(pd))
goto unwind_out;
gen8_initialize_pd(vm, pd);
pdp->page_directory[pdpe] = pd;
__set_bit(pdpe, new_pds);
trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
}
return 0;
unwind_out:
for_each_set_bit(pdpe, new_pds, pdpes)
free_pd(dev_priv, pdp->page_directory[pdpe]);
return -ENOMEM;
}
/**
* gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
* @vm: Master vm structure.
* @pml4: Page map level 4 for this address range.
* @start: Starting virtual address to begin allocations.
* @length: Size of the allocations.
* @new_pdps: Bitmap set by function with new allocations. Likely used by the
* caller to free on error.
*
* Allocate the required number of page directory pointers. Extremely similar to
* gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
* The main difference is here we are limited by the pml4 boundary (instead of
* the page directory pointer).
*
* Return: 0 if success; negative error code otherwise.
*/
static int
gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
struct i915_pml4 *pml4,
uint64_t start,
uint64_t length,
unsigned long *new_pdps)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_page_directory_pointer *pdp;
uint32_t pml4e;
WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (!test_bit(pml4e, pml4->used_pml4es)) {
pdp = alloc_pdp(dev_priv);
if (IS_ERR(pdp))
goto unwind_out;
gen8_initialize_pdp(vm, pdp);
pml4->pdps[pml4e] = pdp;
__set_bit(pml4e, new_pdps);
trace_i915_page_directory_pointer_entry_alloc(vm,
pml4e,
start,
GEN8_PML4E_SHIFT);
}
}
return 0;
unwind_out:
for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
free_pdp(dev_priv, pml4->pdps[pml4e]);
return -ENOMEM;
}
static void
free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
{
kfree(new_pts);
kfree(new_pds);
}
/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
* of these are based on the number of PDPEs in the system.
*/
static
int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
unsigned long **new_pts,
uint32_t pdpes)
{
unsigned long *pds;
unsigned long *pts;
pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
if (!pds)
return -ENOMEM;
pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
GFP_TEMPORARY);
if (!pts)
goto err_out;
*new_pds = pds;
*new_pts = pts;
return 0;
err_out:
free_gen8_temp_bitmaps(pds, pts);
return -ENOMEM;
}
static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned long *new_page_dirs, *new_page_tables;
struct drm_i915_private *dev_priv = vm->i915;
struct i915_page_directory *pd;
const uint64_t orig_start = start;
const uint64_t orig_length = length;
uint32_t pdpe;
uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
int ret;
ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
if (ret)
return ret;
/* Do the allocations first so we can easily bail out */
ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
new_page_dirs);
if (ret) {
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
return ret;
}
/* For every page directory referenced, allocate page tables */
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
if (ret)
goto err_out;
}
start = orig_start;
length = orig_length;
/* Allocations have completed successfully, so set the bitmaps, and do
* the mappings. */
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
gen8_pde_t *const page_directory = kmap_px(pd);
struct i915_page_table *pt;
uint64_t pd_len = length;
uint64_t pd_start = start;
uint32_t pde;
/* Every pd should be allocated, we just did that above. */
WARN_ON(!pd);
gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
/* Same reasoning as pd */
WARN_ON(!pt);
WARN_ON(!pd_len);
WARN_ON(!gen8_pte_count(pd_start, pd_len));
/* Set our used ptes within the page table */
bitmap_set(pt->used_ptes,
gen8_pte_index(pd_start),
gen8_pte_count(pd_start, pd_len));
/* Our pde is now pointing to the pagetable, pt */
__set_bit(pde, pd->used_pdes);
/* Map the PDE to the page table */
page_directory[pde] = gen8_pde_encode(px_dma(pt),
I915_CACHE_LLC);
trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
gen8_pte_index(start),
gen8_pte_count(start, length),
GEN8_PTES);
/* NB: We haven't yet mapped ptes to pages. At this
* point we're still relying on insert_entries() */
}
kunmap_px(ppgtt, page_directory);
__set_bit(pdpe, pdp->used_pdpes);
gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
}
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
mark_tlbs_dirty(ppgtt);
return 0;
err_out:
while (pdpe--) {
unsigned long temp;
for_each_set_bit(temp, new_page_tables + pdpe *
BITS_TO_LONGS(I915_PDES), I915_PDES)
free_pt(dev_priv,
pdp->page_directory[pdpe]->page_table[temp]);
}
for_each_set_bit(pdpe, new_page_dirs, pdpes)
free_pd(dev_priv, pdp->page_directory[pdpe]);
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
mark_tlbs_dirty(ppgtt);
return ret;
}
static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
struct i915_pml4 *pml4,
uint64_t start,
uint64_t length)
{
DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory_pointer *pdp;
uint64_t pml4e;
int ret = 0;
/* Do the pml4 allocations first, so we don't need to track the newly
* allocated tables below the pdp */
bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
/* The pagedirectory and pagetable allocations are done in the shared 3
* and 4 level code. Just allocate the pdps.
*/
ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
new_pdps);
if (ret)
return ret;
WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
"The allocation has spanned more than 512GB. "
"It is highly likely this is incorrect.");
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
WARN_ON(!pdp);
ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
if (ret)
goto err_out;
gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
}
bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
GEN8_PML4ES_PER_PML4);
return 0;
err_out:
for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]);
return ret;
}
static int gen8_alloc_va_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (USES_FULL_48BIT_PPGTT(vm->i915))
return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
else
return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
}
static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
uint64_t start, uint64_t length,
gen8_pte_t scratch_pte,
struct seq_file *m)
{
struct i915_page_directory *pd;
uint32_t pdpe;
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
struct i915_page_table *pt;
uint64_t pd_len = length;
uint64_t pd_start = start;
uint32_t pde;
if (!test_bit(pdpe, pdp->used_pdpes))
continue;
seq_printf(m, "\tPDPE #%d\n", pdpe);
gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
uint32_t pte;
gen8_pte_t *pt_vaddr;
if (!test_bit(pde, pd->used_pdes))
continue;
pt_vaddr = kmap_px(pt);
for (pte = 0; pte < GEN8_PTES; pte += 4) {
uint64_t va =
(pdpe << GEN8_PDPE_SHIFT) |
(pde << GEN8_PDE_SHIFT) |
(pte << GEN8_PTE_SHIFT);
int i;
bool found = false;
for (i = 0; i < 4; i++)
if (pt_vaddr[pte + i] != scratch_pte)
found = true;
if (!found)
continue;
seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
for (i = 0; i < 4; i++) {
if (pt_vaddr[pte + i] != scratch_pte)
seq_printf(m, " %llx", pt_vaddr[pte + i]);
else
seq_puts(m, " SCRATCH ");
}
seq_puts(m, "\n");
}
/* don't use kunmap_px, it could trigger
* an unnecessary flush.
*/
kunmap_atomic(pt_vaddr);
}
}
}
static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
struct i915_address_space *vm = &ppgtt->base;
uint64_t start = ppgtt->base.start;
uint64_t length = ppgtt->base.total;
gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
} else {
uint64_t pml4e;
struct i915_pml4 *pml4 = &ppgtt->pml4;
struct i915_page_directory_pointer *pdp;
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (!test_bit(pml4e, pml4->used_pml4es))
continue;
seq_printf(m, " PML4E #%llu\n", pml4e);
gen8_dump_pdp(pdp, start, length, scratch_pte, m);
}
}
}
static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
{
unsigned long *new_page_dirs, *new_page_tables;
uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
int ret;
/* We allocate temp bitmap for page tables for no gain
* but as this is for init only, lets keep the things simple
*/
ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
if (ret)
return ret;
/* Allocate for all pdps regardless of how the ppgtt
* was defined.
*/
ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
0, 1ULL << 32,
new_page_dirs);
if (!ret)
*ppgtt->pdp.used_pdpes = *new_page_dirs;
free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
return ret;
}
/*
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
* with a net effect resembling a 2-level page table in normal x86 terms. Each
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
* space.
*
*/
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = ppgtt->base.i915;
int ret;
ret = gen8_init_scratch(&ppgtt->base);
if (ret)
return ret;
ppgtt->base.start = 0;
ppgtt->base.cleanup = gen8_ppgtt_cleanup;
ppgtt->base.allocate_va_range = gen8_alloc_va_range;
ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
ppgtt->base.clear_range = gen8_ppgtt_clear_range;
ppgtt->base.unbind_vma = ppgtt_unbind_vma;
ppgtt->base.bind_vma = ppgtt_bind_vma;
ppgtt->debug_dump = gen8_dump_ppgtt;
if (USES_FULL_48BIT_PPGTT(dev_priv)) {
ret = setup_px(dev_priv, &ppgtt->pml4);
if (ret)
goto free_scratch;
gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
ppgtt->base.total = 1ULL << 48;
ppgtt->switch_mm = gen8_48b_mm_switch;
} else {
ret = __pdp_init(dev_priv, &ppgtt->pdp);
if (ret)
goto free_scratch;
ppgtt->base.total = 1ULL << 32;
ppgtt->switch_mm = gen8_legacy_mm_switch;
trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
0, 0,
GEN8_PML4E_SHIFT);
if (intel_vgpu_active(dev_priv)) {
ret = gen8_preallocate_top_level_pdps(ppgtt);
if (ret)
goto free_scratch;
}
}
if (intel_vgpu_active(dev_priv))
gen8_ppgtt_notify_vgt(ppgtt, true);
return 0;
free_scratch:
gen8_free_scratch(&ppgtt->base);
return ret;
}
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
struct i915_address_space *vm = &ppgtt->base;
struct i915_page_table *unused;
gen6_pte_t scratch_pte;
uint32_t pd_entry;
uint32_t pte, pde;
uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
u32 expected;
gen6_pte_t *pt_vaddr;
const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
pd_entry = readl(ppgtt->pd_addr + pde);
expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
if (pd_entry != expected)
seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
pde,
pd_entry,
expected);
seq_printf(m, "\tPDE: %x\n", pd_entry);
pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
for (pte = 0; pte < GEN6_PTES; pte+=4) {
unsigned long va =
(pde * PAGE_SIZE * GEN6_PTES) +
(pte * PAGE_SIZE);
int i;
bool found = false;
for (i = 0; i < 4; i++)
if (pt_vaddr[pte + i] != scratch_pte)
found = true;
if (!found)
continue;
seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
for (i = 0; i < 4; i++) {
if (pt_vaddr[pte + i] != scratch_pte)
seq_printf(m, " %08x", pt_vaddr[pte + i]);
else
seq_puts(m, " SCRATCH ");
}
seq_puts(m, "\n");
}
kunmap_px(ppgtt, pt_vaddr);
}
}
/* Write pde (index) from the page directory @pd to the page table @pt */
static void gen6_write_pde(struct i915_page_directory *pd,
const int pde, struct i915_page_table *pt)
{
/* Caller needs to make sure the write completes if necessary */
struct i915_hw_ppgtt *ppgtt =
container_of(pd, struct i915_hw_ppgtt, pd);
u32 pd_entry;
pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
pd_entry |= GEN6_PDE_VALID;
writel(pd_entry, ppgtt->pd_addr + pde);
}
/* Write all the page tables found in the ppgtt structure to incrementing page
* directories. */
static void gen6_write_page_range(struct drm_i915_private *dev_priv,
struct i915_page_directory *pd,
uint32_t start, uint32_t length)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_page_table *pt;
uint32_t pde;
gen6_for_each_pde(pt, pd, start, length, pde)
gen6_write_pde(pd, pde, pt);
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(ggtt->gsm);
}
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
{
BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
return (ppgtt->pd.base.ggtt_offset / 64) << 16;
}
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
if (ret)
return ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
}
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
struct intel_engine_cs *engine = req->engine;
int ret;
/* NB: TLBs must be flushed and invalidated before a switch */
ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
if (ret)
return ret;
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
intel_ring_emit(ring, PP_DIR_DCLV_2G);
intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
intel_ring_emit(ring, get_pd_offset(ppgtt));
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
/* XXX: RCS is the only one to auto invalidate the TLBs? */
if (engine->id != RCS) {
ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
if (ret)
return ret;
}
return 0;
}
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = req->i915;
I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
return 0;
}
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, dev_priv, id) {
u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
GEN8_GFX_PPGTT_48B : 0;
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
}
}
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
uint32_t ecochk, ecobits;
enum intel_engine_id id;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
ecochk = I915_READ(GAM_ECOCHK);
if (IS_HASWELL(dev_priv)) {
ecochk |= ECOCHK_PPGTT_WB_HSW;
} else {
ecochk |= ECOCHK_PPGTT_LLC_IVB;
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
}
I915_WRITE(GAM_ECOCHK, ecochk);
for_each_engine(engine, dev_priv, id) {
/* GFX_MODE is per-ring on gen7+ */
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
{
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
gen6_pte_t *pt_vaddr, scratch_pte;
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned first_pte = first_entry % GEN6_PTES;
unsigned last_pte, i;
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
while (num_entries) {
last_pte = first_pte + num_entries;
if (last_pte > GEN6_PTES)
last_pte = GEN6_PTES;
pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
for (i = first_pte; i < last_pte; i++)
pt_vaddr[i] = scratch_pte;
kunmap_px(ppgtt, pt_vaddr);
num_entries -= last_pte - first_pte;
first_pte = 0;
act_pt++;
}
}
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 flags)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned first_entry = start >> PAGE_SHIFT;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned act_pte = first_entry % GEN6_PTES;
gen6_pte_t *pt_vaddr = NULL;
struct sgt_iter sgt_iter;
dma_addr_t addr;
for_each_sgt_dma(addr, sgt_iter, pages) {
if (pt_vaddr == NULL)
pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
pt_vaddr[act_pte] =
vm->pte_encode(addr, cache_level, flags);
if (++act_pte == GEN6_PTES) {
kunmap_px(ppgtt, pt_vaddr);
pt_vaddr = NULL;
act_pt++;
act_pte = 0;
}
}
if (pt_vaddr)
kunmap_px(ppgtt, pt_vaddr);
}
static int gen6_alloc_va_range(struct i915_address_space *vm,
uint64_t start_in, uint64_t length_in)
{
DECLARE_BITMAP(new_page_tables, I915_PDES);
struct drm_i915_private *dev_priv = vm->i915;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_table *pt;
uint32_t start, length, start_save, length_save;
uint32_t pde;
int ret;
start = start_save = start_in;
length = length_save = length_in;
bitmap_zero(new_page_tables, I915_PDES);
/* The allocation is done in two stages so that we can bail out with
* minimal amount of pain. The first stage finds new page tables that
* need allocation. The second stage marks use ptes within the page
* tables.
*/
gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
if (pt != vm->scratch_pt) {
WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
continue;
}
/* We've already allocated a page table */
WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
pt = alloc_pt(dev_priv);
if (IS_ERR(pt)) {
ret = PTR_ERR(pt);
goto unwind_out;
}
gen6_initialize_pt(vm, pt);
ppgtt->pd.page_table[pde] = pt;
__set_bit(pde, new_page_tables);
trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
}
start = start_save;
length = length_save;
gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
bitmap_zero(tmp_bitmap, GEN6_PTES);
bitmap_set(tmp_bitmap, gen6_pte_index(start),
gen6_pte_count(start, length));
if (__test_and_clear_bit(pde, new_page_tables))
gen6_write_pde(&ppgtt->pd, pde, pt);
trace_i915_page_table_entry_map(vm, pde, pt,
gen6_pte_index(start),
gen6_pte_count(start, length),
GEN6_PTES);
bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
GEN6_PTES);
}
WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
/* Make sure write is complete before other code can use this page
* table. Also require for WC mapped PTEs */
readl(ggtt->gsm);
mark_tlbs_dirty(ppgtt);
return 0;
unwind_out:
for_each_set_bit(pde, new_page_tables, I915_PDES) {
struct i915_page_table *pt = ppgtt->pd.page_table[pde];
ppgtt->pd.page_table[pde] = vm->scratch_pt;
free_pt(dev_priv, pt);
}
mark_tlbs_dirty(ppgtt);
return ret;
}
static int gen6_init_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
int ret;
ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
if (ret)
return ret;
vm->scratch_pt = alloc_pt(dev_priv);
if (IS_ERR(vm->scratch_pt)) {
cleanup_scratch_page(dev_priv, &vm->scratch_page);
return PTR_ERR(vm->scratch_pt);
}
gen6_initialize_pt(vm, vm->scratch_pt);
return 0;
}
static void gen6_free_scratch(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
free_pt(dev_priv, vm->scratch_pt);
cleanup_scratch_page(dev_priv, &vm->scratch_page);
}
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_page_directory *pd = &ppgtt->pd;
struct drm_i915_private *dev_priv = vm->i915;
struct i915_page_table *pt;
uint32_t pde;
drm_mm_remove_node(&ppgtt->node);
gen6_for_all_pdes(pt, pd, pde)
if (pt != vm->scratch_pt)
free_pt(dev_priv, pt);
gen6_free_scratch(vm);
}
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
{
struct i915_address_space *vm = &ppgtt->base;
struct drm_i915_private *dev_priv = ppgtt->base.i915;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
bool retried = false;
int ret;
/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
* allocator works in address space sizes, so it's multiplied by page
* size. We allocate at the top of the GTT to avoid fragmentation.
*/
BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
ret = gen6_init_scratch(vm);
if (ret)
return ret;
alloc:
ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm, &ppgtt->node,
GEN6_PD_SIZE, GEN6_PD_ALIGN,
I915_COLOR_UNEVICTABLE,
0, ggtt->base.total,
DRM_MM_TOPDOWN);
if (ret == -ENOSPC && !retried) {
ret = i915_gem_evict_something(&ggtt->base,
GEN6_PD_SIZE, GEN6_PD_ALIGN,
I915_COLOR_UNEVICTABLE,
0, ggtt->base.total,
0);
if (ret)
goto err_out;
retried = true;
goto alloc;
}
if (ret)
goto err_out;
if (ppgtt->node.start < ggtt->mappable_end)
DRM_DEBUG("Forced to use aperture for PDEs\n");
return 0;
err_out:
gen6_free_scratch(vm);
return ret;
}
static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
{
return gen6_ppgtt_allocate_page_directories(ppgtt);
}
static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
uint64_t start, uint64_t length)
{
struct i915_page_table *unused;
uint32_t pde;
gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
}
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
{
struct drm_i915_private *dev_priv = ppgtt->base.i915;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
ppgtt->base.pte_encode = ggtt->base.pte_encode;
if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
ppgtt->switch_mm = gen6_mm_switch;
else if (IS_HASWELL(dev_priv))
ppgtt->switch_mm = hsw_mm_switch;
else if (IS_GEN7(dev_priv))
ppgtt->switch_mm = gen7_mm_switch;
else
BUG();
ret = gen6_ppgtt_alloc(ppgtt);
if (ret)
return ret;
ppgtt->base.allocate_va_range = gen6_alloc_va_range;
ppgtt->base.clear_range = gen6_ppgtt_clear_range;
ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
ppgtt->base.unbind_vma = ppgtt_unbind_vma;
ppgtt->base.bind_vma = ppgtt_bind_vma;
ppgtt->base.cleanup = gen6_ppgtt_cleanup;
ppgtt->base.start = 0;
ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
ppgtt->debug_dump = gen6_dump_ppgtt;
ppgtt->pd.base.ggtt_offset =
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
ppgtt->node.size >> 20,
ppgtt->node.start / PAGE_SIZE);
DRM_DEBUG("Adding PPGTT at offset %x\n",
ppgtt->pd.base.ggtt_offset << 10);
return 0;
}
static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_private *dev_priv)
{
ppgtt->base.i915 = dev_priv;
if (INTEL_INFO(dev_priv)->gen < 8)
return gen6_ppgtt_init(ppgtt);
else
return gen8_ppgtt_init(ppgtt);
}
static void i915_address_space_init(struct i915_address_space *vm,
struct drm_i915_private *dev_priv,
const char *name)
{
i915_gem_timeline_init(dev_priv, &vm->timeline, name);
drm_mm_init(&vm->mm, vm->start, vm->total);
INIT_LIST_HEAD(&vm->active_list);
INIT_LIST_HEAD(&vm->inactive_list);
INIT_LIST_HEAD(&vm->unbound_list);
list_add_tail(&vm->global_link, &dev_priv->vm_list);
}
static void i915_address_space_fini(struct i915_address_space *vm)
{
i915_gem_timeline_fini(&vm->timeline);
drm_mm_takedown(&vm->mm);
list_del(&vm->global_link);
}
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
{
/* This function is for gtt related workarounds. This function is
* called on driver load and after a GPU reset, so you can place
* workarounds here even if they get overwritten by GPU reset.
*/
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
if (IS_BROADWELL(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
else if (IS_CHERRYVIEW(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
else if (IS_SKYLAKE(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
else if (IS_BROXTON(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
}
static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_private *dev_priv,
struct drm_i915_file_private *file_priv,
const char *name)
{
int ret;
ret = __hw_ppgtt_init(ppgtt, dev_priv);
if (ret == 0) {
kref_init(&ppgtt->ref);
i915_address_space_init(&ppgtt->base, dev_priv, name);
ppgtt->base.file = file_priv;
}
return ret;
}
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
{
gtt_write_workarounds(dev_priv);
/* In the case of execlists, PPGTT is enabled by the context descriptor
* and the PDPs are contained within the context itself. We don't
* need to do anything here. */
if (i915.enable_execlists)
return 0;
if (!USES_PPGTT(dev_priv))
return 0;
if (IS_GEN6(dev_priv))
gen6_ppgtt_enable(dev_priv);
else if (IS_GEN7(dev_priv))
gen7_ppgtt_enable(dev_priv);
else if (INTEL_GEN(dev_priv) >= 8)
gen8_ppgtt_enable(dev_priv);
else
MISSING_CASE(INTEL_GEN(dev_priv));
return 0;
}
struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_i915_private *dev_priv,
struct drm_i915_file_private *fpriv,
const char *name)
{
struct i915_hw_ppgtt *ppgtt;
int ret;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
if (ret) {
kfree(ppgtt);
return ERR_PTR(ret);
}
trace_i915_ppgtt_create(&ppgtt->base);
return ppgtt;
}
void i915_ppgtt_release(struct kref *kref)
{
struct i915_hw_ppgtt *ppgtt =
container_of(kref, struct i915_hw_ppgtt, ref);
trace_i915_ppgtt_release(&ppgtt->base);
/* vmas should already be unbound and destroyed */
WARN_ON(!list_empty(&ppgtt->base.active_list));
WARN_ON(!list_empty(&ppgtt->base.inactive_list));
WARN_ON(!list_empty(&ppgtt->base.unbound_list));
i915_address_space_fini(&ppgtt->base);
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
}
/* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
{
#ifdef CONFIG_INTEL_IOMMU
/* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (INTEL_INFO(dev_priv)->gen < 6)
return;
for_each_engine(engine, dev_priv, id) {
u32 fault_reg;
fault_reg = I915_READ(RING_FAULT_REG(engine));
if (fault_reg & RING_FAULT_VALID) {
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %d\n"
"\tType: %d\n",
fault_reg & PAGE_MASK,
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
RING_FAULT_SRCID(fault_reg),
RING_FAULT_FAULT_TYPE(fault_reg));
I915_WRITE(RING_FAULT_REG(engine),
fault_reg & ~RING_FAULT_VALID);
}
}
/* Engine specific init may not have been done till this point. */
if (dev_priv->engine[RCS])
POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}
static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
{
if (INTEL_INFO(dev_priv)->gen < 6) {
intel_gtt_chipset_flush();
} else {
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
}
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
/* Don't bother messing with faults pre GEN6 as we have little
* documentation supporting that it's a good idea.
*/
if (INTEL_GEN(dev_priv) < 6)
return;
i915_check_and_clear_faults(dev_priv);
ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
i915_ggtt_flush(dev_priv);
}
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
if (dma_map_sg(&obj->base.dev->pdev->dev,
pages->sgl, pages->nents,
PCI_DMA_BIDIRECTIONAL))
return 0;
return -ENOSPC;
}
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
{
writeq(pte, addr);
}
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
uint64_t offset,
enum i915_cache_level level,
u32 unused)
{
struct drm_i915_private *dev_priv = vm->i915;
gen8_pte_t __iomem *pte =
(gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
(offset >> PAGE_SHIFT);
gen8_set_pte(pte, gen8_pte_encode(addr, level));
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level, u32 unused)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
struct sgt_iter sgt_iter;
gen8_pte_t __iomem *gtt_entries;
gen8_pte_t gtt_entry;
dma_addr_t addr;
int i = 0;
gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
for_each_sgt_dma(addr, sgt_iter, st) {
gtt_entry = gen8_pte_encode(addr, level);
gen8_set_pte(&gtt_entries[i++], gtt_entry);
}
/*
* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
struct insert_entries {
struct i915_address_space *vm;
struct sg_table *st;
uint64_t start;
enum i915_cache_level level;
u32 flags;
};
static int gen8_ggtt_insert_entries__cb(void *_arg)
{
struct insert_entries *arg = _arg;
gen8_ggtt_insert_entries(arg->vm, arg->st,
arg->start, arg->level, arg->flags);
return 0;
}
static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level,
u32 flags)
{
struct insert_entries arg = { vm, st, start, level, flags };
stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
}
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
uint64_t offset,
enum i915_cache_level level,
u32 flags)
{
struct drm_i915_private *dev_priv = vm->i915;
gen6_pte_t __iomem *pte =
(gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
(offset >> PAGE_SHIFT);
iowrite32(vm->pte_encode(addr, level, flags), pte);
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
/*
* Binds an object into the global gtt with the specified cache level. The object
* will be accessible to the GPU via commands whose operands reference offsets
* within the global GTT as well as accessible by the GPU through the GMADR
* mapped BAR (dev_priv->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *st,
uint64_t start,
enum i915_cache_level level, u32 flags)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
struct sgt_iter sgt_iter;
gen6_pte_t __iomem *gtt_entries;
gen6_pte_t gtt_entry;
dma_addr_t addr;
int i = 0;
gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
for_each_sgt_dma(addr, sgt_iter, st) {
gtt_entry = vm->pte_encode(addr, level, flags);
iowrite32(gtt_entry, &gtt_entries[i++]);
}
/* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
static void nop_clear_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
}
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start, uint64_t length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen8_pte_t scratch_pte, __iomem *gtt_base =
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC);
for (i = 0; i < num_entries; i++)
gen8_set_pte(&gtt_base[i], scratch_pte);
readl(gtt_base);
}
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned first_entry = start >> PAGE_SHIFT;
unsigned num_entries = length >> PAGE_SHIFT;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC, 0);
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
readl(gtt_base);
}
static void i915_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
uint64_t offset,
enum i915_cache_level cache_level,
u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
struct sg_table *pages,
uint64_t start,
enum i915_cache_level cache_level, u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
}
static void i915_ggtt_clear_range(struct i915_address_space *vm,
uint64_t start,
uint64_t length)
{
intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
}
static int ggtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_private *i915 = vma->vm->i915;
struct drm_i915_gem_object *obj = vma->obj;
u32 pte_flags = 0;
int ret;
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
/* Currently applicable only to VLV */
if (obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
intel_runtime_pm_get(i915);
vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
cache_level, pte_flags);
intel_runtime_pm_put(i915);
/*
* Without aliasing PPGTT there's no difference between
* GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
* upgrade to both bound if we bind either to avoid double-binding.
*/
vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
return 0;
}
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_private *i915 = vma->vm->i915;
u32 pte_flags;
int ret;
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
/* Currently applicable only to VLV */
pte_flags = 0;
if (vma->obj->gt_ro)
pte_flags |= PTE_READ_ONLY;
if (flags & I915_VMA_GLOBAL_BIND) {
intel_runtime_pm_get(i915);
vma->vm->insert_entries(vma->vm,
vma->pages, vma->node.start,
cache_level, pte_flags);
intel_runtime_pm_put(i915);
}
if (flags & I915_VMA_LOCAL_BIND) {
struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
appgtt->base.insert_entries(&appgtt->base,
vma->pages, vma->node.start,
cache_level, pte_flags);
}
return 0;
}
static void ggtt_unbind_vma(struct i915_vma *vma)
{
struct drm_i915_private *i915 = vma->vm->i915;
struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
const u64 size = min(vma->size, vma->node.size);
if (vma->flags & I915_VMA_GLOBAL_BIND) {
intel_runtime_pm_get(i915);
vma->vm->clear_range(vma->vm,
vma->node.start, size);
intel_runtime_pm_put(i915);
}
if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
appgtt->base.clear_range(&appgtt->base,
vma->node.start, size);
}
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct device *kdev = &dev_priv->drm.pdev->dev;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
if (unlikely(ggtt->do_idle_maps)) {
if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
/* Wait a bit, in hopes it avoids the hang */
udelay(10);
}
}
dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
}
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (node->color != color)
*start += 4096;
node = list_next_entry(node, node_list);
if (node->allocated && node->color != color)
*end -= 4096;
}
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
{
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
struct i915_ggtt *ggtt = &dev_priv->ggtt;
unsigned long hole_start, hole_end;
struct i915_hw_ppgtt *ppgtt;
struct drm_mm_node *entry;
int ret;
ret = intel_vgt_balloon(dev_priv);
if (ret)
return ret;
/* Reserve a mappable slot for our lockless error capture */
ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
&ggtt->error_capture,
4096, 0,
I915_COLOR_UNEVICTABLE,
0, ggtt->mappable_end,
0, 0);
if (ret)
return ret;
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
ggtt->base.clear_range(&ggtt->base, hole_start,
hole_end - hole_start);
}
/* And finally clear the reserved guard page */
ggtt->base.clear_range(&ggtt->base,
ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt) {
ret = -ENOMEM;
goto err;
}
ret = __hw_ppgtt_init(ppgtt, dev_priv);
if (ret)
goto err_ppgtt;
if (ppgtt->base.allocate_va_range) {
ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
ppgtt->base.total);
if (ret)
goto err_ppgtt_cleanup;
}
ppgtt->base.clear_range(&ppgtt->base,
ppgtt->base.start,
ppgtt->base.total);
dev_priv->mm.aliasing_ppgtt = ppgtt;
WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
ggtt->base.bind_vma = aliasing_gtt_bind_vma;
}
return 0;
err_ppgtt_cleanup:
ppgtt->base.cleanup(&ppgtt->base);
err_ppgtt:
kfree(ppgtt);
err:
drm_mm_remove_node(&ggtt->error_capture);
return ret;
}
/**
* i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
* @dev_priv: i915 device
*/
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
ppgtt->base.cleanup(&ppgtt->base);
kfree(ppgtt);
}
i915_gem_cleanup_stolen(&dev_priv->drm);
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
if (drm_mm_initialized(&ggtt->base.mm)) {
intel_vgt_deballoon(dev_priv);
mutex_lock(&dev_priv->drm.struct_mutex);
i915_address_space_fini(&ggtt->base);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
ggtt->base.cleanup(&ggtt->base);
arch_phys_wc_del(ggtt->mtrr);
io_mapping_fini(&ggtt->mappable);
}
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
if (bdw_gmch_ctl)
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
#ifdef CONFIG_X86_32
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
if (bdw_gmch_ctl > 4)
bdw_gmch_ctl = 4;
#endif
return bdw_gmch_ctl << 20;
}
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
if (gmch_ctrl)
return 1 << (20 + gmch_ctrl);
return 0;
}
static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
return snb_gmch_ctl << 25; /* 32 MB units */
}
static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
return bdw_gmch_ctl << 25; /* 32 MB units */
}
static size_t chv_get_stolen_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GMS_MASK;
/*
* 0x0 to 0x10: 32MB increments starting at 0MB
* 0x11 to 0x16: 4MB increments starting at 8MB
* 0x17 to 0x1d: 4MB increments start at 36MB
*/
if (gmch_ctrl < 0x11)
return gmch_ctrl << 25;
else if (gmch_ctrl < 0x17)
return (gmch_ctrl - 0x11 + 2) << 22;
else
return (gmch_ctrl - 0x17 + 9) << 22;
}
static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
{
gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
if (gen9_gmch_ctl < 0xf0)
return gen9_gmch_ctl << 25; /* 32 MB units */
else
/* 4MB increments starting at 0xf0 for 4MB */
return (gen9_gmch_ctl - 0xf0 + 1) << 22;
}
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
{
struct drm_i915_private *dev_priv = ggtt->base.i915;
struct pci_dev *pdev = dev_priv->drm.pdev;
phys_addr_t phys_addr;
int ret;
/* For Modern GENs the PTEs and register space are split in the BAR */
phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
/*
* On BXT writes larger than 64 bit to the GTT pagetable range will be
* dropped. For WC mappings in general we have 64 byte burst writes
* when the WC buffer is flushed, so we can't use it, but have to
* resort to an uncached mapping. The WC issue is easily caught by the
* readback check when writing GTT PTE entries.
*/
if (IS_GEN9_LP(dev_priv))
ggtt->gsm = ioremap_nocache(phys_addr, size);
else
ggtt->gsm = ioremap_wc(phys_addr, size);
if (!ggtt->gsm) {
DRM_ERROR("Failed to map the ggtt page table\n");
return -ENOMEM;
}
ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
if (ret) {
DRM_ERROR("Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(ggtt->gsm);
return ret;
}
return 0;
}
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases. */
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
{
uint64_t pat;
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
if (!USES_PPGTT(dev_priv))
/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* So let's disable cache for GGTT to avoid screen corruptions.
* MOCS still can be used though.
* - System agent ggtt writes (i.e. cpu gtt mmaps) already work
* before this patch, i.e. the same uncached + snooping access
* like on gen6/7 seems to be in effect.
* - So this just fixes blitter/render access. Again it looks
* like it's not just uncached access, but uncached + snooping.
* So we can still hold onto all our assumptions wrt cpu
* clflushing on LLC machines.
*/
pat = GEN8_PPAT(0, GEN8_PPAT_UC);
/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
* write would work. */
I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
}
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
{
uint64_t pat;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, 0) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
iounmap(ggtt->gsm);
cleanup_scratch_page(vm->i915, &vm->scratch_page);
}
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = ggtt->base.i915;
struct pci_dev *pdev = dev_priv->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
/* TODO: We're not aware of mappable constraints on gen8 yet */
ggtt->mappable_base = pci_resource_start(pdev, 2);
ggtt->mappable_end = pci_resource_len(pdev, 2);
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (INTEL_GEN(dev_priv) >= 9) {
ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
size = gen8_get_total_gtt_size(snb_gmch_ctl);
} else if (IS_CHERRYVIEW(dev_priv)) {
ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
size = chv_get_total_gtt_size(snb_gmch_ctl);
} else {
ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
size = gen8_get_total_gtt_size(snb_gmch_ctl);
}
ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
ggtt->base.cleanup = gen6_gmch_remove;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
ggtt->base.insert_page = gen8_ggtt_insert_page;
ggtt->base.clear_range = nop_clear_range;
if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
ggtt->base.clear_range = gen8_ggtt_clear_range;
ggtt->base.insert_entries = gen8_ggtt_insert_entries;
if (IS_CHERRYVIEW(dev_priv))
ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
return ggtt_probe_common(ggtt, size);
}
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = ggtt->base.i915;
struct pci_dev *pdev = dev_priv->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
ggtt->mappable_base = pci_resource_start(pdev, 2);
ggtt->mappable_end = pci_resource_len(pdev, 2);
/* 64/512MB is the current min/max we actually know of, but this is just
* a coarse sanity check.
*/
if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
return -ENXIO;
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
size = gen6_get_total_gtt_size(snb_gmch_ctl);
ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
ggtt->base.clear_range = gen6_ggtt_clear_range;
ggtt->base.insert_page = gen6_ggtt_insert_page;
ggtt->base.insert_entries = gen6_ggtt_insert_entries;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
ggtt->base.cleanup = gen6_gmch_remove;
if (HAS_EDRAM(dev_priv))
ggtt->base.pte_encode = iris_pte_encode;
else if (IS_HASWELL(dev_priv))
ggtt->base.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(dev_priv))
ggtt->base.pte_encode = byt_pte_encode;
else if (INTEL_GEN(dev_priv) >= 7)
ggtt->base.pte_encode = ivb_pte_encode;
else
ggtt->base.pte_encode = snb_pte_encode;
return ggtt_probe_common(ggtt, size);
}
static void i915_gmch_remove(struct i915_address_space *vm)
{
intel_gmch_remove();
}
static int i915_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = ggtt->base.i915;
int ret;
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
if (!ret) {
DRM_ERROR("failed to set up gmch\n");
return -EIO;
}
intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
&ggtt->mappable_base, &ggtt->mappable_end);
ggtt->do_idle_maps = needs_idle_maps(dev_priv);
ggtt->base.insert_page = i915_ggtt_insert_page;
ggtt->base.insert_entries = i915_ggtt_insert_entries;
ggtt->base.clear_range = i915_ggtt_clear_range;
ggtt->base.bind_vma = ggtt_bind_vma;
ggtt->base.unbind_vma = ggtt_unbind_vma;
ggtt->base.cleanup = i915_gmch_remove;
if (unlikely(ggtt->do_idle_maps))
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
return 0;
}
/**
* i915_ggtt_probe_hw - Probe GGTT hardware location
* @dev_priv: i915 device
*/
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
ggtt->base.i915 = dev_priv;
if (INTEL_GEN(dev_priv) <= 5)
ret = i915_gmch_probe(ggtt);
else if (INTEL_GEN(dev_priv) < 8)
ret = gen6_gmch_probe(ggtt);
else
ret = gen8_gmch_probe(ggtt);
if (ret)
return ret;
/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
* This is easier than doing range restriction on the fly, as we
* currently don't have any bits spare to pass in this upper
* restriction!
*/
if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
}
if ((ggtt->base.total - 1) >> 32) {
DRM_ERROR("We never expected a Global GTT with more than 32bits"
" of address space! Found %lldM!\n",
ggtt->base.total >> 20);
ggtt->base.total = 1ULL << 32;
ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
}
if (ggtt->mappable_end > ggtt->base.total) {
DRM_ERROR("mappable aperture extends past end of GGTT,"
" aperture=%llx, total=%llx\n",
ggtt->mappable_end, ggtt->base.total);
ggtt->mappable_end = ggtt->base.total;
}
/* GMADR is the PCI mmio aperture into the global GTT. */
DRM_INFO("Memory usable by graphics device = %lluM\n",
ggtt->base.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
#ifdef CONFIG_INTEL_IOMMU
if (intel_iommu_gfx_mapped)
DRM_INFO("VT-d active for gfx access\n");
#endif
return 0;
}
/**
* i915_ggtt_init_hw - Initialize GGTT hardware
* @dev_priv: i915 device
*/
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
INIT_LIST_HEAD(&dev_priv->vm_list);
/* Subtract the guard page before address space initialization to
* shrink the range used by drm_mm.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
ggtt->base.total -= PAGE_SIZE;
i915_address_space_init(&ggtt->base, dev_priv, "[global]");
ggtt->base.total += PAGE_SIZE;
if (!HAS_LLC(dev_priv))
ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
mutex_unlock(&dev_priv->drm.struct_mutex);
if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
dev_priv->ggtt.mappable_base,
dev_priv->ggtt.mappable_end)) {
ret = -EIO;
goto out_gtt_cleanup;
}
ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
/*
* Initialise stolen early so that we may reserve preallocated
* objects for the BIOS to KMS transition.
*/
ret = i915_gem_init_stolen(dev_priv);
if (ret)
goto out_gtt_cleanup;
return 0;
out_gtt_cleanup:
ggtt->base.cleanup(&ggtt->base);
return ret;
}
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
return -EIO;
return 0;
}
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct drm_i915_gem_object *obj, *on;
i915_check_and_clear_faults(dev_priv);
/* First fill our portion of the GTT with scratch pages */
ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
/* clflush objects bound into the GGTT and rebind them. */
list_for_each_entry_safe(obj, on,
&dev_priv->mm.bound_list, global_link) {
bool ggtt_bound = false;
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, obj_link) {
if (vma->vm != &ggtt->base)
continue;
if (!i915_vma_unbind(vma))
continue;
WARN_ON(i915_vma_bind(vma, obj->cache_level,
PIN_UPDATE));
ggtt_bound = true;
}
if (ggtt_bound)
WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
}
ggtt->base.closed = false;
if (INTEL_GEN(dev_priv) >= 8) {
if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
chv_setup_private_ppat(dev_priv);
else
bdw_setup_private_ppat(dev_priv);
return;
}
if (USES_PPGTT(dev_priv)) {
struct i915_address_space *vm;
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
/* TODO: Perhaps it shouldn't be gen6 specific */
struct i915_hw_ppgtt *ppgtt;
if (i915_is_ggtt(vm))
ppgtt = dev_priv->mm.aliasing_ppgtt;
else
ppgtt = i915_vm_to_ppgtt(vm);
gen6_write_page_range(dev_priv, &ppgtt->pd,
0, ppgtt->base.total);
}
}
i915_ggtt_flush(dev_priv);
}
struct i915_vma *
i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *view)
{
struct rb_node *rb;
rb = obj->vma_tree.rb_node;
while (rb) {
struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
long cmp;
cmp = i915_vma_compare(vma, vm, view);
if (cmp == 0)
return vma;
if (cmp < 0)
rb = rb->rb_right;
else
rb = rb->rb_left;
}
return NULL;
}
struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *view)
{
struct i915_vma *vma;
lockdep_assert_held(&obj->base.dev->struct_mutex);
GEM_BUG_ON(view && !i915_is_ggtt(vm));
vma = i915_gem_obj_to_vma(obj, vm, view);
if (!vma) {
vma = i915_vma_create(obj, vm, view);
GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
}
GEM_BUG_ON(i915_vma_is_closed(vma));
return vma;
}
static struct scatterlist *
rotate_pages(const dma_addr_t *in, unsigned int offset,
unsigned int width, unsigned int height,
unsigned int stride,
struct sg_table *st, struct scatterlist *sg)
{
unsigned int column, row;
unsigned int src_idx;
for (column = 0; column < width; column++) {
src_idx = stride * (height - 1) + column;
for (row = 0; row < height; row++) {
st->nents++;
/* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
sg_set_page(sg, NULL, PAGE_SIZE, 0);
sg_dma_address(sg) = in[offset + src_idx];
sg_dma_len(sg) = PAGE_SIZE;
sg = sg_next(sg);
src_idx -= stride;
}
}
return sg;
}
static struct sg_table *
intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
struct drm_i915_gem_object *obj)
{
const size_t n_pages = obj->base.size / PAGE_SIZE;
unsigned int size = intel_rotation_info_size(rot_info);
struct sgt_iter sgt_iter;
dma_addr_t dma_addr;
unsigned long i;
dma_addr_t *page_addr_list;
struct sg_table *st;
struct scatterlist *sg;
int ret = -ENOMEM;
/* Allocate a temporary list of source pages for random access. */
page_addr_list = drm_malloc_gfp(n_pages,
sizeof(dma_addr_t),
GFP_TEMPORARY);
if (!page_addr_list)
return ERR_PTR(ret);
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
/* Populate source page list from the object. */
i = 0;
for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
page_addr_list[i++] = dma_addr;
GEM_BUG_ON(i != n_pages);
st->nents = 0;
sg = st->sgl;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
rot_info->plane[i].width, rot_info->plane[i].height,
rot_info->plane[i].stride, st, sg);
}
DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
drm_free_large(page_addr_list);
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
drm_free_large(page_addr_list);
DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
return ERR_PTR(ret);
}
static struct sg_table *
intel_partial_pages(const struct i915_ggtt_view *view,
struct drm_i915_gem_object *obj)
{
struct sg_table *st;
struct scatterlist *sg, *iter;
unsigned int count = view->params.partial.size;
unsigned int offset;
int ret = -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, count, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
iter = i915_gem_object_get_sg(obj,
view->params.partial.offset,
&offset);
GEM_BUG_ON(!iter);
sg = st->sgl;
st->nents = 0;
do {
unsigned int len;
len = min(iter->length - (offset << PAGE_SHIFT),
count << PAGE_SHIFT);
sg_set_page(sg, NULL, len, 0);
sg_dma_address(sg) =
sg_dma_address(iter) + (offset << PAGE_SHIFT);
sg_dma_len(sg) = len;
st->nents++;
count -= len >> PAGE_SHIFT;
if (count == 0) {
sg_mark_end(sg);
return st;
}
sg = __sg_next(sg);
iter = __sg_next(iter);
offset = 0;
} while (1);
err_sg_alloc:
kfree(st);
err_st_alloc:
return ERR_PTR(ret);
}
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma)
{
int ret = 0;
/* The vma->pages are only valid within the lifespan of the borrowed
* obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
* must be the vma->pages. A simple rule is that vma->pages must only
* be accessed when the obj->mm.pages are pinned.
*/
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
if (vma->pages)
return 0;
if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
vma->pages = vma->obj->mm.pages;
else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
vma->pages =
intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
else
WARN_ONCE(1, "GGTT view %u not implemented!\n",
vma->ggtt_view.type);
if (!vma->pages) {
DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
vma->ggtt_view.type);
ret = -EINVAL;
} else if (IS_ERR(vma->pages)) {
ret = PTR_ERR(vma->pages);
vma->pages = NULL;
DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
vma->ggtt_view.type, ret);
}
return ret;
}