linux_dsm_epyc7002/drivers/base/power/main.c
Ulf Hansson 0a99d767a9 PM / core: Propagate wakeup_path status flag in __device_suspend_late()
Currently the wakeup_path status flag becomes propagated from a child
device to its parent device at __device_suspend(). This allows a driver
dealing with a parent device to act on the flag from its ->suspend()
callback.

However, in situations when the wakeup_path status flag needs to be set
from a ->suspend_late() callback, its value doesn't get propagated to the
parent by the PM core. Let's address this limitation, by also propagating
the flag at __device_suspend_late().

Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-01-10 13:13:57 +01:00

2126 lines
52 KiB
C

/*
* drivers/base/power/main.c - Where the driver meets power management.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
*
* This file is released under the GPLv2
*
*
* The driver model core calls device_pm_add() when a device is registered.
* This will initialize the embedded device_pm_info object in the device
* and add it to the list of power-controlled devices. sysfs entries for
* controlling device power management will also be added.
*
* A separate list is used for keeping track of power info, because the power
* domain dependencies may differ from the ancestral dependencies that the
* subsystem list maintains.
*/
#include <linux/device.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pm-trace.h>
#include <linux/pm_wakeirq.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/async.h>
#include <linux/suspend.h>
#include <trace/events/power.h>
#include <linux/cpufreq.h>
#include <linux/cpuidle.h>
#include <linux/timer.h>
#include "../base.h"
#include "power.h"
typedef int (*pm_callback_t)(struct device *);
/*
* The entries in the dpm_list list are in a depth first order, simply
* because children are guaranteed to be discovered after parents, and
* are inserted at the back of the list on discovery.
*
* Since device_pm_add() may be called with a device lock held,
* we must never try to acquire a device lock while holding
* dpm_list_mutex.
*/
LIST_HEAD(dpm_list);
static LIST_HEAD(dpm_prepared_list);
static LIST_HEAD(dpm_suspended_list);
static LIST_HEAD(dpm_late_early_list);
static LIST_HEAD(dpm_noirq_list);
struct suspend_stats suspend_stats;
static DEFINE_MUTEX(dpm_list_mtx);
static pm_message_t pm_transition;
static int async_error;
static const char *pm_verb(int event)
{
switch (event) {
case PM_EVENT_SUSPEND:
return "suspend";
case PM_EVENT_RESUME:
return "resume";
case PM_EVENT_FREEZE:
return "freeze";
case PM_EVENT_QUIESCE:
return "quiesce";
case PM_EVENT_HIBERNATE:
return "hibernate";
case PM_EVENT_THAW:
return "thaw";
case PM_EVENT_RESTORE:
return "restore";
case PM_EVENT_RECOVER:
return "recover";
default:
return "(unknown PM event)";
}
}
/**
* device_pm_sleep_init - Initialize system suspend-related device fields.
* @dev: Device object being initialized.
*/
void device_pm_sleep_init(struct device *dev)
{
dev->power.is_prepared = false;
dev->power.is_suspended = false;
dev->power.is_noirq_suspended = false;
dev->power.is_late_suspended = false;
init_completion(&dev->power.completion);
complete_all(&dev->power.completion);
dev->power.wakeup = NULL;
INIT_LIST_HEAD(&dev->power.entry);
}
/**
* device_pm_lock - Lock the list of active devices used by the PM core.
*/
void device_pm_lock(void)
{
mutex_lock(&dpm_list_mtx);
}
/**
* device_pm_unlock - Unlock the list of active devices used by the PM core.
*/
void device_pm_unlock(void)
{
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_add - Add a device to the PM core's list of active devices.
* @dev: Device to add to the list.
*/
void device_pm_add(struct device *dev)
{
pr_debug("PM: Adding info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
device_pm_check_callbacks(dev);
mutex_lock(&dpm_list_mtx);
if (dev->parent && dev->parent->power.is_prepared)
dev_warn(dev, "parent %s should not be sleeping\n",
dev_name(dev->parent));
list_add_tail(&dev->power.entry, &dpm_list);
dev->power.in_dpm_list = true;
mutex_unlock(&dpm_list_mtx);
}
/**
* device_pm_remove - Remove a device from the PM core's list of active devices.
* @dev: Device to be removed from the list.
*/
void device_pm_remove(struct device *dev)
{
pr_debug("PM: Removing info for %s:%s\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
complete_all(&dev->power.completion);
mutex_lock(&dpm_list_mtx);
list_del_init(&dev->power.entry);
dev->power.in_dpm_list = false;
mutex_unlock(&dpm_list_mtx);
device_wakeup_disable(dev);
pm_runtime_remove(dev);
device_pm_check_callbacks(dev);
}
/**
* device_pm_move_before - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come before.
*/
void device_pm_move_before(struct device *deva, struct device *devb)
{
pr_debug("PM: Moving %s:%s before %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert before devb. */
list_move_tail(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_after - Move device in the PM core's list of active devices.
* @deva: Device to move in dpm_list.
* @devb: Device @deva should come after.
*/
void device_pm_move_after(struct device *deva, struct device *devb)
{
pr_debug("PM: Moving %s:%s after %s:%s\n",
deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
/* Delete deva from dpm_list and reinsert after devb. */
list_move(&deva->power.entry, &devb->power.entry);
}
/**
* device_pm_move_last - Move device to end of the PM core's list of devices.
* @dev: Device to move in dpm_list.
*/
void device_pm_move_last(struct device *dev)
{
pr_debug("PM: Moving %s:%s to end of list\n",
dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
list_move_tail(&dev->power.entry, &dpm_list);
}
static ktime_t initcall_debug_start(struct device *dev)
{
ktime_t calltime = 0;
if (pm_print_times_enabled) {
pr_info("calling %s+ @ %i, parent: %s\n",
dev_name(dev), task_pid_nr(current),
dev->parent ? dev_name(dev->parent) : "none");
calltime = ktime_get();
}
return calltime;
}
static void initcall_debug_report(struct device *dev, ktime_t calltime,
int error, pm_message_t state,
const char *info)
{
ktime_t rettime;
s64 nsecs;
rettime = ktime_get();
nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
if (pm_print_times_enabled) {
pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
error, (unsigned long long)nsecs >> 10);
}
}
/**
* dpm_wait - Wait for a PM operation to complete.
* @dev: Device to wait for.
* @async: If unset, wait only if the device's power.async_suspend flag is set.
*/
static void dpm_wait(struct device *dev, bool async)
{
if (!dev)
return;
if (async || (pm_async_enabled && dev->power.async_suspend))
wait_for_completion(&dev->power.completion);
}
static int dpm_wait_fn(struct device *dev, void *async_ptr)
{
dpm_wait(dev, *((bool *)async_ptr));
return 0;
}
static void dpm_wait_for_children(struct device *dev, bool async)
{
device_for_each_child(dev, &async, dpm_wait_fn);
}
static void dpm_wait_for_suppliers(struct device *dev, bool async)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
/*
* If the supplier goes away right after we've checked the link to it,
* we'll wait for its completion to change the state, but that's fine,
* because the only things that will block as a result are the SRCU
* callbacks freeing the link objects for the links in the list we're
* walking.
*/
list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
if (READ_ONCE(link->status) != DL_STATE_DORMANT)
dpm_wait(link->supplier, async);
device_links_read_unlock(idx);
}
static void dpm_wait_for_superior(struct device *dev, bool async)
{
dpm_wait(dev->parent, async);
dpm_wait_for_suppliers(dev, async);
}
static void dpm_wait_for_consumers(struct device *dev, bool async)
{
struct device_link *link;
int idx;
idx = device_links_read_lock();
/*
* The status of a device link can only be changed from "dormant" by a
* probe, but that cannot happen during system suspend/resume. In
* theory it can change to "dormant" at that time, but then it is
* reasonable to wait for the target device anyway (eg. if it goes
* away, it's better to wait for it to go away completely and then
* continue instead of trying to continue in parallel with its
* unregistration).
*/
list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
if (READ_ONCE(link->status) != DL_STATE_DORMANT)
dpm_wait(link->consumer, async);
device_links_read_unlock(idx);
}
static void dpm_wait_for_subordinate(struct device *dev, bool async)
{
dpm_wait_for_children(dev, async);
dpm_wait_for_consumers(dev, async);
}
/**
* pm_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*/
static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend;
case PM_EVENT_RESUME:
return ops->resume;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze;
case PM_EVENT_HIBERNATE:
return ops->poweroff;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw;
break;
case PM_EVENT_RESTORE:
return ops->restore;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
/**
* pm_late_early_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_late;
case PM_EVENT_RESUME:
return ops->resume_early;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_late;
case PM_EVENT_HIBERNATE:
return ops->poweroff_late;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_early;
case PM_EVENT_RESTORE:
return ops->restore_early;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
/**
* pm_noirq_op - Return the PM operation appropriate for given PM event.
* @ops: PM operations to choose from.
* @state: PM transition of the system being carried out.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
{
switch (state.event) {
#ifdef CONFIG_SUSPEND
case PM_EVENT_SUSPEND:
return ops->suspend_noirq;
case PM_EVENT_RESUME:
return ops->resume_noirq;
#endif /* CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return ops->freeze_noirq;
case PM_EVENT_HIBERNATE:
return ops->poweroff_noirq;
case PM_EVENT_THAW:
case PM_EVENT_RECOVER:
return ops->thaw_noirq;
case PM_EVENT_RESTORE:
return ops->restore_noirq;
#endif /* CONFIG_HIBERNATE_CALLBACKS */
}
return NULL;
}
static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
{
dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
", may wakeup" : "");
}
static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
int error)
{
printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
dev_name(dev), pm_verb(state.event), info, error);
}
static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
const char *info)
{
ktime_t calltime;
u64 usecs64;
int usecs;
calltime = ktime_get();
usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
do_div(usecs64, NSEC_PER_USEC);
usecs = usecs64;
if (usecs == 0)
usecs = 1;
pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
info ?: "", info ? " " : "", pm_verb(state.event),
error ? "aborted" : "complete",
usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
}
static int dpm_run_callback(pm_callback_t cb, struct device *dev,
pm_message_t state, const char *info)
{
ktime_t calltime;
int error;
if (!cb)
return 0;
calltime = initcall_debug_start(dev);
pm_dev_dbg(dev, state, info);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, error, state, info);
return error;
}
#ifdef CONFIG_DPM_WATCHDOG
struct dpm_watchdog {
struct device *dev;
struct task_struct *tsk;
struct timer_list timer;
};
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
struct dpm_watchdog wd
/**
* dpm_watchdog_handler - Driver suspend / resume watchdog handler.
* @data: Watchdog object address.
*
* Called when a driver has timed out suspending or resuming.
* There's not much we can do here to recover so panic() to
* capture a crash-dump in pstore.
*/
static void dpm_watchdog_handler(struct timer_list *t)
{
struct dpm_watchdog *wd = from_timer(wd, t, timer);
dev_emerg(wd->dev, "**** DPM device timeout ****\n");
show_stack(wd->tsk, NULL);
panic("%s %s: unrecoverable failure\n",
dev_driver_string(wd->dev), dev_name(wd->dev));
}
/**
* dpm_watchdog_set - Enable pm watchdog for given device.
* @wd: Watchdog. Must be allocated on the stack.
* @dev: Device to handle.
*/
static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
{
struct timer_list *timer = &wd->timer;
wd->dev = dev;
wd->tsk = current;
timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
/* use same timeout value for both suspend and resume */
timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
add_timer(timer);
}
/**
* dpm_watchdog_clear - Disable suspend/resume watchdog.
* @wd: Watchdog to disable.
*/
static void dpm_watchdog_clear(struct dpm_watchdog *wd)
{
struct timer_list *timer = &wd->timer;
del_timer_sync(timer);
destroy_timer_on_stack(timer);
}
#else
#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
#define dpm_watchdog_set(x, y)
#define dpm_watchdog_clear(x)
#endif
/*------------------------- Resume routines -------------------------*/
/**
* dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
* @dev: Target device.
*
* Make the core skip the "early resume" and "resume" phases for @dev.
*
* This function can be called by middle-layer code during the "noirq" phase of
* system resume if necessary, but not by device drivers.
*/
void dev_pm_skip_next_resume_phases(struct device *dev)
{
dev->power.is_late_suspended = false;
dev->power.is_suspended = false;
}
/**
* suspend_event - Return a "suspend" message for given "resume" one.
* @resume_msg: PM message representing a system-wide resume transition.
*/
static pm_message_t suspend_event(pm_message_t resume_msg)
{
switch (resume_msg.event) {
case PM_EVENT_RESUME:
return PMSG_SUSPEND;
case PM_EVENT_THAW:
case PM_EVENT_RESTORE:
return PMSG_FREEZE;
case PM_EVENT_RECOVER:
return PMSG_HIBERNATE;
}
return PMSG_ON;
}
/**
* dev_pm_may_skip_resume - System-wide device resume optimization check.
* @dev: Target device.
*
* Checks whether or not the device may be left in suspend after a system-wide
* transition to the working state.
*/
bool dev_pm_may_skip_resume(struct device *dev)
{
return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
}
static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
pm_message_t state,
const char **info_p)
{
pm_callback_t callback;
const char *info;
if (dev->pm_domain) {
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
} else {
return NULL;
}
if (info_p)
*info_p = info;
return callback;
}
static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
pm_message_t state,
const char **info_p);
static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
pm_message_t state,
const char **info_p);
/**
* device_resume_noirq - Execute a "noirq resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback;
const char *info;
bool skip_resume;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_noirq_suspended)
goto Out;
dpm_wait_for_superior(dev, async);
skip_resume = dev_pm_may_skip_resume(dev);
callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
if (callback)
goto Run;
if (skip_resume)
goto Skip;
if (dev_pm_smart_suspend_and_suspended(dev)) {
pm_message_t suspend_msg = suspend_event(state);
/*
* If "freeze" callbacks have been skipped during a transition
* related to hibernation, the subsequent "thaw" callbacks must
* be skipped too or bad things may happen. Otherwise, resume
* callbacks are going to be run for the device, so its runtime
* PM status must be changed to reflect the new state after the
* transition under way.
*/
if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
!dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
if (state.event == PM_EVENT_THAW) {
skip_resume = true;
goto Skip;
} else {
pm_runtime_set_active(dev);
}
}
}
if (dev->driver && dev->driver->pm) {
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
Skip:
dev->power.is_noirq_suspended = false;
if (skip_resume) {
/*
* The device is going to be left in suspend, but it might not
* have been in runtime suspend before the system suspended, so
* its runtime PM status needs to be updated to avoid confusing
* the runtime PM framework when runtime PM is enabled for the
* device again.
*/
pm_runtime_set_suspended(dev);
dev_pm_skip_next_resume_phases(dev);
}
Out:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static bool is_async(struct device *dev)
{
return dev->power.async_suspend && pm_async_enabled
&& !pm_trace_is_enabled();
}
static void async_resume_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_noirq(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
void dpm_noirq_resume_devices(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume_noirq, dev);
}
}
while (!list_empty(&dpm_noirq_list)) {
dev = to_device(dpm_noirq_list.next);
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_late_early_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_noirq(dev, state, false);
if (error) {
suspend_stats.failed_resume_noirq++;
dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " noirq", error);
}
}
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, 0, "noirq");
trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
}
void dpm_noirq_end(void)
{
resume_device_irqs();
device_wakeup_disarm_wake_irqs();
cpuidle_resume();
}
/**
* dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
* allow device drivers' interrupt handlers to be called.
*/
void dpm_resume_noirq(pm_message_t state)
{
dpm_noirq_resume_devices(state);
dpm_noirq_end();
}
static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
pm_message_t state,
const char **info_p)
{
pm_callback_t callback;
const char *info;
if (dev->pm_domain) {
info = "early power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "early type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "early class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "early bus ";
callback = pm_late_early_op(dev->bus->pm, state);
} else {
return NULL;
}
if (info_p)
*info_p = info;
return callback;
}
/**
* device_resume_early - Execute an "early resume" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int device_resume_early(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback;
const char *info;
int error = 0;
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore || dev->power.direct_complete)
goto Out;
if (!dev->power.is_late_suspended)
goto Out;
dpm_wait_for_superior(dev, async);
callback = dpm_subsys_resume_early_cb(dev, state, &info);
if (!callback && dev->driver && dev->driver->pm) {
info = "early driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_late_suspended = false;
Out:
TRACE_RESUME(error);
pm_runtime_enable(dev);
complete_all(&dev->power.completion);
return error;
}
static void async_resume_early(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume_early(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume_early - Execute "early resume" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_early(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
/*
* Advanced the async threads upfront,
* in case the starting of async threads is
* delayed by non-async resuming devices.
*/
list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume_early, dev);
}
}
while (!list_empty(&dpm_late_early_list)) {
dev = to_device(dpm_late_early_list.next);
get_device(dev);
list_move_tail(&dev->power.entry, &dpm_suspended_list);
mutex_unlock(&dpm_list_mtx);
if (!is_async(dev)) {
int error;
error = device_resume_early(dev, state, false);
if (error) {
suspend_stats.failed_resume_early++;
dpm_save_failed_step(SUSPEND_RESUME_EARLY);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, " early", error);
}
}
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, 0, "early");
trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
}
/**
* dpm_resume_start - Execute "noirq" and "early" device callbacks.
* @state: PM transition of the system being carried out.
*/
void dpm_resume_start(pm_message_t state)
{
dpm_resume_noirq(state);
dpm_resume_early(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_start);
/**
* device_resume - Execute "resume" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being resumed asynchronously.
*/
static int device_resume(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_RESUME(0);
if (dev->power.syscore)
goto Complete;
if (dev->power.direct_complete) {
/* Match the pm_runtime_disable() in __device_suspend(). */
pm_runtime_enable(dev);
goto Complete;
}
dpm_wait_for_superior(dev, async);
dpm_watchdog_set(&wd, dev);
device_lock(dev);
/*
* This is a fib. But we'll allow new children to be added below
* a resumed device, even if the device hasn't been completed yet.
*/
dev->power.is_prepared = false;
if (!dev->power.is_suspended)
goto Unlock;
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Driver;
}
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Driver;
}
if (dev->class && dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Driver;
}
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
} else if (dev->bus->resume) {
info = "legacy bus ";
callback = dev->bus->resume;
goto End;
}
}
Driver:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
End:
error = dpm_run_callback(callback, dev, state, info);
dev->power.is_suspended = false;
Unlock:
device_unlock(dev);
dpm_watchdog_clear(&wd);
Complete:
complete_all(&dev->power.completion);
TRACE_RESUME(error);
return error;
}
static void async_resume(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = device_resume(dev, pm_transition, true);
if (error)
pm_dev_err(dev, pm_transition, " async", error);
put_device(dev);
}
/**
* dpm_resume - Execute "resume" callbacks for non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the appropriate "resume" callback for all devices whose status
* indicates that they are suspended.
*/
void dpm_resume(pm_message_t state)
{
struct device *dev;
ktime_t starttime = ktime_get();
trace_suspend_resume(TPS("dpm_resume"), state.event, true);
might_sleep();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_resume, dev);
}
}
while (!list_empty(&dpm_suspended_list)) {
dev = to_device(dpm_suspended_list.next);
get_device(dev);
if (!is_async(dev)) {
int error;
mutex_unlock(&dpm_list_mtx);
error = device_resume(dev, state, false);
if (error) {
suspend_stats.failed_resume++;
dpm_save_failed_step(SUSPEND_RESUME);
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, state, "", error);
}
mutex_lock(&dpm_list_mtx);
}
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
dpm_show_time(starttime, state, 0, NULL);
cpufreq_resume();
trace_suspend_resume(TPS("dpm_resume"), state.event, false);
}
/**
* device_complete - Complete a PM transition for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*/
static void device_complete(struct device *dev, pm_message_t state)
{
void (*callback)(struct device *) = NULL;
const char *info = NULL;
if (dev->power.syscore)
return;
device_lock(dev);
if (dev->pm_domain) {
info = "completing power domain ";
callback = dev->pm_domain->ops.complete;
} else if (dev->type && dev->type->pm) {
info = "completing type ";
callback = dev->type->pm->complete;
} else if (dev->class && dev->class->pm) {
info = "completing class ";
callback = dev->class->pm->complete;
} else if (dev->bus && dev->bus->pm) {
info = "completing bus ";
callback = dev->bus->pm->complete;
}
if (!callback && dev->driver && dev->driver->pm) {
info = "completing driver ";
callback = dev->driver->pm->complete;
}
if (callback) {
pm_dev_dbg(dev, state, info);
callback(dev);
}
device_unlock(dev);
pm_runtime_put(dev);
}
/**
* dpm_complete - Complete a PM transition for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*
* Execute the ->complete() callbacks for all devices whose PM status is not
* DPM_ON (this allows new devices to be registered).
*/
void dpm_complete(pm_message_t state)
{
struct list_head list;
trace_suspend_resume(TPS("dpm_complete"), state.event, true);
might_sleep();
INIT_LIST_HEAD(&list);
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
get_device(dev);
dev->power.is_prepared = false;
list_move(&dev->power.entry, &list);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
device_complete(dev, state);
trace_device_pm_callback_end(dev, 0);
mutex_lock(&dpm_list_mtx);
put_device(dev);
}
list_splice(&list, &dpm_list);
mutex_unlock(&dpm_list_mtx);
/* Allow device probing and trigger re-probing of deferred devices */
device_unblock_probing();
trace_suspend_resume(TPS("dpm_complete"), state.event, false);
}
/**
* dpm_resume_end - Execute "resume" callbacks and complete system transition.
* @state: PM transition of the system being carried out.
*
* Execute "resume" callbacks for all devices and complete the PM transition of
* the system.
*/
void dpm_resume_end(pm_message_t state)
{
dpm_resume(state);
dpm_complete(state);
}
EXPORT_SYMBOL_GPL(dpm_resume_end);
/*------------------------- Suspend routines -------------------------*/
/**
* resume_event - Return a "resume" message for given "suspend" sleep state.
* @sleep_state: PM message representing a sleep state.
*
* Return a PM message representing the resume event corresponding to given
* sleep state.
*/
static pm_message_t resume_event(pm_message_t sleep_state)
{
switch (sleep_state.event) {
case PM_EVENT_SUSPEND:
return PMSG_RESUME;
case PM_EVENT_FREEZE:
case PM_EVENT_QUIESCE:
return PMSG_RECOVER;
case PM_EVENT_HIBERNATE:
return PMSG_RESTORE;
}
return PMSG_ON;
}
static void dpm_superior_set_must_resume(struct device *dev)
{
struct device_link *link;
int idx;
if (dev->parent)
dev->parent->power.must_resume = true;
idx = device_links_read_lock();
list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
link->supplier->power.must_resume = true;
device_links_read_unlock(idx);
}
static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
pm_message_t state,
const char **info_p)
{
pm_callback_t callback;
const char *info;
if (dev->pm_domain) {
info = "noirq power domain ";
callback = pm_noirq_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "noirq type ";
callback = pm_noirq_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "noirq class ";
callback = pm_noirq_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "noirq bus ";
callback = pm_noirq_op(dev->bus->pm, state);
} else {
return NULL;
}
if (info_p)
*info_p = info;
return callback;
}
static bool device_must_resume(struct device *dev, pm_message_t state,
bool no_subsys_suspend_noirq)
{
pm_message_t resume_msg = resume_event(state);
/*
* If all of the device driver's "noirq", "late" and "early" callbacks
* are invoked directly by the core, the decision to allow the device to
* stay in suspend can be based on its current runtime PM status and its
* wakeup settings.
*/
if (no_subsys_suspend_noirq &&
!dpm_subsys_suspend_late_cb(dev, state, NULL) &&
!dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
!dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
return !pm_runtime_status_suspended(dev) &&
(resume_msg.event != PM_EVENT_RESUME ||
(device_can_wakeup(dev) && !device_may_wakeup(dev)));
/*
* The only safe strategy here is to require that if the device may not
* be left in suspend, resume callbacks must be invoked for it.
*/
return !dev->power.may_skip_resume;
}
/**
* __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* The driver of @dev will not receive interrupts while this function is being
* executed.
*/
static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback;
const char *info;
bool no_subsys_cb = false;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
if (callback)
goto Run;
no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
goto Skip;
if (dev->driver && dev->driver->pm) {
info = "noirq driver ";
callback = pm_noirq_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
if (error) {
async_error = error;
goto Complete;
}
Skip:
dev->power.is_noirq_suspended = true;
if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
dev->power.must_resume = dev->power.must_resume ||
atomic_read(&dev->power.usage_count) > 1 ||
device_must_resume(dev, state, no_subsys_cb);
} else {
dev->power.must_resume = true;
}
if (dev->power.must_resume)
dpm_superior_set_must_resume(dev);
Complete:
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
static void async_suspend_noirq(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_noirq(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_noirq(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend_noirq, dev);
return 0;
}
return __device_suspend_noirq(dev, pm_transition, false);
}
void dpm_noirq_begin(void)
{
cpuidle_pause();
device_wakeup_arm_wake_irqs();
suspend_device_irqs();
}
int dpm_noirq_suspend_devices(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_late_early_list)) {
struct device *dev = to_device(dpm_late_early_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_noirq(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, " noirq", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_noirq_list);
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_noirq++;
dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
}
dpm_show_time(starttime, state, error, "noirq");
trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
return error;
}
/**
* dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*
* Prevent device drivers' interrupt handlers from being called and invoke
* "noirq" suspend callbacks for all non-sysdev devices.
*/
int dpm_suspend_noirq(pm_message_t state)
{
int ret;
dpm_noirq_begin();
ret = dpm_noirq_suspend_devices(state);
if (ret)
dpm_resume_noirq(resume_event(state));
return ret;
}
static void dpm_propagate_wakeup_to_parent(struct device *dev)
{
struct device *parent = dev->parent;
if (!parent)
return;
spin_lock_irq(&parent->power.lock);
if (dev->power.wakeup_path && !parent->power.ignore_children)
parent->power.wakeup_path = true;
spin_unlock_irq(&parent->power.lock);
}
static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
pm_message_t state,
const char **info_p)
{
pm_callback_t callback;
const char *info;
if (dev->pm_domain) {
info = "late power domain ";
callback = pm_late_early_op(&dev->pm_domain->ops, state);
} else if (dev->type && dev->type->pm) {
info = "late type ";
callback = pm_late_early_op(dev->type->pm, state);
} else if (dev->class && dev->class->pm) {
info = "late class ";
callback = pm_late_early_op(dev->class->pm, state);
} else if (dev->bus && dev->bus->pm) {
info = "late bus ";
callback = pm_late_early_op(dev->bus->pm, state);
} else {
return NULL;
}
if (info_p)
*info_p = info;
return callback;
}
/**
* __device_suspend_late - Execute a "late suspend" callback for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*
* Runtime PM is disabled for @dev while this function is being executed.
*/
static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback;
const char *info;
int error = 0;
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
__pm_runtime_disable(dev, false);
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore || dev->power.direct_complete)
goto Complete;
callback = dpm_subsys_suspend_late_cb(dev, state, &info);
if (callback)
goto Run;
if (dev_pm_smart_suspend_and_suspended(dev) &&
!dpm_subsys_suspend_noirq_cb(dev, state, NULL))
goto Skip;
if (dev->driver && dev->driver->pm) {
info = "late driver ";
callback = pm_late_early_op(dev->driver->pm, state);
}
Run:
error = dpm_run_callback(callback, dev, state, info);
if (error) {
async_error = error;
goto Complete;
}
dpm_propagate_wakeup_to_parent(dev);
Skip:
dev->power.is_late_suspended = true;
Complete:
TRACE_SUSPEND(error);
complete_all(&dev->power.completion);
return error;
}
static void async_suspend_late(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend_late(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend_late(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend_late, dev);
return 0;
}
return __device_suspend_late(dev, pm_transition, false);
}
/**
* dpm_suspend_late - Execute "late suspend" callbacks for all devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_late(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_suspended_list)) {
struct device *dev = to_device(dpm_suspended_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend_late(dev);
mutex_lock(&dpm_list_mtx);
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_late_early_list);
if (error) {
pm_dev_err(dev, state, " late", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend_late++;
dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
dpm_resume_early(resume_event(state));
}
dpm_show_time(starttime, state, error, "late");
trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
return error;
}
/**
* dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend_end(pm_message_t state)
{
int error = dpm_suspend_late(state);
if (error)
return error;
error = dpm_suspend_noirq(state);
if (error) {
dpm_resume_early(resume_event(state));
return error;
}
return 0;
}
EXPORT_SYMBOL_GPL(dpm_suspend_end);
/**
* legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
* @dev: Device to suspend.
* @state: PM transition of the system being carried out.
* @cb: Suspend callback to execute.
* @info: string description of caller.
*/
static int legacy_suspend(struct device *dev, pm_message_t state,
int (*cb)(struct device *dev, pm_message_t state),
const char *info)
{
int error;
ktime_t calltime;
calltime = initcall_debug_start(dev);
trace_device_pm_callback_start(dev, info, state.event);
error = cb(dev, state);
trace_device_pm_callback_end(dev, error);
suspend_report_result(cb, error);
initcall_debug_report(dev, calltime, error, state, info);
return error;
}
static void dpm_clear_superiors_direct_complete(struct device *dev)
{
struct device_link *link;
int idx;
if (dev->parent) {
spin_lock_irq(&dev->parent->power.lock);
dev->parent->power.direct_complete = false;
spin_unlock_irq(&dev->parent->power.lock);
}
idx = device_links_read_lock();
list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
spin_lock_irq(&link->supplier->power.lock);
link->supplier->power.direct_complete = false;
spin_unlock_irq(&link->supplier->power.lock);
}
device_links_read_unlock(idx);
}
/**
* __device_suspend - Execute "suspend" callbacks for given device.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
* @async: If true, the device is being suspended asynchronously.
*/
static int __device_suspend(struct device *dev, pm_message_t state, bool async)
{
pm_callback_t callback = NULL;
const char *info = NULL;
int error = 0;
DECLARE_DPM_WATCHDOG_ON_STACK(wd);
TRACE_DEVICE(dev);
TRACE_SUSPEND(0);
dpm_wait_for_subordinate(dev, async);
if (async_error)
goto Complete;
/*
* If a device configured to wake up the system from sleep states
* has been suspended at run time and there's a resume request pending
* for it, this is equivalent to the device signaling wakeup, so the
* system suspend operation should be aborted.
*/
if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
if (pm_wakeup_pending()) {
async_error = -EBUSY;
goto Complete;
}
if (dev->power.syscore)
goto Complete;
if (dev->power.direct_complete) {
if (pm_runtime_status_suspended(dev)) {
pm_runtime_disable(dev);
if (pm_runtime_status_suspended(dev))
goto Complete;
pm_runtime_enable(dev);
}
dev->power.direct_complete = false;
}
dev->power.may_skip_resume = false;
dev->power.must_resume = false;
dpm_watchdog_set(&wd, dev);
device_lock(dev);
if (dev->pm_domain) {
info = "power domain ";
callback = pm_op(&dev->pm_domain->ops, state);
goto Run;
}
if (dev->type && dev->type->pm) {
info = "type ";
callback = pm_op(dev->type->pm, state);
goto Run;
}
if (dev->class && dev->class->pm) {
info = "class ";
callback = pm_op(dev->class->pm, state);
goto Run;
}
if (dev->bus) {
if (dev->bus->pm) {
info = "bus ";
callback = pm_op(dev->bus->pm, state);
} else if (dev->bus->suspend) {
pm_dev_dbg(dev, state, "legacy bus ");
error = legacy_suspend(dev, state, dev->bus->suspend,
"legacy bus ");
goto End;
}
}
Run:
if (!callback && dev->driver && dev->driver->pm) {
info = "driver ";
callback = pm_op(dev->driver->pm, state);
}
error = dpm_run_callback(callback, dev, state, info);
End:
if (!error) {
dev->power.is_suspended = true;
if (device_may_wakeup(dev))
dev->power.wakeup_path = true;
dpm_propagate_wakeup_to_parent(dev);
dpm_clear_superiors_direct_complete(dev);
}
device_unlock(dev);
dpm_watchdog_clear(&wd);
Complete:
if (error)
async_error = error;
complete_all(&dev->power.completion);
TRACE_SUSPEND(error);
return error;
}
static void async_suspend(void *data, async_cookie_t cookie)
{
struct device *dev = (struct device *)data;
int error;
error = __device_suspend(dev, pm_transition, true);
if (error) {
dpm_save_failed_dev(dev_name(dev));
pm_dev_err(dev, pm_transition, " async", error);
}
put_device(dev);
}
static int device_suspend(struct device *dev)
{
reinit_completion(&dev->power.completion);
if (is_async(dev)) {
get_device(dev);
async_schedule(async_suspend, dev);
return 0;
}
return __device_suspend(dev, pm_transition, false);
}
/**
* dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
* @state: PM transition of the system being carried out.
*/
int dpm_suspend(pm_message_t state)
{
ktime_t starttime = ktime_get();
int error = 0;
trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
might_sleep();
cpufreq_suspend();
mutex_lock(&dpm_list_mtx);
pm_transition = state;
async_error = 0;
while (!list_empty(&dpm_prepared_list)) {
struct device *dev = to_device(dpm_prepared_list.prev);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
error = device_suspend(dev);
mutex_lock(&dpm_list_mtx);
if (error) {
pm_dev_err(dev, state, "", error);
dpm_save_failed_dev(dev_name(dev));
put_device(dev);
break;
}
if (!list_empty(&dev->power.entry))
list_move(&dev->power.entry, &dpm_suspended_list);
put_device(dev);
if (async_error)
break;
}
mutex_unlock(&dpm_list_mtx);
async_synchronize_full();
if (!error)
error = async_error;
if (error) {
suspend_stats.failed_suspend++;
dpm_save_failed_step(SUSPEND_SUSPEND);
}
dpm_show_time(starttime, state, error, NULL);
trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
return error;
}
/**
* device_prepare - Prepare a device for system power transition.
* @dev: Device to handle.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for given device. No new children of the
* device may be registered after this function has returned.
*/
static int device_prepare(struct device *dev, pm_message_t state)
{
int (*callback)(struct device *) = NULL;
int ret = 0;
if (dev->power.syscore)
return 0;
WARN_ON(!pm_runtime_enabled(dev) &&
dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
DPM_FLAG_LEAVE_SUSPENDED));
/*
* If a device's parent goes into runtime suspend at the wrong time,
* it won't be possible to resume the device. To prevent this we
* block runtime suspend here, during the prepare phase, and allow
* it again during the complete phase.
*/
pm_runtime_get_noresume(dev);
device_lock(dev);
dev->power.wakeup_path = false;
if (dev->power.no_pm_callbacks) {
ret = 1; /* Let device go direct_complete */
goto unlock;
}
if (dev->pm_domain)
callback = dev->pm_domain->ops.prepare;
else if (dev->type && dev->type->pm)
callback = dev->type->pm->prepare;
else if (dev->class && dev->class->pm)
callback = dev->class->pm->prepare;
else if (dev->bus && dev->bus->pm)
callback = dev->bus->pm->prepare;
if (!callback && dev->driver && dev->driver->pm)
callback = dev->driver->pm->prepare;
if (callback)
ret = callback(dev);
unlock:
device_unlock(dev);
if (ret < 0) {
suspend_report_result(callback, ret);
pm_runtime_put(dev);
return ret;
}
/*
* A positive return value from ->prepare() means "this device appears
* to be runtime-suspended and its state is fine, so if it really is
* runtime-suspended, you can leave it in that state provided that you
* will do the same thing with all of its descendants". This only
* applies to suspend transitions, however.
*/
spin_lock_irq(&dev->power.lock);
dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
pm_runtime_suspended(dev) && ret > 0 &&
!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
spin_unlock_irq(&dev->power.lock);
return 0;
}
/**
* dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
* @state: PM transition of the system being carried out.
*
* Execute the ->prepare() callback(s) for all devices.
*/
int dpm_prepare(pm_message_t state)
{
int error = 0;
trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
might_sleep();
/*
* Give a chance for the known devices to complete their probes, before
* disable probing of devices. This sync point is important at least
* at boot time + hibernation restore.
*/
wait_for_device_probe();
/*
* It is unsafe if probing of devices will happen during suspend or
* hibernation and system behavior will be unpredictable in this case.
* So, let's prohibit device's probing here and defer their probes
* instead. The normal behavior will be restored in dpm_complete().
*/
device_block_probing();
mutex_lock(&dpm_list_mtx);
while (!list_empty(&dpm_list)) {
struct device *dev = to_device(dpm_list.next);
get_device(dev);
mutex_unlock(&dpm_list_mtx);
trace_device_pm_callback_start(dev, "", state.event);
error = device_prepare(dev, state);
trace_device_pm_callback_end(dev, error);
mutex_lock(&dpm_list_mtx);
if (error) {
if (error == -EAGAIN) {
put_device(dev);
error = 0;
continue;
}
printk(KERN_INFO "PM: Device %s not prepared "
"for power transition: code %d\n",
dev_name(dev), error);
put_device(dev);
break;
}
dev->power.is_prepared = true;
if (!list_empty(&dev->power.entry))
list_move_tail(&dev->power.entry, &dpm_prepared_list);
put_device(dev);
}
mutex_unlock(&dpm_list_mtx);
trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
return error;
}
/**
* dpm_suspend_start - Prepare devices for PM transition and suspend them.
* @state: PM transition of the system being carried out.
*
* Prepare all non-sysdev devices for system PM transition and execute "suspend"
* callbacks for them.
*/
int dpm_suspend_start(pm_message_t state)
{
int error;
error = dpm_prepare(state);
if (error) {
suspend_stats.failed_prepare++;
dpm_save_failed_step(SUSPEND_PREPARE);
} else
error = dpm_suspend(state);
return error;
}
EXPORT_SYMBOL_GPL(dpm_suspend_start);
void __suspend_report_result(const char *function, void *fn, int ret)
{
if (ret)
printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
}
EXPORT_SYMBOL_GPL(__suspend_report_result);
/**
* device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
* @dev: Device to wait for.
* @subordinate: Device that needs to wait for @dev.
*/
int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
{
dpm_wait(dev, subordinate->power.async_suspend);
return async_error;
}
EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
/**
* dpm_for_each_dev - device iterator.
* @data: data for the callback.
* @fn: function to be called for each device.
*
* Iterate over devices in dpm_list, and call @fn for each device,
* passing it @data.
*/
void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
{
struct device *dev;
if (!fn)
return;
device_pm_lock();
list_for_each_entry(dev, &dpm_list, power.entry)
fn(dev, data);
device_pm_unlock();
}
EXPORT_SYMBOL_GPL(dpm_for_each_dev);
static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
{
if (!ops)
return true;
return !ops->prepare &&
!ops->suspend &&
!ops->suspend_late &&
!ops->suspend_noirq &&
!ops->resume_noirq &&
!ops->resume_early &&
!ops->resume &&
!ops->complete;
}
void device_pm_check_callbacks(struct device *dev)
{
spin_lock_irq(&dev->power.lock);
dev->power.no_pm_callbacks =
(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
!dev->bus->suspend && !dev->bus->resume)) &&
(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
!dev->driver->suspend && !dev->driver->resume));
spin_unlock_irq(&dev->power.lock);
}
bool dev_pm_smart_suspend_and_suspended(struct device *dev)
{
return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
pm_runtime_status_suspended(dev);
}