mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 09:47:47 +07:00
e2be04c7f9
Many user space API headers have licensing information, which is either incomplete, badly formatted or just a shorthand for referring to the license under which the file is supposed to be. This makes it hard for compliance tools to determine the correct license. Update these files with an SPDX license identifier. The identifier was chosen based on the license information in the file. GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license identifier with the added 'WITH Linux-syscall-note' exception, which is the officially assigned exception identifier for the kernel syscall exception: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". This exception makes it possible to include GPL headers into non GPL code, without confusing license compliance tools. Headers which have either explicit dual licensing or are just licensed under a non GPL license are updated with the corresponding SPDX identifier and the GPLv2 with syscall exception identifier. The format is: ((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE) SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. The update does not remove existing license information as this has to be done on a case by case basis and the copyright holders might have to be consulted. This will happen in a separate step. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
432 lines
16 KiB
C
432 lines
16 KiB
C
/* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */
|
|
/*
|
|
md_p.h : physical layout of Linux RAID devices
|
|
Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
(for example /usr/src/linux/COPYING); if not, write to the Free
|
|
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#ifndef _MD_P_H
|
|
#define _MD_P_H
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
/*
|
|
* RAID superblock.
|
|
*
|
|
* The RAID superblock maintains some statistics on each RAID configuration.
|
|
* Each real device in the RAID set contains it near the end of the device.
|
|
* Some of the ideas are copied from the ext2fs implementation.
|
|
*
|
|
* We currently use 4096 bytes as follows:
|
|
*
|
|
* word offset function
|
|
*
|
|
* 0 - 31 Constant generic RAID device information.
|
|
* 32 - 63 Generic state information.
|
|
* 64 - 127 Personality specific information.
|
|
* 128 - 511 12 32-words descriptors of the disks in the raid set.
|
|
* 512 - 911 Reserved.
|
|
* 912 - 1023 Disk specific descriptor.
|
|
*/
|
|
|
|
/*
|
|
* If x is the real device size in bytes, we return an apparent size of:
|
|
*
|
|
* y = (x & ~(MD_RESERVED_BYTES - 1)) - MD_RESERVED_BYTES
|
|
*
|
|
* and place the 4kB superblock at offset y.
|
|
*/
|
|
#define MD_RESERVED_BYTES (64 * 1024)
|
|
#define MD_RESERVED_SECTORS (MD_RESERVED_BYTES / 512)
|
|
|
|
#define MD_NEW_SIZE_SECTORS(x) ((x & ~(MD_RESERVED_SECTORS - 1)) - MD_RESERVED_SECTORS)
|
|
|
|
#define MD_SB_BYTES 4096
|
|
#define MD_SB_WORDS (MD_SB_BYTES / 4)
|
|
#define MD_SB_SECTORS (MD_SB_BYTES / 512)
|
|
|
|
/*
|
|
* The following are counted in 32-bit words
|
|
*/
|
|
#define MD_SB_GENERIC_OFFSET 0
|
|
#define MD_SB_PERSONALITY_OFFSET 64
|
|
#define MD_SB_DISKS_OFFSET 128
|
|
#define MD_SB_DESCRIPTOR_OFFSET 992
|
|
|
|
#define MD_SB_GENERIC_CONSTANT_WORDS 32
|
|
#define MD_SB_GENERIC_STATE_WORDS 32
|
|
#define MD_SB_GENERIC_WORDS (MD_SB_GENERIC_CONSTANT_WORDS + MD_SB_GENERIC_STATE_WORDS)
|
|
#define MD_SB_PERSONALITY_WORDS 64
|
|
#define MD_SB_DESCRIPTOR_WORDS 32
|
|
#define MD_SB_DISKS 27
|
|
#define MD_SB_DISKS_WORDS (MD_SB_DISKS*MD_SB_DESCRIPTOR_WORDS)
|
|
#define MD_SB_RESERVED_WORDS (1024 - MD_SB_GENERIC_WORDS - MD_SB_PERSONALITY_WORDS - MD_SB_DISKS_WORDS - MD_SB_DESCRIPTOR_WORDS)
|
|
#define MD_SB_EQUAL_WORDS (MD_SB_GENERIC_WORDS + MD_SB_PERSONALITY_WORDS + MD_SB_DISKS_WORDS)
|
|
|
|
/*
|
|
* Device "operational" state bits
|
|
*/
|
|
#define MD_DISK_FAULTY 0 /* disk is faulty / operational */
|
|
#define MD_DISK_ACTIVE 1 /* disk is running or spare disk */
|
|
#define MD_DISK_SYNC 2 /* disk is in sync with the raid set */
|
|
#define MD_DISK_REMOVED 3 /* disk is in sync with the raid set */
|
|
#define MD_DISK_CLUSTER_ADD 4 /* Initiate a disk add across the cluster
|
|
* For clustered enviroments only.
|
|
*/
|
|
#define MD_DISK_CANDIDATE 5 /* disk is added as spare (local) until confirmed
|
|
* For clustered enviroments only.
|
|
*/
|
|
#define MD_DISK_FAILFAST 10 /* Send REQ_FAILFAST if there are multiple
|
|
* devices available - and don't try to
|
|
* correct read errors.
|
|
*/
|
|
|
|
#define MD_DISK_WRITEMOSTLY 9 /* disk is "write-mostly" is RAID1 config.
|
|
* read requests will only be sent here in
|
|
* dire need
|
|
*/
|
|
#define MD_DISK_JOURNAL 18 /* disk is used as the write journal in RAID-5/6 */
|
|
|
|
#define MD_DISK_ROLE_SPARE 0xffff
|
|
#define MD_DISK_ROLE_FAULTY 0xfffe
|
|
#define MD_DISK_ROLE_JOURNAL 0xfffd
|
|
#define MD_DISK_ROLE_MAX 0xff00 /* max value of regular disk role */
|
|
|
|
typedef struct mdp_device_descriptor_s {
|
|
__u32 number; /* 0 Device number in the entire set */
|
|
__u32 major; /* 1 Device major number */
|
|
__u32 minor; /* 2 Device minor number */
|
|
__u32 raid_disk; /* 3 The role of the device in the raid set */
|
|
__u32 state; /* 4 Operational state */
|
|
__u32 reserved[MD_SB_DESCRIPTOR_WORDS - 5];
|
|
} mdp_disk_t;
|
|
|
|
#define MD_SB_MAGIC 0xa92b4efc
|
|
|
|
/*
|
|
* Superblock state bits
|
|
*/
|
|
#define MD_SB_CLEAN 0
|
|
#define MD_SB_ERRORS 1
|
|
|
|
#define MD_SB_CLUSTERED 5 /* MD is clustered */
|
|
#define MD_SB_BITMAP_PRESENT 8 /* bitmap may be present nearby */
|
|
|
|
/*
|
|
* Notes:
|
|
* - if an array is being reshaped (restriped) in order to change the
|
|
* the number of active devices in the array, 'raid_disks' will be
|
|
* the larger of the old and new numbers. 'delta_disks' will
|
|
* be the "new - old". So if +ve, raid_disks is the new value, and
|
|
* "raid_disks-delta_disks" is the old. If -ve, raid_disks is the
|
|
* old value and "raid_disks+delta_disks" is the new (smaller) value.
|
|
*/
|
|
|
|
|
|
typedef struct mdp_superblock_s {
|
|
/*
|
|
* Constant generic information
|
|
*/
|
|
__u32 md_magic; /* 0 MD identifier */
|
|
__u32 major_version; /* 1 major version to which the set conforms */
|
|
__u32 minor_version; /* 2 minor version ... */
|
|
__u32 patch_version; /* 3 patchlevel version ... */
|
|
__u32 gvalid_words; /* 4 Number of used words in this section */
|
|
__u32 set_uuid0; /* 5 Raid set identifier */
|
|
__u32 ctime; /* 6 Creation time */
|
|
__u32 level; /* 7 Raid personality */
|
|
__u32 size; /* 8 Apparent size of each individual disk */
|
|
__u32 nr_disks; /* 9 total disks in the raid set */
|
|
__u32 raid_disks; /* 10 disks in a fully functional raid set */
|
|
__u32 md_minor; /* 11 preferred MD minor device number */
|
|
__u32 not_persistent; /* 12 does it have a persistent superblock */
|
|
__u32 set_uuid1; /* 13 Raid set identifier #2 */
|
|
__u32 set_uuid2; /* 14 Raid set identifier #3 */
|
|
__u32 set_uuid3; /* 15 Raid set identifier #4 */
|
|
__u32 gstate_creserved[MD_SB_GENERIC_CONSTANT_WORDS - 16];
|
|
|
|
/*
|
|
* Generic state information
|
|
*/
|
|
__u32 utime; /* 0 Superblock update time */
|
|
__u32 state; /* 1 State bits (clean, ...) */
|
|
__u32 active_disks; /* 2 Number of currently active disks */
|
|
__u32 working_disks; /* 3 Number of working disks */
|
|
__u32 failed_disks; /* 4 Number of failed disks */
|
|
__u32 spare_disks; /* 5 Number of spare disks */
|
|
__u32 sb_csum; /* 6 checksum of the whole superblock */
|
|
#if defined(__BYTE_ORDER) ? __BYTE_ORDER == __BIG_ENDIAN : defined(__BIG_ENDIAN)
|
|
__u32 events_hi; /* 7 high-order of superblock update count */
|
|
__u32 events_lo; /* 8 low-order of superblock update count */
|
|
__u32 cp_events_hi; /* 9 high-order of checkpoint update count */
|
|
__u32 cp_events_lo; /* 10 low-order of checkpoint update count */
|
|
#elif defined(__BYTE_ORDER) ? __BYTE_ORDER == __LITTLE_ENDIAN : defined(__LITTLE_ENDIAN)
|
|
__u32 events_lo; /* 7 low-order of superblock update count */
|
|
__u32 events_hi; /* 8 high-order of superblock update count */
|
|
__u32 cp_events_lo; /* 9 low-order of checkpoint update count */
|
|
__u32 cp_events_hi; /* 10 high-order of checkpoint update count */
|
|
#else
|
|
#error unspecified endianness
|
|
#endif
|
|
__u32 recovery_cp; /* 11 recovery checkpoint sector count */
|
|
/* There are only valid for minor_version > 90 */
|
|
__u64 reshape_position; /* 12,13 next address in array-space for reshape */
|
|
__u32 new_level; /* 14 new level we are reshaping to */
|
|
__u32 delta_disks; /* 15 change in number of raid_disks */
|
|
__u32 new_layout; /* 16 new layout */
|
|
__u32 new_chunk; /* 17 new chunk size (bytes) */
|
|
__u32 gstate_sreserved[MD_SB_GENERIC_STATE_WORDS - 18];
|
|
|
|
/*
|
|
* Personality information
|
|
*/
|
|
__u32 layout; /* 0 the array's physical layout */
|
|
__u32 chunk_size; /* 1 chunk size in bytes */
|
|
__u32 root_pv; /* 2 LV root PV */
|
|
__u32 root_block; /* 3 LV root block */
|
|
__u32 pstate_reserved[MD_SB_PERSONALITY_WORDS - 4];
|
|
|
|
/*
|
|
* Disks information
|
|
*/
|
|
mdp_disk_t disks[MD_SB_DISKS];
|
|
|
|
/*
|
|
* Reserved
|
|
*/
|
|
__u32 reserved[MD_SB_RESERVED_WORDS];
|
|
|
|
/*
|
|
* Active descriptor
|
|
*/
|
|
mdp_disk_t this_disk;
|
|
|
|
} mdp_super_t;
|
|
|
|
static inline __u64 md_event(mdp_super_t *sb) {
|
|
__u64 ev = sb->events_hi;
|
|
return (ev<<32)| sb->events_lo;
|
|
}
|
|
|
|
#define MD_SUPERBLOCK_1_TIME_SEC_MASK ((1ULL<<40) - 1)
|
|
|
|
/*
|
|
* The version-1 superblock :
|
|
* All numeric fields are little-endian.
|
|
*
|
|
* total size: 256 bytes plus 2 per device.
|
|
* 1K allows 384 devices.
|
|
*/
|
|
struct mdp_superblock_1 {
|
|
/* constant array information - 128 bytes */
|
|
__le32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */
|
|
__le32 major_version; /* 1 */
|
|
__le32 feature_map; /* bit 0 set if 'bitmap_offset' is meaningful */
|
|
__le32 pad0; /* always set to 0 when writing */
|
|
|
|
__u8 set_uuid[16]; /* user-space generated. */
|
|
char set_name[32]; /* set and interpreted by user-space */
|
|
|
|
__le64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/
|
|
__le32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */
|
|
__le32 layout; /* only for raid5 and raid10 currently */
|
|
__le64 size; /* used size of component devices, in 512byte sectors */
|
|
|
|
__le32 chunksize; /* in 512byte sectors */
|
|
__le32 raid_disks;
|
|
union {
|
|
__le32 bitmap_offset; /* sectors after start of superblock that bitmap starts
|
|
* NOTE: signed, so bitmap can be before superblock
|
|
* only meaningful of feature_map[0] is set.
|
|
*/
|
|
|
|
/* only meaningful when feature_map[MD_FEATURE_PPL] is set */
|
|
struct {
|
|
__le16 offset; /* sectors from start of superblock that ppl starts (signed) */
|
|
__le16 size; /* ppl size in sectors */
|
|
} ppl;
|
|
};
|
|
|
|
/* These are only valid with feature bit '4' */
|
|
__le32 new_level; /* new level we are reshaping to */
|
|
__le64 reshape_position; /* next address in array-space for reshape */
|
|
__le32 delta_disks; /* change in number of raid_disks */
|
|
__le32 new_layout; /* new layout */
|
|
__le32 new_chunk; /* new chunk size (512byte sectors) */
|
|
__le32 new_offset; /* signed number to add to data_offset in new
|
|
* layout. 0 == no-change. This can be
|
|
* different on each device in the array.
|
|
*/
|
|
|
|
/* constant this-device information - 64 bytes */
|
|
__le64 data_offset; /* sector start of data, often 0 */
|
|
__le64 data_size; /* sectors in this device that can be used for data */
|
|
__le64 super_offset; /* sector start of this superblock */
|
|
union {
|
|
__le64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */
|
|
__le64 journal_tail;/* journal tail of journal device (from data_offset) */
|
|
};
|
|
__le32 dev_number; /* permanent identifier of this device - not role in raid */
|
|
__le32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */
|
|
__u8 device_uuid[16]; /* user-space setable, ignored by kernel */
|
|
__u8 devflags; /* per-device flags. Only two defined...*/
|
|
#define WriteMostly1 1 /* mask for writemostly flag in above */
|
|
#define FailFast1 2 /* Should avoid retries and fixups and just fail */
|
|
/* Bad block log. If there are any bad blocks the feature flag is set.
|
|
* If offset and size are non-zero, that space is reserved and available
|
|
*/
|
|
__u8 bblog_shift; /* shift from sectors to block size */
|
|
__le16 bblog_size; /* number of sectors reserved for list */
|
|
__le32 bblog_offset; /* sector offset from superblock to bblog,
|
|
* signed - not unsigned */
|
|
|
|
/* array state information - 64 bytes */
|
|
__le64 utime; /* 40 bits second, 24 bits microseconds */
|
|
__le64 events; /* incremented when superblock updated */
|
|
__le64 resync_offset; /* data before this offset (from data_offset) known to be in sync */
|
|
__le32 sb_csum; /* checksum up to devs[max_dev] */
|
|
__le32 max_dev; /* size of devs[] array to consider */
|
|
__u8 pad3[64-32]; /* set to 0 when writing */
|
|
|
|
/* device state information. Indexed by dev_number.
|
|
* 2 bytes per device
|
|
* Note there are no per-device state flags. State information is rolled
|
|
* into the 'roles' value. If a device is spare or faulty, then it doesn't
|
|
* have a meaningful role.
|
|
*/
|
|
__le16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */
|
|
};
|
|
|
|
/* feature_map bits */
|
|
#define MD_FEATURE_BITMAP_OFFSET 1
|
|
#define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and
|
|
* must be honoured
|
|
*/
|
|
#define MD_FEATURE_RESHAPE_ACTIVE 4
|
|
#define MD_FEATURE_BAD_BLOCKS 8 /* badblock list is not empty */
|
|
#define MD_FEATURE_REPLACEMENT 16 /* This device is replacing an
|
|
* active device with same 'role'.
|
|
* 'recovery_offset' is also set.
|
|
*/
|
|
#define MD_FEATURE_RESHAPE_BACKWARDS 32 /* Reshape doesn't change number
|
|
* of devices, but is going
|
|
* backwards anyway.
|
|
*/
|
|
#define MD_FEATURE_NEW_OFFSET 64 /* new_offset must be honoured */
|
|
#define MD_FEATURE_RECOVERY_BITMAP 128 /* recovery that is happening
|
|
* is guided by bitmap.
|
|
*/
|
|
#define MD_FEATURE_CLUSTERED 256 /* clustered MD */
|
|
#define MD_FEATURE_JOURNAL 512 /* support write cache */
|
|
#define MD_FEATURE_PPL 1024 /* support PPL */
|
|
#define MD_FEATURE_MULTIPLE_PPLS 2048 /* support for multiple PPLs */
|
|
#define MD_FEATURE_ALL (MD_FEATURE_BITMAP_OFFSET \
|
|
|MD_FEATURE_RECOVERY_OFFSET \
|
|
|MD_FEATURE_RESHAPE_ACTIVE \
|
|
|MD_FEATURE_BAD_BLOCKS \
|
|
|MD_FEATURE_REPLACEMENT \
|
|
|MD_FEATURE_RESHAPE_BACKWARDS \
|
|
|MD_FEATURE_NEW_OFFSET \
|
|
|MD_FEATURE_RECOVERY_BITMAP \
|
|
|MD_FEATURE_CLUSTERED \
|
|
|MD_FEATURE_JOURNAL \
|
|
|MD_FEATURE_PPL \
|
|
|MD_FEATURE_MULTIPLE_PPLS \
|
|
)
|
|
|
|
struct r5l_payload_header {
|
|
__le16 type;
|
|
__le16 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
enum r5l_payload_type {
|
|
R5LOG_PAYLOAD_DATA = 0,
|
|
R5LOG_PAYLOAD_PARITY = 1,
|
|
R5LOG_PAYLOAD_FLUSH = 2,
|
|
};
|
|
|
|
struct r5l_payload_data_parity {
|
|
struct r5l_payload_header header;
|
|
__le32 size; /* sector. data/parity size. each 4k
|
|
* has a checksum */
|
|
__le64 location; /* sector. For data, it's raid sector. For
|
|
* parity, it's stripe sector */
|
|
__le32 checksum[];
|
|
} __attribute__ ((__packed__));
|
|
|
|
enum r5l_payload_data_parity_flag {
|
|
R5LOG_PAYLOAD_FLAG_DISCARD = 1, /* payload is discard */
|
|
/*
|
|
* RESHAPED/RESHAPING is only set when there is reshape activity. Note,
|
|
* both data/parity of a stripe should have the same flag set
|
|
*
|
|
* RESHAPED: reshape is running, and this stripe finished reshape
|
|
* RESHAPING: reshape is running, and this stripe isn't reshaped
|
|
*/
|
|
R5LOG_PAYLOAD_FLAG_RESHAPED = 2,
|
|
R5LOG_PAYLOAD_FLAG_RESHAPING = 3,
|
|
};
|
|
|
|
struct r5l_payload_flush {
|
|
struct r5l_payload_header header;
|
|
__le32 size; /* flush_stripes size, bytes */
|
|
__le64 flush_stripes[];
|
|
} __attribute__ ((__packed__));
|
|
|
|
enum r5l_payload_flush_flag {
|
|
R5LOG_PAYLOAD_FLAG_FLUSH_STRIPE = 1, /* data represents whole stripe */
|
|
};
|
|
|
|
struct r5l_meta_block {
|
|
__le32 magic;
|
|
__le32 checksum;
|
|
__u8 version;
|
|
__u8 __zero_pading_1;
|
|
__le16 __zero_pading_2;
|
|
__le32 meta_size; /* whole size of the block */
|
|
|
|
__le64 seq;
|
|
__le64 position; /* sector, start from rdev->data_offset, current position */
|
|
struct r5l_payload_header payloads[];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define R5LOG_VERSION 0x1
|
|
#define R5LOG_MAGIC 0x6433c509
|
|
|
|
struct ppl_header_entry {
|
|
__le64 data_sector; /* raid sector of the new data */
|
|
__le32 pp_size; /* length of partial parity */
|
|
__le32 data_size; /* length of data */
|
|
__le32 parity_disk; /* member disk containing parity */
|
|
__le32 checksum; /* checksum of partial parity data for this
|
|
* entry (~crc32c) */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define PPL_HEADER_SIZE 4096
|
|
#define PPL_HDR_RESERVED 512
|
|
#define PPL_HDR_ENTRY_SPACE \
|
|
(PPL_HEADER_SIZE - PPL_HDR_RESERVED - 4 * sizeof(__le32) - sizeof(__le64))
|
|
#define PPL_HDR_MAX_ENTRIES \
|
|
(PPL_HDR_ENTRY_SPACE / sizeof(struct ppl_header_entry))
|
|
|
|
struct ppl_header {
|
|
__u8 reserved[PPL_HDR_RESERVED];/* reserved space, fill with 0xff */
|
|
__le32 signature; /* signature (family number of volume) */
|
|
__le32 padding; /* zero pad */
|
|
__le64 generation; /* generation number of the header */
|
|
__le32 entries_count; /* number of entries in entry array */
|
|
__le32 checksum; /* checksum of the header (~crc32c) */
|
|
struct ppl_header_entry entries[PPL_HDR_MAX_ENTRIES];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#endif
|