mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 10:46:40 +07:00
8612b4b4f9
Ever since v2.6.19 the code contains a check for CONFIG_NO_ATA_LEGACY. But that macro has never been defined. Apparently no one ran into problems on platforms that do not support compatibility mode. So remove this code that has been dead for over seven years. Signed-off-by: Paul Bolle <pebolle@tiscali.nl> Signed-off-by: Tejun Heo <tj@kernel.org>
3338 lines
84 KiB
C
3338 lines
84 KiB
C
/*
|
|
* libata-sff.c - helper library for PCI IDE BMDMA
|
|
*
|
|
* Maintained by: Tejun Heo <tj@kernel.org>
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org
|
|
* on emails.
|
|
*
|
|
* Copyright 2003-2006 Red Hat, Inc. All rights reserved.
|
|
* Copyright 2003-2006 Jeff Garzik
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* libata documentation is available via 'make {ps|pdf}docs',
|
|
* as Documentation/DocBook/libata.*
|
|
*
|
|
* Hardware documentation available from http://www.t13.org/ and
|
|
* http://www.sata-io.org/
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "libata.h"
|
|
|
|
static struct workqueue_struct *ata_sff_wq;
|
|
|
|
const struct ata_port_operations ata_sff_port_ops = {
|
|
.inherits = &ata_base_port_ops,
|
|
|
|
.qc_prep = ata_noop_qc_prep,
|
|
.qc_issue = ata_sff_qc_issue,
|
|
.qc_fill_rtf = ata_sff_qc_fill_rtf,
|
|
|
|
.freeze = ata_sff_freeze,
|
|
.thaw = ata_sff_thaw,
|
|
.prereset = ata_sff_prereset,
|
|
.softreset = ata_sff_softreset,
|
|
.hardreset = sata_sff_hardreset,
|
|
.postreset = ata_sff_postreset,
|
|
.error_handler = ata_sff_error_handler,
|
|
|
|
.sff_dev_select = ata_sff_dev_select,
|
|
.sff_check_status = ata_sff_check_status,
|
|
.sff_tf_load = ata_sff_tf_load,
|
|
.sff_tf_read = ata_sff_tf_read,
|
|
.sff_exec_command = ata_sff_exec_command,
|
|
.sff_data_xfer = ata_sff_data_xfer,
|
|
.sff_drain_fifo = ata_sff_drain_fifo,
|
|
|
|
.lost_interrupt = ata_sff_lost_interrupt,
|
|
};
|
|
EXPORT_SYMBOL_GPL(ata_sff_port_ops);
|
|
|
|
/**
|
|
* ata_sff_check_status - Read device status reg & clear interrupt
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile status register for currently-selected device
|
|
* and return its value. This also clears pending interrupts
|
|
* from this device
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
u8 ata_sff_check_status(struct ata_port *ap)
|
|
{
|
|
return ioread8(ap->ioaddr.status_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_check_status);
|
|
|
|
/**
|
|
* ata_sff_altstatus - Read device alternate status reg
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile alternate status register for
|
|
* currently-selected device and return its value.
|
|
*
|
|
* Note: may NOT be used as the check_altstatus() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 ata_sff_altstatus(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->sff_check_altstatus)
|
|
return ap->ops->sff_check_altstatus(ap);
|
|
|
|
return ioread8(ap->ioaddr.altstatus_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_irq_status - Check if the device is busy
|
|
* @ap: port where the device is
|
|
*
|
|
* Determine if the port is currently busy. Uses altstatus
|
|
* if available in order to avoid clearing shared IRQ status
|
|
* when finding an IRQ source. Non ctl capable devices don't
|
|
* share interrupt lines fortunately for us.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 ata_sff_irq_status(struct ata_port *ap)
|
|
{
|
|
u8 status;
|
|
|
|
if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
|
|
status = ata_sff_altstatus(ap);
|
|
/* Not us: We are busy */
|
|
if (status & ATA_BUSY)
|
|
return status;
|
|
}
|
|
/* Clear INTRQ latch */
|
|
status = ap->ops->sff_check_status(ap);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ata_sff_sync - Flush writes
|
|
* @ap: Port to wait for.
|
|
*
|
|
* CAUTION:
|
|
* If we have an mmio device with no ctl and no altstatus
|
|
* method this will fail. No such devices are known to exist.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_sff_sync(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->sff_check_altstatus)
|
|
ap->ops->sff_check_altstatus(ap);
|
|
else if (ap->ioaddr.altstatus_addr)
|
|
ioread8(ap->ioaddr.altstatus_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_pause - Flush writes and wait 400nS
|
|
* @ap: Port to pause for.
|
|
*
|
|
* CAUTION:
|
|
* If we have an mmio device with no ctl and no altstatus
|
|
* method this will fail. No such devices are known to exist.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_sff_pause(struct ata_port *ap)
|
|
{
|
|
ata_sff_sync(ap);
|
|
ndelay(400);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_pause);
|
|
|
|
/**
|
|
* ata_sff_dma_pause - Pause before commencing DMA
|
|
* @ap: Port to pause for.
|
|
*
|
|
* Perform I/O fencing and ensure sufficient cycle delays occur
|
|
* for the HDMA1:0 transition
|
|
*/
|
|
|
|
void ata_sff_dma_pause(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
|
|
/* An altstatus read will cause the needed delay without
|
|
messing up the IRQ status */
|
|
ata_sff_altstatus(ap);
|
|
return;
|
|
}
|
|
/* There are no DMA controllers without ctl. BUG here to ensure
|
|
we never violate the HDMA1:0 transition timing and risk
|
|
corruption. */
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
|
|
|
|
/**
|
|
* ata_sff_busy_sleep - sleep until BSY clears, or timeout
|
|
* @ap: port containing status register to be polled
|
|
* @tmout_pat: impatience timeout in msecs
|
|
* @tmout: overall timeout in msecs
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears,
|
|
* or a timeout occurs.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_busy_sleep(struct ata_port *ap,
|
|
unsigned long tmout_pat, unsigned long tmout)
|
|
{
|
|
unsigned long timer_start, timeout;
|
|
u8 status;
|
|
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
|
|
timer_start = jiffies;
|
|
timeout = ata_deadline(timer_start, tmout_pat);
|
|
while (status != 0xff && (status & ATA_BUSY) &&
|
|
time_before(jiffies, timeout)) {
|
|
ata_msleep(ap, 50);
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
|
|
}
|
|
|
|
if (status != 0xff && (status & ATA_BUSY))
|
|
ata_port_warn(ap,
|
|
"port is slow to respond, please be patient (Status 0x%x)\n",
|
|
status);
|
|
|
|
timeout = ata_deadline(timer_start, tmout);
|
|
while (status != 0xff && (status & ATA_BUSY) &&
|
|
time_before(jiffies, timeout)) {
|
|
ata_msleep(ap, 50);
|
|
status = ap->ops->sff_check_status(ap);
|
|
}
|
|
|
|
if (status == 0xff)
|
|
return -ENODEV;
|
|
|
|
if (status & ATA_BUSY) {
|
|
ata_port_err(ap,
|
|
"port failed to respond (%lu secs, Status 0x%x)\n",
|
|
DIV_ROUND_UP(tmout, 1000), status);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
|
|
|
|
static int ata_sff_check_ready(struct ata_link *link)
|
|
{
|
|
u8 status = link->ap->ops->sff_check_status(link->ap);
|
|
|
|
return ata_check_ready(status);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_wait_ready - sleep until BSY clears, or timeout
|
|
* @link: SFF link to wait ready status for
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears, or timeout
|
|
* occurs.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
return ata_wait_ready(link, deadline, ata_sff_check_ready);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
|
|
|
|
/**
|
|
* ata_sff_set_devctl - Write device control reg
|
|
* @ap: port where the device is
|
|
* @ctl: value to write
|
|
*
|
|
* Writes ATA taskfile device control register.
|
|
*
|
|
* Note: may NOT be used as the sff_set_devctl() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
|
|
{
|
|
if (ap->ops->sff_set_devctl)
|
|
ap->ops->sff_set_devctl(ap, ctl);
|
|
else
|
|
iowrite8(ctl, ap->ioaddr.ctl_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel. Works with both PIO and MMIO.
|
|
*
|
|
* May be used as the dev_select() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
|
|
{
|
|
u8 tmp;
|
|
|
|
if (device == 0)
|
|
tmp = ATA_DEVICE_OBS;
|
|
else
|
|
tmp = ATA_DEVICE_OBS | ATA_DEV1;
|
|
|
|
iowrite8(tmp, ap->ioaddr.device_addr);
|
|
ata_sff_pause(ap); /* needed; also flushes, for mmio */
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_dev_select);
|
|
|
|
/**
|
|
* ata_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
* @wait: non-zero to wait for Status register BSY bit to clear
|
|
* @can_sleep: non-zero if context allows sleeping
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel.
|
|
*
|
|
* This is a high-level version of ata_sff_dev_select(), which
|
|
* additionally provides the services of inserting the proper
|
|
* pauses and status polling, where needed.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static void ata_dev_select(struct ata_port *ap, unsigned int device,
|
|
unsigned int wait, unsigned int can_sleep)
|
|
{
|
|
if (ata_msg_probe(ap))
|
|
ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
|
|
device, wait);
|
|
|
|
if (wait)
|
|
ata_wait_idle(ap);
|
|
|
|
ap->ops->sff_dev_select(ap, device);
|
|
|
|
if (wait) {
|
|
if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
|
|
ata_msleep(ap, 150);
|
|
ata_wait_idle(ap);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_sff_irq_on - Enable interrupts on a port.
|
|
* @ap: Port on which interrupts are enabled.
|
|
*
|
|
* Enable interrupts on a legacy IDE device using MMIO or PIO,
|
|
* wait for idle, clear any pending interrupts.
|
|
*
|
|
* Note: may NOT be used as the sff_irq_on() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_irq_on(struct ata_port *ap)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
if (ap->ops->sff_irq_on) {
|
|
ap->ops->sff_irq_on(ap);
|
|
return;
|
|
}
|
|
|
|
ap->ctl &= ~ATA_NIEN;
|
|
ap->last_ctl = ap->ctl;
|
|
|
|
if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
|
|
ata_sff_set_devctl(ap, ap->ctl);
|
|
ata_wait_idle(ap);
|
|
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_irq_on);
|
|
|
|
/**
|
|
* ata_sff_tf_load - send taskfile registers to host controller
|
|
* @ap: Port to which output is sent
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Outputs ATA taskfile to standard ATA host controller.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
|
|
|
|
if (tf->ctl != ap->last_ctl) {
|
|
if (ioaddr->ctl_addr)
|
|
iowrite8(tf->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
|
|
WARN_ON_ONCE(!ioaddr->ctl_addr);
|
|
iowrite8(tf->hob_feature, ioaddr->feature_addr);
|
|
iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
|
|
iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
|
|
iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
|
|
iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
|
|
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
|
|
tf->hob_feature,
|
|
tf->hob_nsect,
|
|
tf->hob_lbal,
|
|
tf->hob_lbam,
|
|
tf->hob_lbah);
|
|
}
|
|
|
|
if (is_addr) {
|
|
iowrite8(tf->feature, ioaddr->feature_addr);
|
|
iowrite8(tf->nsect, ioaddr->nsect_addr);
|
|
iowrite8(tf->lbal, ioaddr->lbal_addr);
|
|
iowrite8(tf->lbam, ioaddr->lbam_addr);
|
|
iowrite8(tf->lbah, ioaddr->lbah_addr);
|
|
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
|
|
tf->feature,
|
|
tf->nsect,
|
|
tf->lbal,
|
|
tf->lbam,
|
|
tf->lbah);
|
|
}
|
|
|
|
if (tf->flags & ATA_TFLAG_DEVICE) {
|
|
iowrite8(tf->device, ioaddr->device_addr);
|
|
VPRINTK("device 0x%X\n", tf->device);
|
|
}
|
|
|
|
ata_wait_idle(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_tf_load);
|
|
|
|
/**
|
|
* ata_sff_tf_read - input device's ATA taskfile shadow registers
|
|
* @ap: Port from which input is read
|
|
* @tf: ATA taskfile register set for storing input
|
|
*
|
|
* Reads ATA taskfile registers for currently-selected device
|
|
* into @tf. Assumes the device has a fully SFF compliant task file
|
|
* layout and behaviour. If you device does not (eg has a different
|
|
* status method) then you will need to provide a replacement tf_read
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
tf->command = ata_sff_check_status(ap);
|
|
tf->feature = ioread8(ioaddr->error_addr);
|
|
tf->nsect = ioread8(ioaddr->nsect_addr);
|
|
tf->lbal = ioread8(ioaddr->lbal_addr);
|
|
tf->lbam = ioread8(ioaddr->lbam_addr);
|
|
tf->lbah = ioread8(ioaddr->lbah_addr);
|
|
tf->device = ioread8(ioaddr->device_addr);
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
if (likely(ioaddr->ctl_addr)) {
|
|
iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
|
|
tf->hob_feature = ioread8(ioaddr->error_addr);
|
|
tf->hob_nsect = ioread8(ioaddr->nsect_addr);
|
|
tf->hob_lbal = ioread8(ioaddr->lbal_addr);
|
|
tf->hob_lbam = ioread8(ioaddr->lbam_addr);
|
|
tf->hob_lbah = ioread8(ioaddr->lbah_addr);
|
|
iowrite8(tf->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
} else
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_tf_read);
|
|
|
|
/**
|
|
* ata_sff_exec_command - issue ATA command to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues ATA command, with proper synchronization with interrupt
|
|
* handler / other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
|
|
|
|
iowrite8(tf->command, ap->ioaddr.command_addr);
|
|
ata_sff_pause(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_exec_command);
|
|
|
|
/**
|
|
* ata_tf_to_host - issue ATA taskfile to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues ATA taskfile register set to ATA host controller,
|
|
* with proper synchronization with interrupt handler and
|
|
* other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
static inline void ata_tf_to_host(struct ata_port *ap,
|
|
const struct ata_taskfile *tf)
|
|
{
|
|
ap->ops->sff_tf_load(ap, tf);
|
|
ap->ops->sff_exec_command(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_data_xfer - Transfer data by PIO
|
|
* @dev: device to target
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @rw: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* Bytes consumed.
|
|
*/
|
|
unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
|
|
unsigned int buflen, int rw)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
void __iomem *data_addr = ap->ioaddr.data_addr;
|
|
unsigned int words = buflen >> 1;
|
|
|
|
/* Transfer multiple of 2 bytes */
|
|
if (rw == READ)
|
|
ioread16_rep(data_addr, buf, words);
|
|
else
|
|
iowrite16_rep(data_addr, buf, words);
|
|
|
|
/* Transfer trailing byte, if any. */
|
|
if (unlikely(buflen & 0x01)) {
|
|
unsigned char pad[2] = { };
|
|
|
|
/* Point buf to the tail of buffer */
|
|
buf += buflen - 1;
|
|
|
|
/*
|
|
* Use io*16_rep() accessors here as well to avoid pointlessly
|
|
* swapping bytes to and from on the big endian machines...
|
|
*/
|
|
if (rw == READ) {
|
|
ioread16_rep(data_addr, pad, 1);
|
|
*buf = pad[0];
|
|
} else {
|
|
pad[0] = *buf;
|
|
iowrite16_rep(data_addr, pad, 1);
|
|
}
|
|
words++;
|
|
}
|
|
|
|
return words << 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
|
|
|
|
/**
|
|
* ata_sff_data_xfer32 - Transfer data by PIO
|
|
* @dev: device to target
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @rw: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO using 32bit
|
|
* I/O operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* Bytes consumed.
|
|
*/
|
|
|
|
unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
|
|
unsigned int buflen, int rw)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
void __iomem *data_addr = ap->ioaddr.data_addr;
|
|
unsigned int words = buflen >> 2;
|
|
int slop = buflen & 3;
|
|
|
|
if (!(ap->pflags & ATA_PFLAG_PIO32))
|
|
return ata_sff_data_xfer(dev, buf, buflen, rw);
|
|
|
|
/* Transfer multiple of 4 bytes */
|
|
if (rw == READ)
|
|
ioread32_rep(data_addr, buf, words);
|
|
else
|
|
iowrite32_rep(data_addr, buf, words);
|
|
|
|
/* Transfer trailing bytes, if any */
|
|
if (unlikely(slop)) {
|
|
unsigned char pad[4] = { };
|
|
|
|
/* Point buf to the tail of buffer */
|
|
buf += buflen - slop;
|
|
|
|
/*
|
|
* Use io*_rep() accessors here as well to avoid pointlessly
|
|
* swapping bytes to and from on the big endian machines...
|
|
*/
|
|
if (rw == READ) {
|
|
if (slop < 3)
|
|
ioread16_rep(data_addr, pad, 1);
|
|
else
|
|
ioread32_rep(data_addr, pad, 1);
|
|
memcpy(buf, pad, slop);
|
|
} else {
|
|
memcpy(pad, buf, slop);
|
|
if (slop < 3)
|
|
iowrite16_rep(data_addr, pad, 1);
|
|
else
|
|
iowrite32_rep(data_addr, pad, 1);
|
|
}
|
|
}
|
|
return (buflen + 1) & ~1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
|
|
|
|
/**
|
|
* ata_sff_data_xfer_noirq - Transfer data by PIO
|
|
* @dev: device to target
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @rw: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO. Do the
|
|
* transfer with interrupts disabled.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* Bytes consumed.
|
|
*/
|
|
unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
|
|
unsigned int buflen, int rw)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int consumed;
|
|
|
|
local_irq_save(flags);
|
|
consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
|
|
local_irq_restore(flags);
|
|
|
|
return consumed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
|
|
|
|
/**
|
|
* ata_pio_sector - Transfer a sector of data.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer qc->sect_size bytes of data from/to the ATA device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void ata_pio_sector(struct ata_queued_cmd *qc)
|
|
{
|
|
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
struct ata_port *ap = qc->ap;
|
|
struct page *page;
|
|
unsigned int offset;
|
|
unsigned char *buf;
|
|
|
|
if (qc->curbytes == qc->nbytes - qc->sect_size)
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
page = sg_page(qc->cursg);
|
|
offset = qc->cursg->offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
if (PageHighMem(page)) {
|
|
unsigned long flags;
|
|
|
|
/* FIXME: use a bounce buffer */
|
|
local_irq_save(flags);
|
|
buf = kmap_atomic(page);
|
|
|
|
/* do the actual data transfer */
|
|
ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
|
|
do_write);
|
|
|
|
kunmap_atomic(buf);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
buf = page_address(page);
|
|
ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
|
|
do_write);
|
|
}
|
|
|
|
if (!do_write && !PageSlab(page))
|
|
flush_dcache_page(page);
|
|
|
|
qc->curbytes += qc->sect_size;
|
|
qc->cursg_ofs += qc->sect_size;
|
|
|
|
if (qc->cursg_ofs == qc->cursg->length) {
|
|
qc->cursg = sg_next(qc->cursg);
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pio_sectors - Transfer one or many sectors.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer one or many sectors of data from/to the
|
|
* ATA device for the DRQ request.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void ata_pio_sectors(struct ata_queued_cmd *qc)
|
|
{
|
|
if (is_multi_taskfile(&qc->tf)) {
|
|
/* READ/WRITE MULTIPLE */
|
|
unsigned int nsect;
|
|
|
|
WARN_ON_ONCE(qc->dev->multi_count == 0);
|
|
|
|
nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
|
|
qc->dev->multi_count);
|
|
while (nsect--)
|
|
ata_pio_sector(qc);
|
|
} else
|
|
ata_pio_sector(qc);
|
|
|
|
ata_sff_sync(qc->ap); /* flush */
|
|
}
|
|
|
|
/**
|
|
* atapi_send_cdb - Write CDB bytes to hardware
|
|
* @ap: Port to which ATAPI device is attached.
|
|
* @qc: Taskfile currently active
|
|
*
|
|
* When device has indicated its readiness to accept
|
|
* a CDB, this function is called. Send the CDB.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
/* send SCSI cdb */
|
|
DPRINTK("send cdb\n");
|
|
WARN_ON_ONCE(qc->dev->cdb_len < 12);
|
|
|
|
ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
|
|
ata_sff_sync(ap);
|
|
/* FIXME: If the CDB is for DMA do we need to do the transition delay
|
|
or is bmdma_start guaranteed to do it ? */
|
|
switch (qc->tf.protocol) {
|
|
case ATAPI_PROT_PIO:
|
|
ap->hsm_task_state = HSM_ST;
|
|
break;
|
|
case ATAPI_PROT_NODATA:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
case ATAPI_PROT_DMA:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
/* initiate bmdma */
|
|
ap->ops->bmdma_start(qc);
|
|
break;
|
|
#endif /* CONFIG_ATA_BMDMA */
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
* @bytes: number of bytes
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
*/
|
|
static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
|
|
{
|
|
int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *dev = qc->dev;
|
|
struct ata_eh_info *ehi = &dev->link->eh_info;
|
|
struct scatterlist *sg;
|
|
struct page *page;
|
|
unsigned char *buf;
|
|
unsigned int offset, count, consumed;
|
|
|
|
next_sg:
|
|
sg = qc->cursg;
|
|
if (unlikely(!sg)) {
|
|
ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
|
|
"buf=%u cur=%u bytes=%u",
|
|
qc->nbytes, qc->curbytes, bytes);
|
|
return -1;
|
|
}
|
|
|
|
page = sg_page(sg);
|
|
offset = sg->offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
/* don't overrun current sg */
|
|
count = min(sg->length - qc->cursg_ofs, bytes);
|
|
|
|
/* don't cross page boundaries */
|
|
count = min(count, (unsigned int)PAGE_SIZE - offset);
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
if (PageHighMem(page)) {
|
|
unsigned long flags;
|
|
|
|
/* FIXME: use bounce buffer */
|
|
local_irq_save(flags);
|
|
buf = kmap_atomic(page);
|
|
|
|
/* do the actual data transfer */
|
|
consumed = ap->ops->sff_data_xfer(dev, buf + offset,
|
|
count, rw);
|
|
|
|
kunmap_atomic(buf);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
buf = page_address(page);
|
|
consumed = ap->ops->sff_data_xfer(dev, buf + offset,
|
|
count, rw);
|
|
}
|
|
|
|
bytes -= min(bytes, consumed);
|
|
qc->curbytes += count;
|
|
qc->cursg_ofs += count;
|
|
|
|
if (qc->cursg_ofs == sg->length) {
|
|
qc->cursg = sg_next(qc->cursg);
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
|
|
/*
|
|
* There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
|
|
* Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
|
|
* check correctly as it doesn't know if it is the last request being
|
|
* made. Somebody should implement a proper sanity check.
|
|
*/
|
|
if (bytes)
|
|
goto next_sg;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *dev = qc->dev;
|
|
struct ata_eh_info *ehi = &dev->link->eh_info;
|
|
unsigned int ireason, bc_lo, bc_hi, bytes;
|
|
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
/* Abuse qc->result_tf for temp storage of intermediate TF
|
|
* here to save some kernel stack usage.
|
|
* For normal completion, qc->result_tf is not relevant. For
|
|
* error, qc->result_tf is later overwritten by ata_qc_complete().
|
|
* So, the correctness of qc->result_tf is not affected.
|
|
*/
|
|
ap->ops->sff_tf_read(ap, &qc->result_tf);
|
|
ireason = qc->result_tf.nsect;
|
|
bc_lo = qc->result_tf.lbam;
|
|
bc_hi = qc->result_tf.lbah;
|
|
bytes = (bc_hi << 8) | bc_lo;
|
|
|
|
/* shall be cleared to zero, indicating xfer of data */
|
|
if (unlikely(ireason & ATAPI_COD))
|
|
goto atapi_check;
|
|
|
|
/* make sure transfer direction matches expected */
|
|
i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
|
|
if (unlikely(do_write != i_write))
|
|
goto atapi_check;
|
|
|
|
if (unlikely(!bytes))
|
|
goto atapi_check;
|
|
|
|
VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
|
|
|
|
if (unlikely(__atapi_pio_bytes(qc, bytes)))
|
|
goto err_out;
|
|
ata_sff_sync(ap); /* flush */
|
|
|
|
return;
|
|
|
|
atapi_check:
|
|
ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
|
|
ireason, bytes);
|
|
err_out:
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
|
|
* @ap: the target ata_port
|
|
* @qc: qc on going
|
|
*
|
|
* RETURNS:
|
|
* 1 if ok in workqueue, 0 otherwise.
|
|
*/
|
|
static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
|
|
struct ata_queued_cmd *qc)
|
|
{
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
return 1;
|
|
|
|
if (ap->hsm_task_state == HSM_ST_FIRST) {
|
|
if (qc->tf.protocol == ATA_PROT_PIO &&
|
|
(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
return 1;
|
|
|
|
if (ata_is_atapi(qc->tf.protocol) &&
|
|
!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_qc_complete - finish a qc running on standard HSM
|
|
* @qc: Command to complete
|
|
* @in_wq: 1 if called from workqueue, 0 otherwise
|
|
*
|
|
* Finish @qc which is running on standard HSM.
|
|
*
|
|
* LOCKING:
|
|
* If @in_wq is zero, spin_lock_irqsave(host lock).
|
|
* Otherwise, none on entry and grabs host lock.
|
|
*/
|
|
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned long flags;
|
|
|
|
if (ap->ops->error_handler) {
|
|
if (in_wq) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/* EH might have kicked in while host lock is
|
|
* released.
|
|
*/
|
|
qc = ata_qc_from_tag(ap, qc->tag);
|
|
if (qc) {
|
|
if (likely(!(qc->err_mask & AC_ERR_HSM))) {
|
|
ata_sff_irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
} else
|
|
ata_port_freeze(ap);
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
} else {
|
|
if (likely(!(qc->err_mask & AC_ERR_HSM)))
|
|
ata_qc_complete(qc);
|
|
else
|
|
ata_port_freeze(ap);
|
|
}
|
|
} else {
|
|
if (in_wq) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ata_sff_irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
} else
|
|
ata_qc_complete(qc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_sff_hsm_move - move the HSM to the next state.
|
|
* @ap: the target ata_port
|
|
* @qc: qc on going
|
|
* @status: current device status
|
|
* @in_wq: 1 if called from workqueue, 0 otherwise
|
|
*
|
|
* RETURNS:
|
|
* 1 when poll next status needed, 0 otherwise.
|
|
*/
|
|
int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
|
|
u8 status, int in_wq)
|
|
{
|
|
struct ata_link *link = qc->dev->link;
|
|
struct ata_eh_info *ehi = &link->eh_info;
|
|
unsigned long flags = 0;
|
|
int poll_next;
|
|
|
|
WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
|
|
|
|
/* Make sure ata_sff_qc_issue() does not throw things
|
|
* like DMA polling into the workqueue. Notice that
|
|
* in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
|
|
*/
|
|
WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
|
|
|
|
fsm_start:
|
|
DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
|
|
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_FIRST:
|
|
/* Send first data block or PACKET CDB */
|
|
|
|
/* If polling, we will stay in the work queue after
|
|
* sending the data. Otherwise, interrupt handler
|
|
* takes over after sending the data.
|
|
*/
|
|
poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
/* check device status */
|
|
if (unlikely((status & ATA_DRQ) == 0)) {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if (likely(status & (ATA_ERR | ATA_DF)))
|
|
/* device stops HSM for abort/error */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
else {
|
|
/* HSM violation. Let EH handle this */
|
|
ata_ehi_push_desc(ehi,
|
|
"ST_FIRST: !(DRQ|ERR|DF)");
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
}
|
|
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Device should not ask for data transfer (DRQ=1)
|
|
* when it finds something wrong.
|
|
* We ignore DRQ here and stop the HSM by
|
|
* changing hsm_task_state to HSM_ST_ERR and
|
|
* let the EH abort the command or reset the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
/* Some ATAPI tape drives forget to clear the ERR bit
|
|
* when doing the next command (mostly request sense).
|
|
* We ignore ERR here to workaround and proceed sending
|
|
* the CDB.
|
|
*/
|
|
if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
|
|
ata_ehi_push_desc(ehi, "ST_FIRST: "
|
|
"DRQ=1 with device error, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
}
|
|
|
|
/* Send the CDB (atapi) or the first data block (ata pio out).
|
|
* During the state transition, interrupt handler shouldn't
|
|
* be invoked before the data transfer is complete and
|
|
* hsm_task_state is changed. Hence, the following locking.
|
|
*/
|
|
if (in_wq)
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
if (qc->tf.protocol == ATA_PROT_PIO) {
|
|
/* PIO data out protocol.
|
|
* send first data block.
|
|
*/
|
|
|
|
/* ata_pio_sectors() might change the state
|
|
* to HSM_ST_LAST. so, the state is changed here
|
|
* before ata_pio_sectors().
|
|
*/
|
|
ap->hsm_task_state = HSM_ST;
|
|
ata_pio_sectors(qc);
|
|
} else
|
|
/* send CDB */
|
|
atapi_send_cdb(ap, qc);
|
|
|
|
if (in_wq)
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* if polling, ata_sff_pio_task() handles the rest.
|
|
* otherwise, interrupt handler takes over from here.
|
|
*/
|
|
break;
|
|
|
|
case HSM_ST:
|
|
/* complete command or read/write the data register */
|
|
if (qc->tf.protocol == ATAPI_PROT_PIO) {
|
|
/* ATAPI PIO protocol */
|
|
if ((status & ATA_DRQ) == 0) {
|
|
/* No more data to transfer or device error.
|
|
* Device error will be tagged in HSM_ST_LAST.
|
|
*/
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Device should not ask for data transfer (DRQ=1)
|
|
* when it finds something wrong.
|
|
* We ignore DRQ here and stop the HSM by
|
|
* changing hsm_task_state to HSM_ST_ERR and
|
|
* let the EH abort the command or reset the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
ata_ehi_push_desc(ehi, "ST-ATAPI: "
|
|
"DRQ=1 with device error, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
atapi_pio_bytes(qc);
|
|
|
|
if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
|
|
/* bad ireason reported by device */
|
|
goto fsm_start;
|
|
|
|
} else {
|
|
/* ATA PIO protocol */
|
|
if (unlikely((status & ATA_DRQ) == 0)) {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if (likely(status & (ATA_ERR | ATA_DF))) {
|
|
/* device stops HSM for abort/error */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
/* If diagnostic failed and this is
|
|
* IDENTIFY, it's likely a phantom
|
|
* device. Mark hint.
|
|
*/
|
|
if (qc->dev->horkage &
|
|
ATA_HORKAGE_DIAGNOSTIC)
|
|
qc->err_mask |=
|
|
AC_ERR_NODEV_HINT;
|
|
} else {
|
|
/* HSM violation. Let EH handle this.
|
|
* Phantom devices also trigger this
|
|
* condition. Mark hint.
|
|
*/
|
|
ata_ehi_push_desc(ehi, "ST-ATA: "
|
|
"DRQ=0 without device error, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM |
|
|
AC_ERR_NODEV_HINT;
|
|
}
|
|
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* For PIO reads, some devices may ask for
|
|
* data transfer (DRQ=1) alone with ERR=1.
|
|
* We respect DRQ here and transfer one
|
|
* block of junk data before changing the
|
|
* hsm_task_state to HSM_ST_ERR.
|
|
*
|
|
* For PIO writes, ERR=1 DRQ=1 doesn't make
|
|
* sense since the data block has been
|
|
* transferred to the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
/* data might be corrputed */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
|
|
ata_pio_sectors(qc);
|
|
status = ata_wait_idle(ap);
|
|
}
|
|
|
|
if (status & (ATA_BUSY | ATA_DRQ)) {
|
|
ata_ehi_push_desc(ehi, "ST-ATA: "
|
|
"BUSY|DRQ persists on ERR|DF, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
}
|
|
|
|
/* There are oddball controllers with
|
|
* status register stuck at 0x7f and
|
|
* lbal/m/h at zero which makes it
|
|
* pass all other presence detection
|
|
* mechanisms we have. Set NODEV_HINT
|
|
* for it. Kernel bz#7241.
|
|
*/
|
|
if (status == 0x7f)
|
|
qc->err_mask |= AC_ERR_NODEV_HINT;
|
|
|
|
/* ata_pio_sectors() might change the
|
|
* state to HSM_ST_LAST. so, the state
|
|
* is changed after ata_pio_sectors().
|
|
*/
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
ata_pio_sectors(qc);
|
|
|
|
if (ap->hsm_task_state == HSM_ST_LAST &&
|
|
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
|
|
/* all data read */
|
|
status = ata_wait_idle(ap);
|
|
goto fsm_start;
|
|
}
|
|
}
|
|
|
|
poll_next = 1;
|
|
break;
|
|
|
|
case HSM_ST_LAST:
|
|
if (unlikely(!ata_ok(status))) {
|
|
qc->err_mask |= __ac_err_mask(status);
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* no more data to transfer */
|
|
DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
|
|
ap->print_id, qc->dev->devno, status);
|
|
|
|
WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
|
|
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
/* complete taskfile transaction */
|
|
ata_hsm_qc_complete(qc, in_wq);
|
|
|
|
poll_next = 0;
|
|
break;
|
|
|
|
case HSM_ST_ERR:
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
/* complete taskfile transaction */
|
|
ata_hsm_qc_complete(qc, in_wq);
|
|
|
|
poll_next = 0;
|
|
break;
|
|
default:
|
|
poll_next = 0;
|
|
BUG();
|
|
}
|
|
|
|
return poll_next;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
|
|
|
|
void ata_sff_queue_work(struct work_struct *work)
|
|
{
|
|
queue_work(ata_sff_wq, work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_queue_work);
|
|
|
|
void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
queue_delayed_work(ata_sff_wq, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
|
|
|
|
void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
|
|
WARN_ON((ap->sff_pio_task_link != NULL) &&
|
|
(ap->sff_pio_task_link != link));
|
|
ap->sff_pio_task_link = link;
|
|
|
|
/* may fail if ata_sff_flush_pio_task() in progress */
|
|
ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
|
|
|
|
void ata_sff_flush_pio_task(struct ata_port *ap)
|
|
{
|
|
DPRINTK("ENTER\n");
|
|
|
|
cancel_delayed_work_sync(&ap->sff_pio_task);
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
ap->sff_pio_task_link = NULL;
|
|
|
|
if (ata_msg_ctl(ap))
|
|
ata_port_dbg(ap, "%s: EXIT\n", __func__);
|
|
}
|
|
|
|
static void ata_sff_pio_task(struct work_struct *work)
|
|
{
|
|
struct ata_port *ap =
|
|
container_of(work, struct ata_port, sff_pio_task.work);
|
|
struct ata_link *link = ap->sff_pio_task_link;
|
|
struct ata_queued_cmd *qc;
|
|
u8 status;
|
|
int poll_next;
|
|
|
|
BUG_ON(ap->sff_pio_task_link == NULL);
|
|
/* qc can be NULL if timeout occurred */
|
|
qc = ata_qc_from_tag(ap, link->active_tag);
|
|
if (!qc) {
|
|
ap->sff_pio_task_link = NULL;
|
|
return;
|
|
}
|
|
|
|
fsm_start:
|
|
WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
|
|
|
|
/*
|
|
* This is purely heuristic. This is a fast path.
|
|
* Sometimes when we enter, BSY will be cleared in
|
|
* a chk-status or two. If not, the drive is probably seeking
|
|
* or something. Snooze for a couple msecs, then
|
|
* chk-status again. If still busy, queue delayed work.
|
|
*/
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
|
|
if (status & ATA_BUSY) {
|
|
ata_msleep(ap, 2);
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
|
|
if (status & ATA_BUSY) {
|
|
ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* hsm_move() may trigger another command to be processed.
|
|
* clean the link beforehand.
|
|
*/
|
|
ap->sff_pio_task_link = NULL;
|
|
/* move the HSM */
|
|
poll_next = ata_sff_hsm_move(ap, qc, status, 1);
|
|
|
|
/* another command or interrupt handler
|
|
* may be running at this point.
|
|
*/
|
|
if (poll_next)
|
|
goto fsm_start;
|
|
}
|
|
|
|
/**
|
|
* ata_sff_qc_issue - issue taskfile to a SFF controller
|
|
* @qc: command to issue to device
|
|
*
|
|
* This function issues a PIO or NODATA command to a SFF
|
|
* controller.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_link *link = qc->dev->link;
|
|
|
|
/* Use polling pio if the LLD doesn't handle
|
|
* interrupt driven pio and atapi CDB interrupt.
|
|
*/
|
|
if (ap->flags & ATA_FLAG_PIO_POLLING)
|
|
qc->tf.flags |= ATA_TFLAG_POLLING;
|
|
|
|
/* select the device */
|
|
ata_dev_select(ap, qc->dev->devno, 1, 0);
|
|
|
|
/* start the command */
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_NODATA:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_sff_queue_pio_task(link, 0);
|
|
|
|
break;
|
|
|
|
case ATA_PROT_PIO:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE) {
|
|
/* PIO data out protocol */
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
ata_sff_queue_pio_task(link, 0);
|
|
|
|
/* always send first data block using the
|
|
* ata_sff_pio_task() codepath.
|
|
*/
|
|
} else {
|
|
/* PIO data in protocol */
|
|
ap->hsm_task_state = HSM_ST;
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_sff_queue_pio_task(link, 0);
|
|
|
|
/* if polling, ata_sff_pio_task() handles the
|
|
* rest. otherwise, interrupt handler takes
|
|
* over from here.
|
|
*/
|
|
}
|
|
|
|
break;
|
|
|
|
case ATAPI_PROT_PIO:
|
|
case ATAPI_PROT_NODATA:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
|
|
/* send cdb by polling if no cdb interrupt */
|
|
if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
|
|
(qc->tf.flags & ATA_TFLAG_POLLING))
|
|
ata_sff_queue_pio_task(link, 0);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
|
|
|
|
/**
|
|
* ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
|
|
* @qc: qc to fill result TF for
|
|
*
|
|
* @qc is finished and result TF needs to be filled. Fill it
|
|
* using ->sff_tf_read.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* true indicating that result TF is successfully filled.
|
|
*/
|
|
bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
|
|
{
|
|
qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
|
|
|
|
static unsigned int ata_sff_idle_irq(struct ata_port *ap)
|
|
{
|
|
ap->stats.idle_irq++;
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
if ((ap->stats.idle_irq % 1000) == 0) {
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
ata_port_warn(ap, "irq trap\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0; /* irq not handled */
|
|
}
|
|
|
|
static unsigned int __ata_sff_port_intr(struct ata_port *ap,
|
|
struct ata_queued_cmd *qc,
|
|
bool hsmv_on_idle)
|
|
{
|
|
u8 status;
|
|
|
|
VPRINTK("ata%u: protocol %d task_state %d\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state);
|
|
|
|
/* Check whether we are expecting interrupt in this state */
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_FIRST:
|
|
/* Some pre-ATAPI-4 devices assert INTRQ
|
|
* at this state when ready to receive CDB.
|
|
*/
|
|
|
|
/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
|
|
* The flag was turned on only for atapi devices. No
|
|
* need to check ata_is_atapi(qc->tf.protocol) again.
|
|
*/
|
|
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return ata_sff_idle_irq(ap);
|
|
break;
|
|
case HSM_ST_IDLE:
|
|
return ata_sff_idle_irq(ap);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* check main status, clearing INTRQ if needed */
|
|
status = ata_sff_irq_status(ap);
|
|
if (status & ATA_BUSY) {
|
|
if (hsmv_on_idle) {
|
|
/* BMDMA engine is already stopped, we're screwed */
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
} else
|
|
return ata_sff_idle_irq(ap);
|
|
}
|
|
|
|
/* clear irq events */
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
|
|
ata_sff_hsm_move(ap, qc, status, 0);
|
|
|
|
return 1; /* irq handled */
|
|
}
|
|
|
|
/**
|
|
* ata_sff_port_intr - Handle SFF port interrupt
|
|
* @ap: Port on which interrupt arrived (possibly...)
|
|
* @qc: Taskfile currently active in engine
|
|
*
|
|
* Handle port interrupt for given queued command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* One if interrupt was handled, zero if not (shared irq).
|
|
*/
|
|
unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
return __ata_sff_port_intr(ap, qc, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_port_intr);
|
|
|
|
static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
|
|
unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
|
|
{
|
|
struct ata_host *host = dev_instance;
|
|
bool retried = false;
|
|
unsigned int i;
|
|
unsigned int handled, idle, polling;
|
|
unsigned long flags;
|
|
|
|
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
retry:
|
|
handled = idle = polling = 0;
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc) {
|
|
if (!(qc->tf.flags & ATA_TFLAG_POLLING))
|
|
handled |= port_intr(ap, qc);
|
|
else
|
|
polling |= 1 << i;
|
|
} else
|
|
idle |= 1 << i;
|
|
}
|
|
|
|
/*
|
|
* If no port was expecting IRQ but the controller is actually
|
|
* asserting IRQ line, nobody cared will ensue. Check IRQ
|
|
* pending status if available and clear spurious IRQ.
|
|
*/
|
|
if (!handled && !retried) {
|
|
bool retry = false;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (polling & (1 << i))
|
|
continue;
|
|
|
|
if (!ap->ops->sff_irq_check ||
|
|
!ap->ops->sff_irq_check(ap))
|
|
continue;
|
|
|
|
if (idle & (1 << i)) {
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
} else {
|
|
/* clear INTRQ and check if BUSY cleared */
|
|
if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
|
|
retry |= true;
|
|
/*
|
|
* With command in flight, we can't do
|
|
* sff_irq_clear() w/o racing with completion.
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (retry) {
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_interrupt - Default SFF ATA host interrupt handler
|
|
* @irq: irq line (unused)
|
|
* @dev_instance: pointer to our ata_host information structure
|
|
*
|
|
* Default interrupt handler for PCI IDE devices. Calls
|
|
* ata_sff_port_intr() for each port that is not disabled.
|
|
*
|
|
* LOCKING:
|
|
* Obtains host lock during operation.
|
|
*
|
|
* RETURNS:
|
|
* IRQ_NONE or IRQ_HANDLED.
|
|
*/
|
|
irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
|
|
{
|
|
return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_interrupt);
|
|
|
|
/**
|
|
* ata_sff_lost_interrupt - Check for an apparent lost interrupt
|
|
* @ap: port that appears to have timed out
|
|
*
|
|
* Called from the libata error handlers when the core code suspects
|
|
* an interrupt has been lost. If it has complete anything we can and
|
|
* then return. Interface must support altstatus for this faster
|
|
* recovery to occur.
|
|
*
|
|
* Locking:
|
|
* Caller holds host lock
|
|
*/
|
|
|
|
void ata_sff_lost_interrupt(struct ata_port *ap)
|
|
{
|
|
u8 status;
|
|
struct ata_queued_cmd *qc;
|
|
|
|
/* Only one outstanding command per SFF channel */
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
/* We cannot lose an interrupt on a non-existent or polled command */
|
|
if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
|
|
return;
|
|
/* See if the controller thinks it is still busy - if so the command
|
|
isn't a lost IRQ but is still in progress */
|
|
status = ata_sff_altstatus(ap);
|
|
if (status & ATA_BUSY)
|
|
return;
|
|
|
|
/* There was a command running, we are no longer busy and we have
|
|
no interrupt. */
|
|
ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
|
|
status);
|
|
/* Run the host interrupt logic as if the interrupt had not been
|
|
lost */
|
|
ata_sff_port_intr(ap, qc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
|
|
|
|
/**
|
|
* ata_sff_freeze - Freeze SFF controller port
|
|
* @ap: port to freeze
|
|
*
|
|
* Freeze SFF controller port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_freeze(struct ata_port *ap)
|
|
{
|
|
ap->ctl |= ATA_NIEN;
|
|
ap->last_ctl = ap->ctl;
|
|
|
|
if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
|
|
ata_sff_set_devctl(ap, ap->ctl);
|
|
|
|
/* Under certain circumstances, some controllers raise IRQ on
|
|
* ATA_NIEN manipulation. Also, many controllers fail to mask
|
|
* previously pending IRQ on ATA_NIEN assertion. Clear it.
|
|
*/
|
|
ap->ops->sff_check_status(ap);
|
|
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_freeze);
|
|
|
|
/**
|
|
* ata_sff_thaw - Thaw SFF controller port
|
|
* @ap: port to thaw
|
|
*
|
|
* Thaw SFF controller port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_thaw(struct ata_port *ap)
|
|
{
|
|
/* clear & re-enable interrupts */
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
ata_sff_irq_on(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_thaw);
|
|
|
|
/**
|
|
* ata_sff_prereset - prepare SFF link for reset
|
|
* @link: SFF link to be reset
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* SFF link @link is about to be reset. Initialize it. It first
|
|
* calls ata_std_prereset() and wait for !BSY if the port is
|
|
* being softreset.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
int rc;
|
|
|
|
rc = ata_std_prereset(link, deadline);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* if we're about to do hardreset, nothing more to do */
|
|
if (ehc->i.action & ATA_EH_HARDRESET)
|
|
return 0;
|
|
|
|
/* wait for !BSY if we don't know that no device is attached */
|
|
if (!ata_link_offline(link)) {
|
|
rc = ata_sff_wait_ready(link, deadline);
|
|
if (rc && rc != -ENODEV) {
|
|
ata_link_warn(link,
|
|
"device not ready (errno=%d), forcing hardreset\n",
|
|
rc);
|
|
ehc->i.action |= ATA_EH_HARDRESET;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_prereset);
|
|
|
|
/**
|
|
* ata_devchk - PATA device presence detection
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* This technique was originally described in
|
|
* Hale Landis's ATADRVR (www.ata-atapi.com), and
|
|
* later found its way into the ATA/ATAPI spec.
|
|
*
|
|
* Write a pattern to the ATA shadow registers,
|
|
* and if a device is present, it will respond by
|
|
* correctly storing and echoing back the
|
|
* ATA shadow register contents.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->sff_dev_select(ap, device);
|
|
|
|
iowrite8(0x55, ioaddr->nsect_addr);
|
|
iowrite8(0xaa, ioaddr->lbal_addr);
|
|
|
|
iowrite8(0xaa, ioaddr->nsect_addr);
|
|
iowrite8(0x55, ioaddr->lbal_addr);
|
|
|
|
iowrite8(0x55, ioaddr->nsect_addr);
|
|
iowrite8(0xaa, ioaddr->lbal_addr);
|
|
|
|
nsect = ioread8(ioaddr->nsect_addr);
|
|
lbal = ioread8(ioaddr->lbal_addr);
|
|
|
|
if ((nsect == 0x55) && (lbal == 0xaa))
|
|
return 1; /* we found a device */
|
|
|
|
return 0; /* nothing found */
|
|
}
|
|
|
|
/**
|
|
* ata_sff_dev_classify - Parse returned ATA device signature
|
|
* @dev: ATA device to classify (starting at zero)
|
|
* @present: device seems present
|
|
* @r_err: Value of error register on completion
|
|
*
|
|
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
|
|
* an ATA/ATAPI-defined set of values is placed in the ATA
|
|
* shadow registers, indicating the results of device detection
|
|
* and diagnostics.
|
|
*
|
|
* Select the ATA device, and read the values from the ATA shadow
|
|
* registers. Then parse according to the Error register value,
|
|
* and the spec-defined values examined by ata_dev_classify().
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*
|
|
* RETURNS:
|
|
* Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
|
|
*/
|
|
unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
|
|
u8 *r_err)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
struct ata_taskfile tf;
|
|
unsigned int class;
|
|
u8 err;
|
|
|
|
ap->ops->sff_dev_select(ap, dev->devno);
|
|
|
|
memset(&tf, 0, sizeof(tf));
|
|
|
|
ap->ops->sff_tf_read(ap, &tf);
|
|
err = tf.feature;
|
|
if (r_err)
|
|
*r_err = err;
|
|
|
|
/* see if device passed diags: continue and warn later */
|
|
if (err == 0)
|
|
/* diagnostic fail : do nothing _YET_ */
|
|
dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
|
|
else if (err == 1)
|
|
/* do nothing */ ;
|
|
else if ((dev->devno == 0) && (err == 0x81))
|
|
/* do nothing */ ;
|
|
else
|
|
return ATA_DEV_NONE;
|
|
|
|
/* determine if device is ATA or ATAPI */
|
|
class = ata_dev_classify(&tf);
|
|
|
|
if (class == ATA_DEV_UNKNOWN) {
|
|
/* If the device failed diagnostic, it's likely to
|
|
* have reported incorrect device signature too.
|
|
* Assume ATA device if the device seems present but
|
|
* device signature is invalid with diagnostic
|
|
* failure.
|
|
*/
|
|
if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
|
|
class = ATA_DEV_ATA;
|
|
else
|
|
class = ATA_DEV_NONE;
|
|
} else if ((class == ATA_DEV_ATA) &&
|
|
(ap->ops->sff_check_status(ap) == 0))
|
|
class = ATA_DEV_NONE;
|
|
|
|
return class;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
|
|
|
|
/**
|
|
* ata_sff_wait_after_reset - wait for devices to become ready after reset
|
|
* @link: SFF link which is just reset
|
|
* @devmask: mask of present devices
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Wait devices attached to SFF @link to become ready after
|
|
* reset. It contains preceding 150ms wait to avoid accessing TF
|
|
* status register too early.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -ENODEV if some or all of devices in @devmask
|
|
* don't seem to exist. -errno on other errors.
|
|
*/
|
|
int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int dev0 = devmask & (1 << 0);
|
|
unsigned int dev1 = devmask & (1 << 1);
|
|
int rc, ret = 0;
|
|
|
|
ata_msleep(ap, ATA_WAIT_AFTER_RESET);
|
|
|
|
/* always check readiness of the master device */
|
|
rc = ata_sff_wait_ready(link, deadline);
|
|
/* -ENODEV means the odd clown forgot the D7 pulldown resistor
|
|
* and TF status is 0xff, bail out on it too.
|
|
*/
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* if device 1 was found in ata_devchk, wait for register
|
|
* access briefly, then wait for BSY to clear.
|
|
*/
|
|
if (dev1) {
|
|
int i;
|
|
|
|
ap->ops->sff_dev_select(ap, 1);
|
|
|
|
/* Wait for register access. Some ATAPI devices fail
|
|
* to set nsect/lbal after reset, so don't waste too
|
|
* much time on it. We're gonna wait for !BSY anyway.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
u8 nsect, lbal;
|
|
|
|
nsect = ioread8(ioaddr->nsect_addr);
|
|
lbal = ioread8(ioaddr->lbal_addr);
|
|
if ((nsect == 1) && (lbal == 1))
|
|
break;
|
|
ata_msleep(ap, 50); /* give drive a breather */
|
|
}
|
|
|
|
rc = ata_sff_wait_ready(link, deadline);
|
|
if (rc) {
|
|
if (rc != -ENODEV)
|
|
return rc;
|
|
ret = rc;
|
|
}
|
|
}
|
|
|
|
/* is all this really necessary? */
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
if (dev1)
|
|
ap->ops->sff_dev_select(ap, 1);
|
|
if (dev0)
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
|
|
|
|
static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
|
|
|
|
/* software reset. causes dev0 to be selected */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = ap->ctl;
|
|
|
|
/* wait the port to become ready */
|
|
return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_softreset - reset host port via ATA SRST
|
|
* @link: ATA link to reset
|
|
* @classes: resulting classes of attached devices
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Reset host port using ATA SRST.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
|
|
unsigned int devmask = 0;
|
|
int rc;
|
|
u8 err;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
/* determine if device 0/1 are present */
|
|
if (ata_devchk(ap, 0))
|
|
devmask |= (1 << 0);
|
|
if (slave_possible && ata_devchk(ap, 1))
|
|
devmask |= (1 << 1);
|
|
|
|
/* select device 0 again */
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
|
|
/* issue bus reset */
|
|
DPRINTK("about to softreset, devmask=%x\n", devmask);
|
|
rc = ata_bus_softreset(ap, devmask, deadline);
|
|
/* if link is occupied, -ENODEV too is an error */
|
|
if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
|
|
ata_link_err(link, "SRST failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* determine by signature whether we have ATA or ATAPI devices */
|
|
classes[0] = ata_sff_dev_classify(&link->device[0],
|
|
devmask & (1 << 0), &err);
|
|
if (slave_possible && err != 0x81)
|
|
classes[1] = ata_sff_dev_classify(&link->device[1],
|
|
devmask & (1 << 1), &err);
|
|
|
|
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_softreset);
|
|
|
|
/**
|
|
* sata_sff_hardreset - reset host port via SATA phy reset
|
|
* @link: link to reset
|
|
* @class: resulting class of attached device
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* SATA phy-reset host port using DET bits of SControl register,
|
|
* wait for !BSY and classify the attached device.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
const unsigned long *timing = sata_ehc_deb_timing(ehc);
|
|
bool online;
|
|
int rc;
|
|
|
|
rc = sata_link_hardreset(link, timing, deadline, &online,
|
|
ata_sff_check_ready);
|
|
if (online)
|
|
*class = ata_sff_dev_classify(link->device, 1, NULL);
|
|
|
|
DPRINTK("EXIT, class=%u\n", *class);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sata_sff_hardreset);
|
|
|
|
/**
|
|
* ata_sff_postreset - SFF postreset callback
|
|
* @link: the target SFF ata_link
|
|
* @classes: classes of attached devices
|
|
*
|
|
* This function is invoked after a successful reset. It first
|
|
* calls ata_std_postreset() and performs SFF specific postreset
|
|
* processing.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
|
|
ata_std_postreset(link, classes);
|
|
|
|
/* is double-select really necessary? */
|
|
if (classes[0] != ATA_DEV_NONE)
|
|
ap->ops->sff_dev_select(ap, 1);
|
|
if (classes[1] != ATA_DEV_NONE)
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
|
|
/* bail out if no device is present */
|
|
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
|
|
DPRINTK("EXIT, no device\n");
|
|
return;
|
|
}
|
|
|
|
/* set up device control */
|
|
if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
|
|
ata_sff_set_devctl(ap, ap->ctl);
|
|
ap->last_ctl = ap->ctl;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_postreset);
|
|
|
|
/**
|
|
* ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
|
|
* @qc: command
|
|
*
|
|
* Drain the FIFO and device of any stuck data following a command
|
|
* failing to complete. In some cases this is necessary before a
|
|
* reset will recover the device.
|
|
*
|
|
*/
|
|
|
|
void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
|
|
{
|
|
int count;
|
|
struct ata_port *ap;
|
|
|
|
/* We only need to flush incoming data when a command was running */
|
|
if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
|
|
return;
|
|
|
|
ap = qc->ap;
|
|
/* Drain up to 64K of data before we give up this recovery method */
|
|
for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
|
|
&& count < 65536; count += 2)
|
|
ioread16(ap->ioaddr.data_addr);
|
|
|
|
/* Can become DEBUG later */
|
|
if (count)
|
|
ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
|
|
|
|
/**
|
|
* ata_sff_error_handler - Stock error handler for SFF controller
|
|
* @ap: port to handle error for
|
|
*
|
|
* Stock error handler for SFF controller. It can handle both
|
|
* PATA and SATA controllers. Many controllers should be able to
|
|
* use this EH as-is or with some added handling before and
|
|
* after.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_sff_error_handler(struct ata_port *ap)
|
|
{
|
|
ata_reset_fn_t softreset = ap->ops->softreset;
|
|
ata_reset_fn_t hardreset = ap->ops->hardreset;
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
|
|
qc = __ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
|
|
qc = NULL;
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/*
|
|
* We *MUST* do FIFO draining before we issue a reset as
|
|
* several devices helpfully clear their internal state and
|
|
* will lock solid if we touch the data port post reset. Pass
|
|
* qc in case anyone wants to do different PIO/DMA recovery or
|
|
* has per command fixups
|
|
*/
|
|
if (ap->ops->sff_drain_fifo)
|
|
ap->ops->sff_drain_fifo(qc);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* ignore ata_sff_softreset if ctl isn't accessible */
|
|
if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
|
|
softreset = NULL;
|
|
|
|
/* ignore built-in hardresets if SCR access is not available */
|
|
if ((hardreset == sata_std_hardreset ||
|
|
hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
|
|
hardreset = NULL;
|
|
|
|
ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
|
|
ap->ops->postreset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_error_handler);
|
|
|
|
/**
|
|
* ata_sff_std_ports - initialize ioaddr with standard port offsets.
|
|
* @ioaddr: IO address structure to be initialized
|
|
*
|
|
* Utility function which initializes data_addr, error_addr,
|
|
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
|
|
* device_addr, status_addr, and command_addr to standard offsets
|
|
* relative to cmd_addr.
|
|
*
|
|
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
|
|
*/
|
|
void ata_sff_std_ports(struct ata_ioports *ioaddr)
|
|
{
|
|
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
|
|
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
|
|
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
|
|
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
|
|
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
|
|
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
|
|
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
|
|
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
|
|
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
|
|
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_std_ports);
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
static int ata_resources_present(struct pci_dev *pdev, int port)
|
|
{
|
|
int i;
|
|
|
|
/* Check the PCI resources for this channel are enabled */
|
|
port = port * 2;
|
|
for (i = 0; i < 2; i++) {
|
|
if (pci_resource_start(pdev, port + i) == 0 ||
|
|
pci_resource_len(pdev, port + i) == 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ata_pci_sff_init_host - acquire native PCI ATA resources and init host
|
|
* @host: target ATA host
|
|
*
|
|
* Acquire native PCI ATA resources for @host and initialize the
|
|
* first two ports of @host accordingly. Ports marked dummy are
|
|
* skipped and allocation failure makes the port dummy.
|
|
*
|
|
* Note that native PCI resources are valid even for legacy hosts
|
|
* as we fix up pdev resources array early in boot, so this
|
|
* function can be used for both native and legacy SFF hosts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 if at least one port is initialized, -ENODEV if no port is
|
|
* available.
|
|
*/
|
|
int ata_pci_sff_init_host(struct ata_host *host)
|
|
{
|
|
struct device *gdev = host->dev;
|
|
struct pci_dev *pdev = to_pci_dev(gdev);
|
|
unsigned int mask = 0;
|
|
int i, rc;
|
|
|
|
/* request, iomap BARs and init port addresses accordingly */
|
|
for (i = 0; i < 2; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
int base = i * 2;
|
|
void __iomem * const *iomap;
|
|
|
|
if (ata_port_is_dummy(ap))
|
|
continue;
|
|
|
|
/* Discard disabled ports. Some controllers show
|
|
* their unused channels this way. Disabled ports are
|
|
* made dummy.
|
|
*/
|
|
if (!ata_resources_present(pdev, i)) {
|
|
ap->ops = &ata_dummy_port_ops;
|
|
continue;
|
|
}
|
|
|
|
rc = pcim_iomap_regions(pdev, 0x3 << base,
|
|
dev_driver_string(gdev));
|
|
if (rc) {
|
|
dev_warn(gdev,
|
|
"failed to request/iomap BARs for port %d (errno=%d)\n",
|
|
i, rc);
|
|
if (rc == -EBUSY)
|
|
pcim_pin_device(pdev);
|
|
ap->ops = &ata_dummy_port_ops;
|
|
continue;
|
|
}
|
|
host->iomap = iomap = pcim_iomap_table(pdev);
|
|
|
|
ap->ioaddr.cmd_addr = iomap[base];
|
|
ap->ioaddr.altstatus_addr =
|
|
ap->ioaddr.ctl_addr = (void __iomem *)
|
|
((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
|
|
ata_sff_std_ports(&ap->ioaddr);
|
|
|
|
ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
|
|
(unsigned long long)pci_resource_start(pdev, base),
|
|
(unsigned long long)pci_resource_start(pdev, base + 1));
|
|
|
|
mask |= 1 << i;
|
|
}
|
|
|
|
if (!mask) {
|
|
dev_err(gdev, "no available native port\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
|
|
|
|
/**
|
|
* ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
|
|
* @pdev: target PCI device
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @r_host: out argument for the initialized ATA host
|
|
*
|
|
* Helper to allocate PIO-only SFF ATA host for @pdev, acquire
|
|
* all PCI resources and initialize it accordingly in one go.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_pci_sff_prepare_host(struct pci_dev *pdev,
|
|
const struct ata_port_info * const *ppi,
|
|
struct ata_host **r_host)
|
|
{
|
|
struct ata_host *host;
|
|
int rc;
|
|
|
|
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
|
|
if (!host) {
|
|
dev_err(&pdev->dev, "failed to allocate ATA host\n");
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
rc = ata_pci_sff_init_host(host);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
devres_remove_group(&pdev->dev, NULL);
|
|
*r_host = host;
|
|
return 0;
|
|
|
|
err_out:
|
|
devres_release_group(&pdev->dev, NULL);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
|
|
|
|
/**
|
|
* ata_pci_sff_activate_host - start SFF host, request IRQ and register it
|
|
* @host: target SFF ATA host
|
|
* @irq_handler: irq_handler used when requesting IRQ(s)
|
|
* @sht: scsi_host_template to use when registering the host
|
|
*
|
|
* This is the counterpart of ata_host_activate() for SFF ATA
|
|
* hosts. This separate helper is necessary because SFF hosts
|
|
* use two separate interrupts in legacy mode.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_pci_sff_activate_host(struct ata_host *host,
|
|
irq_handler_t irq_handler,
|
|
struct scsi_host_template *sht)
|
|
{
|
|
struct device *dev = host->dev;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
const char *drv_name = dev_driver_string(host->dev);
|
|
int legacy_mode = 0, rc;
|
|
|
|
rc = ata_host_start(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
|
|
u8 tmp8, mask;
|
|
|
|
/* TODO: What if one channel is in native mode ... */
|
|
pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
|
|
mask = (1 << 2) | (1 << 0);
|
|
if ((tmp8 & mask) != mask)
|
|
legacy_mode = 1;
|
|
}
|
|
|
|
if (!devres_open_group(dev, NULL, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
if (!legacy_mode && pdev->irq) {
|
|
int i;
|
|
|
|
rc = devm_request_irq(dev, pdev->irq, irq_handler,
|
|
IRQF_SHARED, drv_name, host);
|
|
if (rc)
|
|
goto out;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (ata_port_is_dummy(host->ports[i]))
|
|
continue;
|
|
ata_port_desc(host->ports[i], "irq %d", pdev->irq);
|
|
}
|
|
} else if (legacy_mode) {
|
|
if (!ata_port_is_dummy(host->ports[0])) {
|
|
rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
|
|
irq_handler, IRQF_SHARED,
|
|
drv_name, host);
|
|
if (rc)
|
|
goto out;
|
|
|
|
ata_port_desc(host->ports[0], "irq %d",
|
|
ATA_PRIMARY_IRQ(pdev));
|
|
}
|
|
|
|
if (!ata_port_is_dummy(host->ports[1])) {
|
|
rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
|
|
irq_handler, IRQF_SHARED,
|
|
drv_name, host);
|
|
if (rc)
|
|
goto out;
|
|
|
|
ata_port_desc(host->ports[1], "irq %d",
|
|
ATA_SECONDARY_IRQ(pdev));
|
|
}
|
|
}
|
|
|
|
rc = ata_host_register(host, sht);
|
|
out:
|
|
if (rc == 0)
|
|
devres_remove_group(dev, NULL);
|
|
else
|
|
devres_release_group(dev, NULL);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
|
|
|
|
static const struct ata_port_info *ata_sff_find_valid_pi(
|
|
const struct ata_port_info * const *ppi)
|
|
{
|
|
int i;
|
|
|
|
/* look up the first valid port_info */
|
|
for (i = 0; i < 2 && ppi[i]; i++)
|
|
if (ppi[i]->port_ops != &ata_dummy_port_ops)
|
|
return ppi[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ata_pci_init_one(struct pci_dev *pdev,
|
|
const struct ata_port_info * const *ppi,
|
|
struct scsi_host_template *sht, void *host_priv,
|
|
int hflags, bool bmdma)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
const struct ata_port_info *pi;
|
|
struct ata_host *host = NULL;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
pi = ata_sff_find_valid_pi(ppi);
|
|
if (!pi) {
|
|
dev_err(&pdev->dev, "no valid port_info specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!devres_open_group(dev, NULL, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
rc = pcim_enable_device(pdev);
|
|
if (rc)
|
|
goto out;
|
|
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
if (bmdma)
|
|
/* prepare and activate BMDMA host */
|
|
rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
|
|
else
|
|
#endif
|
|
/* prepare and activate SFF host */
|
|
rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
|
|
if (rc)
|
|
goto out;
|
|
host->private_data = host_priv;
|
|
host->flags |= hflags;
|
|
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
if (bmdma) {
|
|
pci_set_master(pdev);
|
|
rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
|
|
} else
|
|
#endif
|
|
rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
|
|
out:
|
|
if (rc == 0)
|
|
devres_remove_group(&pdev->dev, NULL);
|
|
else
|
|
devres_release_group(&pdev->dev, NULL);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
|
|
* @pdev: Controller to be initialized
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @sht: scsi_host_template to use when registering the host
|
|
* @host_priv: host private_data
|
|
* @hflag: host flags
|
|
*
|
|
* This is a helper function which can be called from a driver's
|
|
* xxx_init_one() probe function if the hardware uses traditional
|
|
* IDE taskfile registers and is PIO only.
|
|
*
|
|
* ASSUMPTION:
|
|
* Nobody makes a single channel controller that appears solely as
|
|
* the secondary legacy port on PCI.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on errno-based value on error.
|
|
*/
|
|
int ata_pci_sff_init_one(struct pci_dev *pdev,
|
|
const struct ata_port_info * const *ppi,
|
|
struct scsi_host_template *sht, void *host_priv, int hflag)
|
|
{
|
|
return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
|
|
|
|
#endif /* CONFIG_PCI */
|
|
|
|
/*
|
|
* BMDMA support
|
|
*/
|
|
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
|
|
const struct ata_port_operations ata_bmdma_port_ops = {
|
|
.inherits = &ata_sff_port_ops,
|
|
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_bmdma_qc_prep,
|
|
.qc_issue = ata_bmdma_qc_issue,
|
|
|
|
.sff_irq_clear = ata_bmdma_irq_clear,
|
|
.bmdma_setup = ata_bmdma_setup,
|
|
.bmdma_start = ata_bmdma_start,
|
|
.bmdma_stop = ata_bmdma_stop,
|
|
.bmdma_status = ata_bmdma_status,
|
|
|
|
.port_start = ata_bmdma_port_start,
|
|
};
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
|
|
|
|
const struct ata_port_operations ata_bmdma32_port_ops = {
|
|
.inherits = &ata_bmdma_port_ops,
|
|
|
|
.sff_data_xfer = ata_sff_data_xfer32,
|
|
.port_start = ata_bmdma_port_start32,
|
|
};
|
|
EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
|
|
|
|
/**
|
|
* ata_bmdma_fill_sg - Fill PCI IDE PRD table
|
|
* @qc: Metadata associated with taskfile to be transferred
|
|
*
|
|
* Fill PCI IDE PRD (scatter-gather) table with segments
|
|
* associated with the current disk command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
*/
|
|
static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_bmdma_prd *prd = ap->bmdma_prd;
|
|
struct scatterlist *sg;
|
|
unsigned int si, pi;
|
|
|
|
pi = 0;
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si) {
|
|
u32 addr, offset;
|
|
u32 sg_len, len;
|
|
|
|
/* determine if physical DMA addr spans 64K boundary.
|
|
* Note h/w doesn't support 64-bit, so we unconditionally
|
|
* truncate dma_addr_t to u32.
|
|
*/
|
|
addr = (u32) sg_dma_address(sg);
|
|
sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
offset = addr & 0xffff;
|
|
len = sg_len;
|
|
if ((offset + sg_len) > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
prd[pi].addr = cpu_to_le32(addr);
|
|
prd[pi].flags_len = cpu_to_le32(len & 0xffff);
|
|
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
|
|
|
|
pi++;
|
|
sg_len -= len;
|
|
addr += len;
|
|
}
|
|
}
|
|
|
|
prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
|
|
* @qc: Metadata associated with taskfile to be transferred
|
|
*
|
|
* Fill PCI IDE PRD (scatter-gather) table with segments
|
|
* associated with the current disk command. Perform the fill
|
|
* so that we avoid writing any length 64K records for
|
|
* controllers that don't follow the spec.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
*/
|
|
static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_bmdma_prd *prd = ap->bmdma_prd;
|
|
struct scatterlist *sg;
|
|
unsigned int si, pi;
|
|
|
|
pi = 0;
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si) {
|
|
u32 addr, offset;
|
|
u32 sg_len, len, blen;
|
|
|
|
/* determine if physical DMA addr spans 64K boundary.
|
|
* Note h/w doesn't support 64-bit, so we unconditionally
|
|
* truncate dma_addr_t to u32.
|
|
*/
|
|
addr = (u32) sg_dma_address(sg);
|
|
sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
offset = addr & 0xffff;
|
|
len = sg_len;
|
|
if ((offset + sg_len) > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
blen = len & 0xffff;
|
|
prd[pi].addr = cpu_to_le32(addr);
|
|
if (blen == 0) {
|
|
/* Some PATA chipsets like the CS5530 can't
|
|
cope with 0x0000 meaning 64K as the spec
|
|
says */
|
|
prd[pi].flags_len = cpu_to_le32(0x8000);
|
|
blen = 0x8000;
|
|
prd[++pi].addr = cpu_to_le32(addr + 0x8000);
|
|
}
|
|
prd[pi].flags_len = cpu_to_le32(blen);
|
|
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
|
|
|
|
pi++;
|
|
sg_len -= len;
|
|
addr += len;
|
|
}
|
|
}
|
|
|
|
prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_qc_prep - Prepare taskfile for submission
|
|
* @qc: Metadata associated with taskfile to be prepared
|
|
*
|
|
* Prepare ATA taskfile for submission.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
|
|
ata_bmdma_fill_sg(qc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
|
|
|
|
/**
|
|
* ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
|
|
* @qc: Metadata associated with taskfile to be prepared
|
|
*
|
|
* Prepare ATA taskfile for submission.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
|
|
ata_bmdma_fill_sg_dumb(qc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
|
|
|
|
/**
|
|
* ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
|
|
* @qc: command to issue to device
|
|
*
|
|
* This function issues a PIO, NODATA or DMA command to a
|
|
* SFF/BMDMA controller. PIO and NODATA are handled by
|
|
* ata_sff_qc_issue().
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_link *link = qc->dev->link;
|
|
|
|
/* defer PIO handling to sff_qc_issue */
|
|
if (!ata_is_dma(qc->tf.protocol))
|
|
return ata_sff_qc_issue(qc);
|
|
|
|
/* select the device */
|
|
ata_dev_select(ap, qc->dev->devno, 1, 0);
|
|
|
|
/* start the command */
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_DMA:
|
|
WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->ops->bmdma_start(qc); /* initiate bmdma */
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
|
|
case ATAPI_PROT_DMA:
|
|
WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
|
|
/* send cdb by polling if no cdb interrupt */
|
|
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
ata_sff_queue_pio_task(link, 0);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(1);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
|
|
|
|
/**
|
|
* ata_bmdma_port_intr - Handle BMDMA port interrupt
|
|
* @ap: Port on which interrupt arrived (possibly...)
|
|
* @qc: Taskfile currently active in engine
|
|
*
|
|
* Handle port interrupt for given queued command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* One if interrupt was handled, zero if not (shared irq).
|
|
*/
|
|
unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
u8 host_stat = 0;
|
|
bool bmdma_stopped = false;
|
|
unsigned int handled;
|
|
|
|
if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
|
|
/* check status of DMA engine */
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
|
|
|
|
/* if it's not our irq... */
|
|
if (!(host_stat & ATA_DMA_INTR))
|
|
return ata_sff_idle_irq(ap);
|
|
|
|
/* before we do anything else, clear DMA-Start bit */
|
|
ap->ops->bmdma_stop(qc);
|
|
bmdma_stopped = true;
|
|
|
|
if (unlikely(host_stat & ATA_DMA_ERR)) {
|
|
/* error when transferring data to/from memory */
|
|
qc->err_mask |= AC_ERR_HOST_BUS;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
}
|
|
|
|
handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
|
|
|
|
if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
|
|
ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
|
|
|
|
return handled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
|
|
|
|
/**
|
|
* ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
|
|
* @irq: irq line (unused)
|
|
* @dev_instance: pointer to our ata_host information structure
|
|
*
|
|
* Default interrupt handler for PCI IDE devices. Calls
|
|
* ata_bmdma_port_intr() for each port that is not disabled.
|
|
*
|
|
* LOCKING:
|
|
* Obtains host lock during operation.
|
|
*
|
|
* RETURNS:
|
|
* IRQ_NONE or IRQ_HANDLED.
|
|
*/
|
|
irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
|
|
{
|
|
return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
|
|
|
|
/**
|
|
* ata_bmdma_error_handler - Stock error handler for BMDMA controller
|
|
* @ap: port to handle error for
|
|
*
|
|
* Stock error handler for BMDMA controller. It can handle both
|
|
* PATA and SATA controllers. Most BMDMA controllers should be
|
|
* able to use this EH as-is or with some added handling before
|
|
* and after.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_bmdma_error_handler(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
bool thaw = false;
|
|
|
|
qc = __ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
|
|
qc = NULL;
|
|
|
|
/* reset PIO HSM and stop DMA engine */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
if (qc && ata_is_dma(qc->tf.protocol)) {
|
|
u8 host_stat;
|
|
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
|
|
/* BMDMA controllers indicate host bus error by
|
|
* setting DMA_ERR bit and timing out. As it wasn't
|
|
* really a timeout event, adjust error mask and
|
|
* cancel frozen state.
|
|
*/
|
|
if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
|
|
qc->err_mask = AC_ERR_HOST_BUS;
|
|
thaw = true;
|
|
}
|
|
|
|
ap->ops->bmdma_stop(qc);
|
|
|
|
/* if we're gonna thaw, make sure IRQ is clear */
|
|
if (thaw) {
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
if (thaw)
|
|
ata_eh_thaw_port(ap);
|
|
|
|
ata_sff_error_handler(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
|
|
|
|
/**
|
|
* ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
|
|
* @qc: internal command to clean up
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned long flags;
|
|
|
|
if (ata_is_dma(qc->tf.protocol)) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->ops->bmdma_stop(qc);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
|
|
|
|
/**
|
|
* ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* Clear interrupt and error flags in DMA status register.
|
|
*
|
|
* May be used as the irq_clear() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_irq_clear(struct ata_port *ap)
|
|
{
|
|
void __iomem *mmio = ap->ioaddr.bmdma_addr;
|
|
|
|
if (!mmio)
|
|
return;
|
|
|
|
iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
|
|
|
|
/**
|
|
* ata_bmdma_setup - Set up PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
u8 dmactl;
|
|
|
|
/* load PRD table addr. */
|
|
mb(); /* make sure PRD table writes are visible to controller */
|
|
iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
|
|
|
|
/* specify data direction, triple-check start bit is clear */
|
|
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
|
|
if (!rw)
|
|
dmactl |= ATA_DMA_WR;
|
|
iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
|
|
/* issue r/w command */
|
|
ap->ops->sff_exec_command(ap, &qc->tf);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
|
|
|
|
/**
|
|
* ata_bmdma_start - Start a PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_start(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
u8 dmactl;
|
|
|
|
/* start host DMA transaction */
|
|
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
|
|
/* Strictly, one may wish to issue an ioread8() here, to
|
|
* flush the mmio write. However, control also passes
|
|
* to the hardware at this point, and it will interrupt
|
|
* us when we are to resume control. So, in effect,
|
|
* we don't care when the mmio write flushes.
|
|
* Further, a read of the DMA status register _immediately_
|
|
* following the write may not be what certain flaky hardware
|
|
* is expected, so I think it is best to not add a readb()
|
|
* without first all the MMIO ATA cards/mobos.
|
|
* Or maybe I'm just being paranoid.
|
|
*
|
|
* FIXME: The posting of this write means I/O starts are
|
|
* unnecessarily delayed for MMIO
|
|
*/
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_start);
|
|
|
|
/**
|
|
* ata_bmdma_stop - Stop PCI IDE BMDMA transfer
|
|
* @qc: Command we are ending DMA for
|
|
*
|
|
* Clears the ATA_DMA_START flag in the dma control register
|
|
*
|
|
* May be used as the bmdma_stop() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_stop(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *mmio = ap->ioaddr.bmdma_addr;
|
|
|
|
/* clear start/stop bit */
|
|
iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
|
|
mmio + ATA_DMA_CMD);
|
|
|
|
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
|
|
ata_sff_dma_pause(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
|
|
|
|
/**
|
|
* ata_bmdma_status - Read PCI IDE BMDMA status
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* Read and return BMDMA status register.
|
|
*
|
|
* May be used as the bmdma_status() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
u8 ata_bmdma_status(struct ata_port *ap)
|
|
{
|
|
return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_status);
|
|
|
|
|
|
/**
|
|
* ata_bmdma_port_start - Set port up for bmdma.
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called just after data structures for each port are
|
|
* initialized. Allocates space for PRD table.
|
|
*
|
|
* May be used as the port_start() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
int ata_bmdma_port_start(struct ata_port *ap)
|
|
{
|
|
if (ap->mwdma_mask || ap->udma_mask) {
|
|
ap->bmdma_prd =
|
|
dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
|
|
&ap->bmdma_prd_dma, GFP_KERNEL);
|
|
if (!ap->bmdma_prd)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
|
|
|
|
/**
|
|
* ata_bmdma_port_start32 - Set port up for dma.
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called just after data structures for each port are
|
|
* initialized. Enables 32bit PIO and allocates space for PRD
|
|
* table.
|
|
*
|
|
* May be used as the port_start() entry in ata_port_operations for
|
|
* devices that are capable of 32bit PIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
int ata_bmdma_port_start32(struct ata_port *ap)
|
|
{
|
|
ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
|
|
return ata_bmdma_port_start(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
/**
|
|
* ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
|
|
* @pdev: PCI device
|
|
*
|
|
* Some PCI ATA devices report simplex mode but in fact can be told to
|
|
* enter non simplex mode. This implements the necessary logic to
|
|
* perform the task on such devices. Calling it on other devices will
|
|
* have -undefined- behaviour.
|
|
*/
|
|
int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
|
|
{
|
|
unsigned long bmdma = pci_resource_start(pdev, 4);
|
|
u8 simplex;
|
|
|
|
if (bmdma == 0)
|
|
return -ENOENT;
|
|
|
|
simplex = inb(bmdma + 0x02);
|
|
outb(simplex & 0x60, bmdma + 0x02);
|
|
simplex = inb(bmdma + 0x02);
|
|
if (simplex & 0x80)
|
|
return -EOPNOTSUPP;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
|
|
|
|
static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
|
|
{
|
|
int i;
|
|
|
|
dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
host->ports[i]->mwdma_mask = 0;
|
|
host->ports[i]->udma_mask = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
|
|
* @host: target ATA host
|
|
*
|
|
* Acquire PCI BMDMA resources and initialize @host accordingly.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
void ata_pci_bmdma_init(struct ata_host *host)
|
|
{
|
|
struct device *gdev = host->dev;
|
|
struct pci_dev *pdev = to_pci_dev(gdev);
|
|
int i, rc;
|
|
|
|
/* No BAR4 allocation: No DMA */
|
|
if (pci_resource_start(pdev, 4) == 0) {
|
|
ata_bmdma_nodma(host, "BAR4 is zero");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Some controllers require BMDMA region to be initialized
|
|
* even if DMA is not in use to clear IRQ status via
|
|
* ->sff_irq_clear method. Try to initialize bmdma_addr
|
|
* regardless of dma masks.
|
|
*/
|
|
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
|
|
if (rc)
|
|
ata_bmdma_nodma(host, "failed to set dma mask");
|
|
if (!rc) {
|
|
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
|
|
if (rc)
|
|
ata_bmdma_nodma(host,
|
|
"failed to set consistent dma mask");
|
|
}
|
|
|
|
/* request and iomap DMA region */
|
|
rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
|
|
if (rc) {
|
|
ata_bmdma_nodma(host, "failed to request/iomap BAR4");
|
|
return;
|
|
}
|
|
host->iomap = pcim_iomap_table(pdev);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
void __iomem *bmdma = host->iomap[4] + 8 * i;
|
|
|
|
if (ata_port_is_dummy(ap))
|
|
continue;
|
|
|
|
ap->ioaddr.bmdma_addr = bmdma;
|
|
if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
|
|
(ioread8(bmdma + 2) & 0x80))
|
|
host->flags |= ATA_HOST_SIMPLEX;
|
|
|
|
ata_port_desc(ap, "bmdma 0x%llx",
|
|
(unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
|
|
|
|
/**
|
|
* ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
|
|
* @pdev: target PCI device
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @r_host: out argument for the initialized ATA host
|
|
*
|
|
* Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
|
|
* resources and initialize it accordingly in one go.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
|
|
const struct ata_port_info * const * ppi,
|
|
struct ata_host **r_host)
|
|
{
|
|
int rc;
|
|
|
|
rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ata_pci_bmdma_init(*r_host);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
|
|
|
|
/**
|
|
* ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
|
|
* @pdev: Controller to be initialized
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @sht: scsi_host_template to use when registering the host
|
|
* @host_priv: host private_data
|
|
* @hflags: host flags
|
|
*
|
|
* This function is similar to ata_pci_sff_init_one() but also
|
|
* takes care of BMDMA initialization.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on errno-based value on error.
|
|
*/
|
|
int ata_pci_bmdma_init_one(struct pci_dev *pdev,
|
|
const struct ata_port_info * const * ppi,
|
|
struct scsi_host_template *sht, void *host_priv,
|
|
int hflags)
|
|
{
|
|
return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
|
|
|
|
#endif /* CONFIG_PCI */
|
|
#endif /* CONFIG_ATA_BMDMA */
|
|
|
|
/**
|
|
* ata_sff_port_init - Initialize SFF/BMDMA ATA port
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called on port allocation to initialize SFF/BMDMA specific
|
|
* fields.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
void ata_sff_port_init(struct ata_port *ap)
|
|
{
|
|
INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
|
|
ap->ctl = ATA_DEVCTL_OBS;
|
|
ap->last_ctl = 0xFF;
|
|
}
|
|
|
|
int __init ata_sff_init(void)
|
|
{
|
|
ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
|
|
if (!ata_sff_wq)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ata_sff_exit(void)
|
|
{
|
|
destroy_workqueue(ata_sff_wq);
|
|
}
|