mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 14:09:49 +07:00
c658eac628
The Xtensa architecture allows to define custom instructions and registers. Registers that are bound to a coprocessor are only accessible if the corresponding enable bit is set, which allows to implement a 'lazy' context switch mechanism. Other registers needs to be saved and restore at the time of the context switch or during interrupt handling. This patch adds support for these additional states: - save and restore registers that are used by the compiler upon interrupt entry and exit. - context switch additional registers unbound to any coprocessor - 'lazy' context switch of registers bound to a coprocessor - ptrace interface to provide access to additional registers - update configuration files in include/asm-xtensa/variant-fsf Signed-off-by: Chris Zankel <chris@zankel.net>
344 lines
7.8 KiB
C
344 lines
7.8 KiB
C
/*
|
|
* arch/xtensa/kernel/process.c
|
|
*
|
|
* Xtensa Processor version.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
*
|
|
* Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
|
|
* Chris Zankel <chris@zankel.net>
|
|
* Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
|
|
* Kevin Chea
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/init.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/fs.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/platform.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/regs.h>
|
|
|
|
extern void ret_from_fork(void);
|
|
|
|
struct task_struct *current_set[NR_CPUS] = {&init_task, };
|
|
|
|
void (*pm_power_off)(void) = NULL;
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
|
|
void coprocessor_release_all(struct thread_info *ti)
|
|
{
|
|
unsigned long cpenable;
|
|
int i;
|
|
|
|
/* Make sure we don't switch tasks during this operation. */
|
|
|
|
preempt_disable();
|
|
|
|
/* Walk through all cp owners and release it for the requested one. */
|
|
|
|
cpenable = ti->cpenable;
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
if (coprocessor_owner[i] == ti) {
|
|
coprocessor_owner[i] = 0;
|
|
cpenable &= ~(1 << i);
|
|
}
|
|
}
|
|
|
|
ti->cpenable = cpenable;
|
|
coprocessor_clear_cpenable();
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void coprocessor_flush_all(struct thread_info *ti)
|
|
{
|
|
unsigned long cpenable;
|
|
int i;
|
|
|
|
preempt_disable();
|
|
|
|
cpenable = ti->cpenable;
|
|
|
|
for (i = 0; i < XCHAL_CP_MAX; i++) {
|
|
if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
|
|
coprocessor_flush(ti, i);
|
|
cpenable >>= 1;
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Powermanagement idle function, if any is provided by the platform.
|
|
*/
|
|
|
|
void cpu_idle(void)
|
|
{
|
|
local_irq_enable();
|
|
|
|
/* endless idle loop with no priority at all */
|
|
while (1) {
|
|
while (!need_resched())
|
|
platform_idle();
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called when the thread calls exit().
|
|
*/
|
|
void exit_thread(void)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
coprocessor_release_all(current_thread_info());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Flush thread state. This is called when a thread does an execve()
|
|
* Note that we flush coprocessor registers for the case execve fails.
|
|
*/
|
|
void flush_thread(void)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
struct thread_info *ti = current_thread_info();
|
|
coprocessor_flush_all(ti);
|
|
coprocessor_release_all(ti);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This is called before the thread is copied.
|
|
*/
|
|
void prepare_to_copy(struct task_struct *tsk)
|
|
{
|
|
#if XTENSA_HAVE_COPROCESSORS
|
|
coprocessor_flush_all(task_thread_info(tsk));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Copy thread.
|
|
*
|
|
* The stack layout for the new thread looks like this:
|
|
*
|
|
* +------------------------+ <- sp in childregs (= tos)
|
|
* | childregs |
|
|
* +------------------------+ <- thread.sp = sp in dummy-frame
|
|
* | dummy-frame | (saved in dummy-frame spill-area)
|
|
* +------------------------+
|
|
*
|
|
* We create a dummy frame to return to ret_from_fork:
|
|
* a0 points to ret_from_fork (simulating a call4)
|
|
* sp points to itself (thread.sp)
|
|
* a2, a3 are unused.
|
|
*
|
|
* Note: This is a pristine frame, so we don't need any spill region on top of
|
|
* childregs.
|
|
*/
|
|
|
|
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
|
|
unsigned long unused,
|
|
struct task_struct * p, struct pt_regs * regs)
|
|
{
|
|
struct pt_regs *childregs;
|
|
struct thread_info *ti;
|
|
unsigned long tos;
|
|
int user_mode = user_mode(regs);
|
|
|
|
/* Set up new TSS. */
|
|
tos = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
if (user_mode)
|
|
childregs = (struct pt_regs*)(tos - PT_USER_SIZE);
|
|
else
|
|
childregs = (struct pt_regs*)tos - 1;
|
|
|
|
*childregs = *regs;
|
|
|
|
/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
|
|
*((int*)childregs - 3) = (unsigned long)childregs;
|
|
*((int*)childregs - 4) = 0;
|
|
|
|
childregs->areg[1] = tos;
|
|
childregs->areg[2] = 0;
|
|
p->set_child_tid = p->clear_child_tid = NULL;
|
|
p->thread.ra = MAKE_RA_FOR_CALL((unsigned long)ret_from_fork, 0x1);
|
|
p->thread.sp = (unsigned long)childregs;
|
|
|
|
if (user_mode(regs)) {
|
|
|
|
int len = childregs->wmask & ~0xf;
|
|
childregs->areg[1] = usp;
|
|
memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
|
|
®s->areg[XCHAL_NUM_AREGS - len/4], len);
|
|
// FIXME: we need to set THREADPTR in thread_info...
|
|
if (clone_flags & CLONE_SETTLS)
|
|
childregs->areg[2] = childregs->areg[6];
|
|
|
|
} else {
|
|
/* In kernel space, we start a new thread with a new stack. */
|
|
childregs->wmask = 1;
|
|
}
|
|
|
|
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
|
|
ti = task_thread_info(p);
|
|
ti->cpenable = 0;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* These bracket the sleeping functions..
|
|
*/
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long sp, pc;
|
|
unsigned long stack_page = (unsigned long) task_stack_page(p);
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
sp = p->thread.sp;
|
|
pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
|
|
|
|
do {
|
|
if (sp < stack_page + sizeof(struct task_struct) ||
|
|
sp >= (stack_page + THREAD_SIZE) ||
|
|
pc == 0)
|
|
return 0;
|
|
if (!in_sched_functions(pc))
|
|
return pc;
|
|
|
|
/* Stack layout: sp-4: ra, sp-3: sp' */
|
|
|
|
pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
|
|
sp = *(unsigned long *)sp - 3;
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xtensa_gregset_t and 'struct pt_regs' are vastly different formats
|
|
* of processor registers. Besides different ordering,
|
|
* xtensa_gregset_t contains non-live register information that
|
|
* 'struct pt_regs' does not. Exception handling (primarily) uses
|
|
* 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
|
|
*
|
|
*/
|
|
|
|
void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
|
|
{
|
|
unsigned long wb, ws, wm;
|
|
int live, last;
|
|
|
|
wb = regs->windowbase;
|
|
ws = regs->windowstart;
|
|
wm = regs->wmask;
|
|
ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
|
|
|
|
/* Don't leak any random bits. */
|
|
|
|
memset(elfregs, 0, sizeof (elfregs));
|
|
|
|
/* Note: PS.EXCM is not set while user task is running; its
|
|
* being set in regs->ps is for exception handling convenience.
|
|
*/
|
|
|
|
elfregs->pc = regs->pc;
|
|
elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
|
|
elfregs->lbeg = regs->lbeg;
|
|
elfregs->lend = regs->lend;
|
|
elfregs->lcount = regs->lcount;
|
|
elfregs->sar = regs->sar;
|
|
elfregs->windowstart = ws;
|
|
|
|
live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
|
|
last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
|
|
memcpy(elfregs->a, regs->areg, live * 4);
|
|
memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
|
|
}
|
|
|
|
int dump_fpu(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage
|
|
long xtensa_clone(unsigned long clone_flags, unsigned long newsp,
|
|
void __user *parent_tid, void *child_tls,
|
|
void __user *child_tid, long a5,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (!newsp)
|
|
newsp = regs->areg[1];
|
|
return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
|
|
}
|
|
|
|
/*
|
|
* xtensa_execve() executes a new program.
|
|
*/
|
|
|
|
asmlinkage
|
|
long xtensa_execve(char __user *name, char __user * __user *argv,
|
|
char __user * __user *envp,
|
|
long a3, long a4, long a5,
|
|
struct pt_regs *regs)
|
|
{
|
|
long error;
|
|
char * filename;
|
|
|
|
filename = getname(name);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
error = do_execve(filename, argv, envp, regs);
|
|
if (error == 0) {
|
|
task_lock(current);
|
|
current->ptrace &= ~PT_DTRACE;
|
|
task_unlock(current);
|
|
}
|
|
putname(filename);
|
|
out:
|
|
return error;
|
|
}
|
|
|