linux_dsm_epyc7002/drivers/block/zram/zram_drv.c
Minchan Kim 461a8eee6a zram: report maximum used memory
Normally, zram user could get maximum memory usage zram consumed via
polling mem_used_total with sysfs in userspace.

But it has a critical problem because user can miss peak memory usage
during update inverval of polling.  For avoiding that, user should poll it
with shorter interval(ie, 0.0000000001s) with mlocking to avoid page fault
delay when memory pressure is heavy.  It would be troublesome.

This patch adds new knob "mem_used_max" so user could see the maximum
memory usage easily via reading the knob and reset it via "echo 0 >
/sys/block/zram0/mem_used_max".

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Reviewed-by: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:02 -04:00

1167 lines
27 KiB
C

/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
* 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
*/
#define KMSG_COMPONENT "zram"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#ifdef CONFIG_ZRAM_DEBUG
#define DEBUG
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/err.h>
#include "zram_drv.h"
/* Globals */
static int zram_major;
static struct zram *zram_devices;
static const char *default_compressor = "lzo";
/* Module params (documentation at end) */
static unsigned int num_devices = 1;
#define ZRAM_ATTR_RO(name) \
static ssize_t zram_attr_##name##_show(struct device *d, \
struct device_attribute *attr, char *b) \
{ \
struct zram *zram = dev_to_zram(d); \
return scnprintf(b, PAGE_SIZE, "%llu\n", \
(u64)atomic64_read(&zram->stats.name)); \
} \
static struct device_attribute dev_attr_##name = \
__ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
static inline int init_done(struct zram *zram)
{
return zram->meta != NULL;
}
static inline struct zram *dev_to_zram(struct device *dev)
{
return (struct zram *)dev_to_disk(dev)->private_data;
}
static ssize_t disksize_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}
static ssize_t initstate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = init_done(zram);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%u\n", val);
}
static ssize_t orig_data_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
return scnprintf(buf, PAGE_SIZE, "%llu\n",
(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
}
static ssize_t mem_used_total_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
struct zram_meta *meta = zram->meta;
down_read(&zram->init_lock);
if (init_done(zram))
val = zs_get_total_pages(meta->mem_pool);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t max_comp_streams_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = zram->max_comp_streams;
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t mem_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = zram->limit_pages;
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_limit_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 limit;
char *tmp;
struct zram *zram = dev_to_zram(dev);
limit = memparse(buf, &tmp);
if (buf == tmp) /* no chars parsed, invalid input */
return -EINVAL;
down_write(&zram->init_lock);
zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
up_write(&zram->init_lock);
return len;
}
static ssize_t mem_used_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
if (init_done(zram))
val = atomic_long_read(&zram->stats.max_used_pages);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_used_max_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int err;
unsigned long val;
struct zram *zram = dev_to_zram(dev);
struct zram_meta *meta = zram->meta;
err = kstrtoul(buf, 10, &val);
if (err || val != 0)
return -EINVAL;
down_read(&zram->init_lock);
if (init_done(zram))
atomic_long_set(&zram->stats.max_used_pages,
zs_get_total_pages(meta->mem_pool));
up_read(&zram->init_lock);
return len;
}
static ssize_t max_comp_streams_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int num;
struct zram *zram = dev_to_zram(dev);
int ret;
ret = kstrtoint(buf, 0, &num);
if (ret < 0)
return ret;
if (num < 1)
return -EINVAL;
down_write(&zram->init_lock);
if (init_done(zram)) {
if (!zcomp_set_max_streams(zram->comp, num)) {
pr_info("Cannot change max compression streams\n");
ret = -EINVAL;
goto out;
}
}
zram->max_comp_streams = num;
ret = len;
out:
up_write(&zram->init_lock);
return ret;
}
static ssize_t comp_algorithm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
size_t sz;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
sz = zcomp_available_show(zram->compressor, buf);
up_read(&zram->init_lock);
return sz;
}
static ssize_t comp_algorithm_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
down_write(&zram->init_lock);
if (init_done(zram)) {
up_write(&zram->init_lock);
pr_info("Can't change algorithm for initialized device\n");
return -EBUSY;
}
strlcpy(zram->compressor, buf, sizeof(zram->compressor));
up_write(&zram->init_lock);
return len;
}
/* flag operations needs meta->tb_lock */
static int zram_test_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
return meta->table[index].value & BIT(flag);
}
static void zram_set_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
meta->table[index].value |= BIT(flag);
}
static void zram_clear_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
meta->table[index].value &= ~BIT(flag);
}
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
}
static void zram_set_obj_size(struct zram_meta *meta,
u32 index, size_t size)
{
unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}
static inline int is_partial_io(struct bio_vec *bvec)
{
return bvec->bv_len != PAGE_SIZE;
}
/*
* Check if request is within bounds and aligned on zram logical blocks.
*/
static inline int valid_io_request(struct zram *zram, struct bio *bio)
{
u64 start, end, bound;
/* unaligned request */
if (unlikely(bio->bi_iter.bi_sector &
(ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
return 0;
if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
return 0;
start = bio->bi_iter.bi_sector;
end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
bound = zram->disksize >> SECTOR_SHIFT;
/* out of range range */
if (unlikely(start >= bound || end > bound || start > end))
return 0;
/* I/O request is valid */
return 1;
}
static void zram_meta_free(struct zram_meta *meta)
{
zs_destroy_pool(meta->mem_pool);
vfree(meta->table);
kfree(meta);
}
static struct zram_meta *zram_meta_alloc(u64 disksize)
{
size_t num_pages;
struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
if (!meta)
goto out;
num_pages = disksize >> PAGE_SHIFT;
meta->table = vzalloc(num_pages * sizeof(*meta->table));
if (!meta->table) {
pr_err("Error allocating zram address table\n");
goto free_meta;
}
meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
if (!meta->mem_pool) {
pr_err("Error creating memory pool\n");
goto free_table;
}
return meta;
free_table:
vfree(meta->table);
free_meta:
kfree(meta);
meta = NULL;
out:
return meta;
}
static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
if (*offset + bvec->bv_len >= PAGE_SIZE)
(*index)++;
*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}
static int page_zero_filled(void *ptr)
{
unsigned int pos;
unsigned long *page;
page = (unsigned long *)ptr;
for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
if (page[pos])
return 0;
}
return 1;
}
static void handle_zero_page(struct bio_vec *bvec)
{
struct page *page = bvec->bv_page;
void *user_mem;
user_mem = kmap_atomic(page);
if (is_partial_io(bvec))
memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
else
clear_page(user_mem);
kunmap_atomic(user_mem);
flush_dcache_page(page);
}
/*
* To protect concurrent access to the same index entry,
* caller should hold this table index entry's bit_spinlock to
* indicate this index entry is accessing.
*/
static void zram_free_page(struct zram *zram, size_t index)
{
struct zram_meta *meta = zram->meta;
unsigned long handle = meta->table[index].handle;
if (unlikely(!handle)) {
/*
* No memory is allocated for zero filled pages.
* Simply clear zero page flag.
*/
if (zram_test_flag(meta, index, ZRAM_ZERO)) {
zram_clear_flag(meta, index, ZRAM_ZERO);
atomic64_dec(&zram->stats.zero_pages);
}
return;
}
zs_free(meta->mem_pool, handle);
atomic64_sub(zram_get_obj_size(meta, index),
&zram->stats.compr_data_size);
atomic64_dec(&zram->stats.pages_stored);
meta->table[index].handle = 0;
zram_set_obj_size(meta, index, 0);
}
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
{
int ret = 0;
unsigned char *cmem;
struct zram_meta *meta = zram->meta;
unsigned long handle;
size_t size;
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
handle = meta->table[index].handle;
size = zram_get_obj_size(meta, index);
if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
clear_page(mem);
return 0;
}
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
if (size == PAGE_SIZE)
copy_page(mem, cmem);
else
ret = zcomp_decompress(zram->comp, cmem, size, mem);
zs_unmap_object(meta->mem_pool, handle);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret)) {
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
return ret;
}
return 0;
}
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset, struct bio *bio)
{
int ret;
struct page *page;
unsigned char *user_mem, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
page = bvec->bv_page;
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
if (unlikely(!meta->table[index].handle) ||
zram_test_flag(meta, index, ZRAM_ZERO)) {
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
handle_zero_page(bvec);
return 0;
}
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
if (is_partial_io(bvec))
/* Use a temporary buffer to decompress the page */
uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
user_mem = kmap_atomic(page);
if (!is_partial_io(bvec))
uncmem = user_mem;
if (!uncmem) {
pr_info("Unable to allocate temp memory\n");
ret = -ENOMEM;
goto out_cleanup;
}
ret = zram_decompress_page(zram, uncmem, index);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret))
goto out_cleanup;
if (is_partial_io(bvec))
memcpy(user_mem + bvec->bv_offset, uncmem + offset,
bvec->bv_len);
flush_dcache_page(page);
ret = 0;
out_cleanup:
kunmap_atomic(user_mem);
if (is_partial_io(bvec))
kfree(uncmem);
return ret;
}
static inline void update_used_max(struct zram *zram,
const unsigned long pages)
{
int old_max, cur_max;
old_max = atomic_long_read(&zram->stats.max_used_pages);
do {
cur_max = old_max;
if (pages > cur_max)
old_max = atomic_long_cmpxchg(
&zram->stats.max_used_pages, cur_max, pages);
} while (old_max != cur_max);
}
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset)
{
int ret = 0;
size_t clen;
unsigned long handle;
struct page *page;
unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
struct zcomp_strm *zstrm;
bool locked = false;
unsigned long alloced_pages;
page = bvec->bv_page;
if (is_partial_io(bvec)) {
/*
* This is a partial IO. We need to read the full page
* before to write the changes.
*/
uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
if (!uncmem) {
ret = -ENOMEM;
goto out;
}
ret = zram_decompress_page(zram, uncmem, index);
if (ret)
goto out;
}
zstrm = zcomp_strm_find(zram->comp);
locked = true;
user_mem = kmap_atomic(page);
if (is_partial_io(bvec)) {
memcpy(uncmem + offset, user_mem + bvec->bv_offset,
bvec->bv_len);
kunmap_atomic(user_mem);
user_mem = NULL;
} else {
uncmem = user_mem;
}
if (page_zero_filled(uncmem)) {
kunmap_atomic(user_mem);
/* Free memory associated with this sector now. */
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
zram_set_flag(meta, index, ZRAM_ZERO);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.zero_pages);
ret = 0;
goto out;
}
ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
if (!is_partial_io(bvec)) {
kunmap_atomic(user_mem);
user_mem = NULL;
uncmem = NULL;
}
if (unlikely(ret)) {
pr_err("Compression failed! err=%d\n", ret);
goto out;
}
src = zstrm->buffer;
if (unlikely(clen > max_zpage_size)) {
clen = PAGE_SIZE;
if (is_partial_io(bvec))
src = uncmem;
}
handle = zs_malloc(meta->mem_pool, clen);
if (!handle) {
pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
index, clen);
ret = -ENOMEM;
goto out;
}
alloced_pages = zs_get_total_pages(meta->mem_pool);
if (zram->limit_pages && alloced_pages > zram->limit_pages) {
zs_free(meta->mem_pool, handle);
ret = -ENOMEM;
goto out;
}
update_used_max(zram, alloced_pages);
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
src = kmap_atomic(page);
copy_page(cmem, src);
kunmap_atomic(src);
} else {
memcpy(cmem, src, clen);
}
zcomp_strm_release(zram->comp, zstrm);
locked = false;
zs_unmap_object(meta->mem_pool, handle);
/*
* Free memory associated with this sector
* before overwriting unused sectors.
*/
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
meta->table[index].handle = handle;
zram_set_obj_size(meta, index, clen);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
/* Update stats */
atomic64_add(clen, &zram->stats.compr_data_size);
atomic64_inc(&zram->stats.pages_stored);
out:
if (locked)
zcomp_strm_release(zram->comp, zstrm);
if (is_partial_io(bvec))
kfree(uncmem);
return ret;
}
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset, struct bio *bio)
{
int ret;
int rw = bio_data_dir(bio);
if (rw == READ) {
atomic64_inc(&zram->stats.num_reads);
ret = zram_bvec_read(zram, bvec, index, offset, bio);
} else {
atomic64_inc(&zram->stats.num_writes);
ret = zram_bvec_write(zram, bvec, index, offset);
}
if (unlikely(ret)) {
if (rw == READ)
atomic64_inc(&zram->stats.failed_reads);
else
atomic64_inc(&zram->stats.failed_writes);
}
return ret;
}
/*
* zram_bio_discard - handler on discard request
* @index: physical block index in PAGE_SIZE units
* @offset: byte offset within physical block
*/
static void zram_bio_discard(struct zram *zram, u32 index,
int offset, struct bio *bio)
{
size_t n = bio->bi_iter.bi_size;
struct zram_meta *meta = zram->meta;
/*
* zram manages data in physical block size units. Because logical block
* size isn't identical with physical block size on some arch, we
* could get a discard request pointing to a specific offset within a
* certain physical block. Although we can handle this request by
* reading that physiclal block and decompressing and partially zeroing
* and re-compressing and then re-storing it, this isn't reasonable
* because our intent with a discard request is to save memory. So
* skipping this logical block is appropriate here.
*/
if (offset) {
if (n <= (PAGE_SIZE - offset))
return;
n -= (PAGE_SIZE - offset);
index++;
}
while (n >= PAGE_SIZE) {
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
index++;
n -= PAGE_SIZE;
}
}
static void zram_reset_device(struct zram *zram, bool reset_capacity)
{
size_t index;
struct zram_meta *meta;
down_write(&zram->init_lock);
zram->limit_pages = 0;
if (!init_done(zram)) {
up_write(&zram->init_lock);
return;
}
meta = zram->meta;
/* Free all pages that are still in this zram device */
for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
unsigned long handle = meta->table[index].handle;
if (!handle)
continue;
zs_free(meta->mem_pool, handle);
}
zcomp_destroy(zram->comp);
zram->max_comp_streams = 1;
zram_meta_free(zram->meta);
zram->meta = NULL;
/* Reset stats */
memset(&zram->stats, 0, sizeof(zram->stats));
zram->disksize = 0;
if (reset_capacity)
set_capacity(zram->disk, 0);
up_write(&zram->init_lock);
/*
* Revalidate disk out of the init_lock to avoid lockdep splat.
* It's okay because disk's capacity is protected by init_lock
* so that revalidate_disk always sees up-to-date capacity.
*/
if (reset_capacity)
revalidate_disk(zram->disk);
}
static ssize_t disksize_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 disksize;
struct zcomp *comp;
struct zram_meta *meta;
struct zram *zram = dev_to_zram(dev);
int err;
disksize = memparse(buf, NULL);
if (!disksize)
return -EINVAL;
disksize = PAGE_ALIGN(disksize);
meta = zram_meta_alloc(disksize);
if (!meta)
return -ENOMEM;
comp = zcomp_create(zram->compressor, zram->max_comp_streams);
if (IS_ERR(comp)) {
pr_info("Cannot initialise %s compressing backend\n",
zram->compressor);
err = PTR_ERR(comp);
goto out_free_meta;
}
down_write(&zram->init_lock);
if (init_done(zram)) {
pr_info("Cannot change disksize for initialized device\n");
err = -EBUSY;
goto out_destroy_comp;
}
zram->meta = meta;
zram->comp = comp;
zram->disksize = disksize;
set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
up_write(&zram->init_lock);
/*
* Revalidate disk out of the init_lock to avoid lockdep splat.
* It's okay because disk's capacity is protected by init_lock
* so that revalidate_disk always sees up-to-date capacity.
*/
revalidate_disk(zram->disk);
return len;
out_destroy_comp:
up_write(&zram->init_lock);
zcomp_destroy(comp);
out_free_meta:
zram_meta_free(meta);
return err;
}
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int ret;
unsigned short do_reset;
struct zram *zram;
struct block_device *bdev;
zram = dev_to_zram(dev);
bdev = bdget_disk(zram->disk, 0);
if (!bdev)
return -ENOMEM;
/* Do not reset an active device! */
if (bdev->bd_holders) {
ret = -EBUSY;
goto out;
}
ret = kstrtou16(buf, 10, &do_reset);
if (ret)
goto out;
if (!do_reset) {
ret = -EINVAL;
goto out;
}
/* Make sure all pending I/O is finished */
fsync_bdev(bdev);
bdput(bdev);
zram_reset_device(zram, true);
return len;
out:
bdput(bdev);
return ret;
}
static void __zram_make_request(struct zram *zram, struct bio *bio)
{
int offset;
u32 index;
struct bio_vec bvec;
struct bvec_iter iter;
index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
offset = (bio->bi_iter.bi_sector &
(SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
if (unlikely(bio->bi_rw & REQ_DISCARD)) {
zram_bio_discard(zram, index, offset, bio);
bio_endio(bio, 0);
return;
}
bio_for_each_segment(bvec, bio, iter) {
int max_transfer_size = PAGE_SIZE - offset;
if (bvec.bv_len > max_transfer_size) {
/*
* zram_bvec_rw() can only make operation on a single
* zram page. Split the bio vector.
*/
struct bio_vec bv;
bv.bv_page = bvec.bv_page;
bv.bv_len = max_transfer_size;
bv.bv_offset = bvec.bv_offset;
if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
goto out;
bv.bv_len = bvec.bv_len - max_transfer_size;
bv.bv_offset += max_transfer_size;
if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
goto out;
} else
if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
goto out;
update_position(&index, &offset, &bvec);
}
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return;
out:
bio_io_error(bio);
}
/*
* Handler function for all zram I/O requests.
*/
static void zram_make_request(struct request_queue *queue, struct bio *bio)
{
struct zram *zram = queue->queuedata;
down_read(&zram->init_lock);
if (unlikely(!init_done(zram)))
goto error;
if (!valid_io_request(zram, bio)) {
atomic64_inc(&zram->stats.invalid_io);
goto error;
}
__zram_make_request(zram, bio);
up_read(&zram->init_lock);
return;
error:
up_read(&zram->init_lock);
bio_io_error(bio);
}
static void zram_slot_free_notify(struct block_device *bdev,
unsigned long index)
{
struct zram *zram;
struct zram_meta *meta;
zram = bdev->bd_disk->private_data;
meta = zram->meta;
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.notify_free);
}
static const struct block_device_operations zram_devops = {
.swap_slot_free_notify = zram_slot_free_notify,
.owner = THIS_MODULE
};
static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
disksize_show, disksize_store);
static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
static DEVICE_ATTR(mem_limit, S_IRUGO | S_IWUSR, mem_limit_show,
mem_limit_store);
static DEVICE_ATTR(mem_used_max, S_IRUGO | S_IWUSR, mem_used_max_show,
mem_used_max_store);
static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
max_comp_streams_show, max_comp_streams_store);
static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
comp_algorithm_show, comp_algorithm_store);
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
ZRAM_ATTR_RO(failed_writes);
ZRAM_ATTR_RO(invalid_io);
ZRAM_ATTR_RO(notify_free);
ZRAM_ATTR_RO(zero_pages);
ZRAM_ATTR_RO(compr_data_size);
static struct attribute *zram_disk_attrs[] = {
&dev_attr_disksize.attr,
&dev_attr_initstate.attr,
&dev_attr_reset.attr,
&dev_attr_num_reads.attr,
&dev_attr_num_writes.attr,
&dev_attr_failed_reads.attr,
&dev_attr_failed_writes.attr,
&dev_attr_invalid_io.attr,
&dev_attr_notify_free.attr,
&dev_attr_zero_pages.attr,
&dev_attr_orig_data_size.attr,
&dev_attr_compr_data_size.attr,
&dev_attr_mem_used_total.attr,
&dev_attr_mem_limit.attr,
&dev_attr_mem_used_max.attr,
&dev_attr_max_comp_streams.attr,
&dev_attr_comp_algorithm.attr,
NULL,
};
static struct attribute_group zram_disk_attr_group = {
.attrs = zram_disk_attrs,
};
static int create_device(struct zram *zram, int device_id)
{
int ret = -ENOMEM;
init_rwsem(&zram->init_lock);
zram->queue = blk_alloc_queue(GFP_KERNEL);
if (!zram->queue) {
pr_err("Error allocating disk queue for device %d\n",
device_id);
goto out;
}
blk_queue_make_request(zram->queue, zram_make_request);
zram->queue->queuedata = zram;
/* gendisk structure */
zram->disk = alloc_disk(1);
if (!zram->disk) {
pr_warn("Error allocating disk structure for device %d\n",
device_id);
goto out_free_queue;
}
zram->disk->major = zram_major;
zram->disk->first_minor = device_id;
zram->disk->fops = &zram_devops;
zram->disk->queue = zram->queue;
zram->disk->private_data = zram;
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
set_capacity(zram->disk, 0);
/* zram devices sort of resembles non-rotational disks */
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
/*
* To ensure that we always get PAGE_SIZE aligned
* and n*PAGE_SIZED sized I/O requests.
*/
blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
blk_queue_logical_block_size(zram->disk->queue,
ZRAM_LOGICAL_BLOCK_SIZE);
blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
/*
* zram_bio_discard() will clear all logical blocks if logical block
* size is identical with physical block size(PAGE_SIZE). But if it is
* different, we will skip discarding some parts of logical blocks in
* the part of the request range which isn't aligned to physical block
* size. So we can't ensure that all discarded logical blocks are
* zeroed.
*/
if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
zram->disk->queue->limits.discard_zeroes_data = 1;
else
zram->disk->queue->limits.discard_zeroes_data = 0;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
add_disk(zram->disk);
ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
if (ret < 0) {
pr_warn("Error creating sysfs group");
goto out_free_disk;
}
strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
zram->meta = NULL;
zram->max_comp_streams = 1;
return 0;
out_free_disk:
del_gendisk(zram->disk);
put_disk(zram->disk);
out_free_queue:
blk_cleanup_queue(zram->queue);
out:
return ret;
}
static void destroy_device(struct zram *zram)
{
sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
del_gendisk(zram->disk);
put_disk(zram->disk);
blk_cleanup_queue(zram->queue);
}
static int __init zram_init(void)
{
int ret, dev_id;
if (num_devices > max_num_devices) {
pr_warn("Invalid value for num_devices: %u\n",
num_devices);
ret = -EINVAL;
goto out;
}
zram_major = register_blkdev(0, "zram");
if (zram_major <= 0) {
pr_warn("Unable to get major number\n");
ret = -EBUSY;
goto out;
}
/* Allocate the device array and initialize each one */
zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
if (!zram_devices) {
ret = -ENOMEM;
goto unregister;
}
for (dev_id = 0; dev_id < num_devices; dev_id++) {
ret = create_device(&zram_devices[dev_id], dev_id);
if (ret)
goto free_devices;
}
pr_info("Created %u device(s) ...\n", num_devices);
return 0;
free_devices:
while (dev_id)
destroy_device(&zram_devices[--dev_id]);
kfree(zram_devices);
unregister:
unregister_blkdev(zram_major, "zram");
out:
return ret;
}
static void __exit zram_exit(void)
{
int i;
struct zram *zram;
for (i = 0; i < num_devices; i++) {
zram = &zram_devices[i];
destroy_device(zram);
/*
* Shouldn't access zram->disk after destroy_device
* because destroy_device already released zram->disk.
*/
zram_reset_device(zram, false);
}
unregister_blkdev(zram_major, "zram");
kfree(zram_devices);
pr_debug("Cleanup done!\n");
}
module_init(zram_init);
module_exit(zram_exit);
module_param(num_devices, uint, 0);
MODULE_PARM_DESC(num_devices, "Number of zram devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");