linux_dsm_epyc7002/drivers/usb/gadget/f_audio.c
Felipe Balbi 7c5881d162 usb: gadget: audio: queue wLength-sized requests
On Audio class, the wLength field of the Setup
packet, contains the data payload size of the
following Data phase. Instead of harcoding values,
use wLength.

This also fixes a bug where Gadget driver had to
receive 3 bytes, but it was queueing a ZLP.

Signed-off-by: Felipe Balbi <balbi@ti.com>
2011-09-09 13:06:06 +03:00

800 lines
20 KiB
C

/*
* f_audio.c -- USB Audio class function driver
*
* Copyright (C) 2008 Bryan Wu <cooloney@kernel.org>
* Copyright (C) 2008 Analog Devices, Inc
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Licensed under the GPL-2 or later.
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/atomic.h>
#include "u_audio.h"
#define OUT_EP_MAX_PACKET_SIZE 200
static int req_buf_size = OUT_EP_MAX_PACKET_SIZE;
module_param(req_buf_size, int, S_IRUGO);
MODULE_PARM_DESC(req_buf_size, "ISO OUT endpoint request buffer size");
static int req_count = 256;
module_param(req_count, int, S_IRUGO);
MODULE_PARM_DESC(req_count, "ISO OUT endpoint request count");
static int audio_buf_size = 48000;
module_param(audio_buf_size, int, S_IRUGO);
MODULE_PARM_DESC(audio_buf_size, "Audio buffer size");
static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value);
static int generic_get_cmd(struct usb_audio_control *con, u8 cmd);
/*
* DESCRIPTORS ... most are static, but strings and full
* configuration descriptors are built on demand.
*/
/*
* We have two interfaces- AudioControl and AudioStreaming
* TODO: only supcard playback currently
*/
#define F_AUDIO_AC_INTERFACE 0
#define F_AUDIO_AS_INTERFACE 1
#define F_AUDIO_NUM_INTERFACES 2
/* B.3.1 Standard AC Interface Descriptor */
static struct usb_interface_descriptor ac_interface_desc __initdata = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL,
};
DECLARE_UAC_AC_HEADER_DESCRIPTOR(2);
#define UAC_DT_AC_HEADER_LENGTH UAC_DT_AC_HEADER_SIZE(F_AUDIO_NUM_INTERFACES)
/* 1 input terminal, 1 output terminal and 1 feature unit */
#define UAC_DT_TOTAL_LENGTH (UAC_DT_AC_HEADER_LENGTH + UAC_DT_INPUT_TERMINAL_SIZE \
+ UAC_DT_OUTPUT_TERMINAL_SIZE + UAC_DT_FEATURE_UNIT_SIZE(0))
/* B.3.2 Class-Specific AC Interface Descriptor */
static struct uac1_ac_header_descriptor_2 ac_header_desc = {
.bLength = UAC_DT_AC_HEADER_LENGTH,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_HEADER,
.bcdADC = __constant_cpu_to_le16(0x0100),
.wTotalLength = __constant_cpu_to_le16(UAC_DT_TOTAL_LENGTH),
.bInCollection = F_AUDIO_NUM_INTERFACES,
.baInterfaceNr = {
[0] = F_AUDIO_AC_INTERFACE,
[1] = F_AUDIO_AS_INTERFACE,
}
};
#define INPUT_TERMINAL_ID 1
static struct uac_input_terminal_descriptor input_terminal_desc = {
.bLength = UAC_DT_INPUT_TERMINAL_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_INPUT_TERMINAL,
.bTerminalID = INPUT_TERMINAL_ID,
.wTerminalType = UAC_TERMINAL_STREAMING,
.bAssocTerminal = 0,
.wChannelConfig = 0x3,
};
DECLARE_UAC_FEATURE_UNIT_DESCRIPTOR(0);
#define FEATURE_UNIT_ID 2
static struct uac_feature_unit_descriptor_0 feature_unit_desc = {
.bLength = UAC_DT_FEATURE_UNIT_SIZE(0),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_FEATURE_UNIT,
.bUnitID = FEATURE_UNIT_ID,
.bSourceID = INPUT_TERMINAL_ID,
.bControlSize = 2,
.bmaControls[0] = (UAC_FU_MUTE | UAC_FU_VOLUME),
};
static struct usb_audio_control mute_control = {
.list = LIST_HEAD_INIT(mute_control.list),
.name = "Mute Control",
.type = UAC_FU_MUTE,
/* Todo: add real Mute control code */
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control volume_control = {
.list = LIST_HEAD_INIT(volume_control.list),
.name = "Volume Control",
.type = UAC_FU_VOLUME,
/* Todo: add real Volume control code */
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control_selector feature_unit = {
.list = LIST_HEAD_INIT(feature_unit.list),
.id = FEATURE_UNIT_ID,
.name = "Mute & Volume Control",
.type = UAC_FEATURE_UNIT,
.desc = (struct usb_descriptor_header *)&feature_unit_desc,
};
#define OUTPUT_TERMINAL_ID 3
static struct uac1_output_terminal_descriptor output_terminal_desc = {
.bLength = UAC_DT_OUTPUT_TERMINAL_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_OUTPUT_TERMINAL,
.bTerminalID = OUTPUT_TERMINAL_ID,
.wTerminalType = UAC_OUTPUT_TERMINAL_SPEAKER,
.bAssocTerminal = FEATURE_UNIT_ID,
.bSourceID = FEATURE_UNIT_ID,
};
/* B.4.1 Standard AS Interface Descriptor */
static struct usb_interface_descriptor as_interface_alt_0_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bAlternateSetting = 0,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING,
};
static struct usb_interface_descriptor as_interface_alt_1_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bAlternateSetting = 1,
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING,
};
/* B.4.2 Class-Specific AS Interface Descriptor */
static struct uac1_as_header_descriptor as_header_desc = {
.bLength = UAC_DT_AS_HEADER_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_AS_GENERAL,
.bTerminalLink = INPUT_TERMINAL_ID,
.bDelay = 1,
.wFormatTag = UAC_FORMAT_TYPE_I_PCM,
};
DECLARE_UAC_FORMAT_TYPE_I_DISCRETE_DESC(1);
static struct uac_format_type_i_discrete_descriptor_1 as_type_i_desc = {
.bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_FORMAT_TYPE,
.bFormatType = UAC_FORMAT_TYPE_I,
.bSubframeSize = 2,
.bBitResolution = 16,
.bSamFreqType = 1,
};
/* Standard ISO OUT Endpoint Descriptor */
static struct usb_endpoint_descriptor as_out_ep_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_SYNC_ADAPTIVE
| USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = __constant_cpu_to_le16(OUT_EP_MAX_PACKET_SIZE),
.bInterval = 4,
};
/* Class-specific AS ISO OUT Endpoint Descriptor */
static struct uac_iso_endpoint_descriptor as_iso_out_desc __initdata = {
.bLength = UAC_ISO_ENDPOINT_DESC_SIZE,
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = UAC_EP_GENERAL,
.bmAttributes = 1,
.bLockDelayUnits = 1,
.wLockDelay = __constant_cpu_to_le16(1),
};
static struct usb_descriptor_header *f_audio_desc[] __initdata = {
(struct usb_descriptor_header *)&ac_interface_desc,
(struct usb_descriptor_header *)&ac_header_desc,
(struct usb_descriptor_header *)&input_terminal_desc,
(struct usb_descriptor_header *)&output_terminal_desc,
(struct usb_descriptor_header *)&feature_unit_desc,
(struct usb_descriptor_header *)&as_interface_alt_0_desc,
(struct usb_descriptor_header *)&as_interface_alt_1_desc,
(struct usb_descriptor_header *)&as_header_desc,
(struct usb_descriptor_header *)&as_type_i_desc,
(struct usb_descriptor_header *)&as_out_ep_desc,
(struct usb_descriptor_header *)&as_iso_out_desc,
NULL,
};
/* string IDs are assigned dynamically */
#define STRING_MANUFACTURER_IDX 0
#define STRING_PRODUCT_IDX 1
static char manufacturer[50];
static struct usb_string strings_dev[] = {
[STRING_MANUFACTURER_IDX].s = manufacturer,
[STRING_PRODUCT_IDX].s = DRIVER_DESC,
{ } /* end of list */
};
static struct usb_gadget_strings stringtab_dev = {
.language = 0x0409, /* en-us */
.strings = strings_dev,
};
static struct usb_gadget_strings *audio_strings[] = {
&stringtab_dev,
NULL,
};
/*
* This function is an ALSA sound card following USB Audio Class Spec 1.0.
*/
/*-------------------------------------------------------------------------*/
struct f_audio_buf {
u8 *buf;
int actual;
struct list_head list;
};
static struct f_audio_buf *f_audio_buffer_alloc(int buf_size)
{
struct f_audio_buf *copy_buf;
copy_buf = kzalloc(sizeof *copy_buf, GFP_ATOMIC);
if (!copy_buf)
return ERR_PTR(-ENOMEM);
copy_buf->buf = kzalloc(buf_size, GFP_ATOMIC);
if (!copy_buf->buf) {
kfree(copy_buf);
return ERR_PTR(-ENOMEM);
}
return copy_buf;
}
static void f_audio_buffer_free(struct f_audio_buf *audio_buf)
{
kfree(audio_buf->buf);
kfree(audio_buf);
}
/*-------------------------------------------------------------------------*/
struct f_audio {
struct gaudio card;
/* endpoints handle full and/or high speeds */
struct usb_ep *out_ep;
spinlock_t lock;
struct f_audio_buf *copy_buf;
struct work_struct playback_work;
struct list_head play_queue;
/* Control Set command */
struct list_head cs;
u8 set_cmd;
struct usb_audio_control *set_con;
};
static inline struct f_audio *func_to_audio(struct usb_function *f)
{
return container_of(f, struct f_audio, card.func);
}
/*-------------------------------------------------------------------------*/
static void f_audio_playback_work(struct work_struct *data)
{
struct f_audio *audio = container_of(data, struct f_audio,
playback_work);
struct f_audio_buf *play_buf;
spin_lock_irq(&audio->lock);
if (list_empty(&audio->play_queue)) {
spin_unlock_irq(&audio->lock);
return;
}
play_buf = list_first_entry(&audio->play_queue,
struct f_audio_buf, list);
list_del(&play_buf->list);
spin_unlock_irq(&audio->lock);
u_audio_playback(&audio->card, play_buf->buf, play_buf->actual);
f_audio_buffer_free(play_buf);
}
static int f_audio_out_ep_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_audio *audio = req->context;
struct usb_composite_dev *cdev = audio->card.func.config->cdev;
struct f_audio_buf *copy_buf = audio->copy_buf;
int err;
if (!copy_buf)
return -EINVAL;
/* Copy buffer is full, add it to the play_queue */
if (audio_buf_size - copy_buf->actual < req->actual) {
list_add_tail(&copy_buf->list, &audio->play_queue);
schedule_work(&audio->playback_work);
copy_buf = f_audio_buffer_alloc(audio_buf_size);
if (IS_ERR(copy_buf))
return -ENOMEM;
}
memcpy(copy_buf->buf + copy_buf->actual, req->buf, req->actual);
copy_buf->actual += req->actual;
audio->copy_buf = copy_buf;
err = usb_ep_queue(ep, req, GFP_ATOMIC);
if (err)
ERROR(cdev, "%s queue req: %d\n", ep->name, err);
return 0;
}
static void f_audio_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_audio *audio = req->context;
int status = req->status;
u32 data = 0;
struct usb_ep *out_ep = audio->out_ep;
switch (status) {
case 0: /* normal completion? */
if (ep == out_ep)
f_audio_out_ep_complete(ep, req);
else if (audio->set_con) {
memcpy(&data, req->buf, req->length);
audio->set_con->set(audio->set_con, audio->set_cmd,
le16_to_cpu(data));
audio->set_con = NULL;
}
break;
default:
break;
}
}
static int audio_set_intf_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
u8 con_sel = (w_value >> 8) & 0xFF;
u8 cmd = (ctrl->bRequest & 0x0F);
struct usb_audio_control_selector *cs;
struct usb_audio_control *con;
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n",
ctrl->bRequest, w_value, len, id);
list_for_each_entry(cs, &audio->cs, list) {
if (cs->id == id) {
list_for_each_entry(con, &cs->control, list) {
if (con->type == con_sel) {
audio->set_con = con;
break;
}
}
break;
}
}
audio->set_cmd = cmd;
req->context = audio;
req->complete = f_audio_complete;
return len;
}
static int audio_get_intf_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
int value = -EOPNOTSUPP;
u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
u8 con_sel = (w_value >> 8) & 0xFF;
u8 cmd = (ctrl->bRequest & 0x0F);
struct usb_audio_control_selector *cs;
struct usb_audio_control *con;
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n",
ctrl->bRequest, w_value, len, id);
list_for_each_entry(cs, &audio->cs, list) {
if (cs->id == id) {
list_for_each_entry(con, &cs->control, list) {
if (con->type == con_sel && con->get) {
value = con->get(con, cmd);
break;
}
}
break;
}
}
req->context = audio;
req->complete = f_audio_complete;
memcpy(req->buf, &value, len);
return len;
}
static int audio_set_endpoint_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
int value = -EOPNOTSUPP;
u16 ep = le16_to_cpu(ctrl->wIndex);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n",
ctrl->bRequest, w_value, len, ep);
switch (ctrl->bRequest) {
case UAC_SET_CUR:
value = len;
break;
case UAC_SET_MIN:
break;
case UAC_SET_MAX:
break;
case UAC_SET_RES:
break;
case UAC_SET_MEM:
break;
default:
break;
}
return value;
}
static int audio_get_endpoint_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
int value = -EOPNOTSUPP;
u8 ep = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n",
ctrl->bRequest, w_value, len, ep);
switch (ctrl->bRequest) {
case UAC_GET_CUR:
case UAC_GET_MIN:
case UAC_GET_MAX:
case UAC_GET_RES:
value = len;
break;
case UAC_GET_MEM:
break;
default:
break;
}
return value;
}
static int
f_audio_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
/* composite driver infrastructure handles everything; interface
* activation uses set_alt().
*/
switch (ctrl->bRequestType) {
case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE:
value = audio_set_intf_req(f, ctrl);
break;
case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE:
value = audio_get_intf_req(f, ctrl);
break;
case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT:
value = audio_set_endpoint_req(f, ctrl);
break;
case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT:
value = audio_get_endpoint_req(f, ctrl);
break;
default:
ERROR(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
}
/* respond with data transfer or status phase? */
if (value >= 0) {
DBG(cdev, "audio req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
req->zero = 0;
req->length = value;
value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC);
if (value < 0)
ERROR(cdev, "audio response on err %d\n", value);
}
/* device either stalls (value < 0) or reports success */
return value;
}
static int f_audio_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_ep *out_ep = audio->out_ep;
struct usb_request *req;
int i = 0, err = 0;
DBG(cdev, "intf %d, alt %d\n", intf, alt);
if (intf == 1) {
if (alt == 1) {
usb_ep_enable(out_ep);
out_ep->driver_data = audio;
audio->copy_buf = f_audio_buffer_alloc(audio_buf_size);
if (IS_ERR(audio->copy_buf))
return -ENOMEM;
/*
* allocate a bunch of read buffers
* and queue them all at once.
*/
for (i = 0; i < req_count && err == 0; i++) {
req = usb_ep_alloc_request(out_ep, GFP_ATOMIC);
if (req) {
req->buf = kzalloc(req_buf_size,
GFP_ATOMIC);
if (req->buf) {
req->length = req_buf_size;
req->context = audio;
req->complete =
f_audio_complete;
err = usb_ep_queue(out_ep,
req, GFP_ATOMIC);
if (err)
ERROR(cdev,
"%s queue req: %d\n",
out_ep->name, err);
} else
err = -ENOMEM;
} else
err = -ENOMEM;
}
} else {
struct f_audio_buf *copy_buf = audio->copy_buf;
if (copy_buf) {
list_add_tail(&copy_buf->list,
&audio->play_queue);
schedule_work(&audio->playback_work);
}
}
}
return err;
}
static void f_audio_disable(struct usb_function *f)
{
return;
}
/*-------------------------------------------------------------------------*/
static void f_audio_build_desc(struct f_audio *audio)
{
struct gaudio *card = &audio->card;
u8 *sam_freq;
int rate;
/* Set channel numbers */
input_terminal_desc.bNrChannels = u_audio_get_playback_channels(card);
as_type_i_desc.bNrChannels = u_audio_get_playback_channels(card);
/* Set sample rates */
rate = u_audio_get_playback_rate(card);
sam_freq = as_type_i_desc.tSamFreq[0];
memcpy(sam_freq, &rate, 3);
/* Todo: Set Sample bits and other parameters */
return;
}
/* audio function driver setup/binding */
static int __init
f_audio_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct f_audio *audio = func_to_audio(f);
int status;
struct usb_ep *ep;
f_audio_build_desc(audio);
/* allocate instance-specific interface IDs, and patch descriptors */
status = usb_interface_id(c, f);
if (status < 0)
goto fail;
ac_interface_desc.bInterfaceNumber = status;
status = usb_interface_id(c, f);
if (status < 0)
goto fail;
as_interface_alt_0_desc.bInterfaceNumber = status;
as_interface_alt_1_desc.bInterfaceNumber = status;
status = -ENODEV;
/* allocate instance-specific endpoints */
ep = usb_ep_autoconfig(cdev->gadget, &as_out_ep_desc);
if (!ep)
goto fail;
audio->out_ep = ep;
audio->out_ep->desc = &as_out_ep_desc;
ep->driver_data = cdev; /* claim */
status = -ENOMEM;
/* copy descriptors, and track endpoint copies */
f->descriptors = usb_copy_descriptors(f_audio_desc);
/*
* support all relevant hardware speeds... we expect that when
* hardware is dual speed, all bulk-capable endpoints work at
* both speeds
*/
if (gadget_is_dualspeed(c->cdev->gadget)) {
c->highspeed = true;
f->hs_descriptors = usb_copy_descriptors(f_audio_desc);
}
return 0;
fail:
return status;
}
static void
f_audio_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct f_audio *audio = func_to_audio(f);
usb_free_descriptors(f->descriptors);
usb_free_descriptors(f->hs_descriptors);
kfree(audio);
}
/*-------------------------------------------------------------------------*/
static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value)
{
con->data[cmd] = value;
return 0;
}
static int generic_get_cmd(struct usb_audio_control *con, u8 cmd)
{
return con->data[cmd];
}
/* Todo: add more control selecotor dynamically */
int __init control_selector_init(struct f_audio *audio)
{
INIT_LIST_HEAD(&audio->cs);
list_add(&feature_unit.list, &audio->cs);
INIT_LIST_HEAD(&feature_unit.control);
list_add(&mute_control.list, &feature_unit.control);
list_add(&volume_control.list, &feature_unit.control);
volume_control.data[UAC__CUR] = 0xffc0;
volume_control.data[UAC__MIN] = 0xe3a0;
volume_control.data[UAC__MAX] = 0xfff0;
volume_control.data[UAC__RES] = 0x0030;
return 0;
}
/**
* audio_bind_config - add USB audio function to a configuration
* @c: the configuration to supcard the USB audio function
* Context: single threaded during gadget setup
*
* Returns zero on success, else negative errno.
*/
int __init audio_bind_config(struct usb_configuration *c)
{
struct f_audio *audio;
int status;
/* allocate and initialize one new instance */
audio = kzalloc(sizeof *audio, GFP_KERNEL);
if (!audio)
return -ENOMEM;
audio->card.func.name = "g_audio";
audio->card.gadget = c->cdev->gadget;
INIT_LIST_HEAD(&audio->play_queue);
spin_lock_init(&audio->lock);
/* set up ASLA audio devices */
status = gaudio_setup(&audio->card);
if (status < 0)
goto setup_fail;
audio->card.func.strings = audio_strings;
audio->card.func.bind = f_audio_bind;
audio->card.func.unbind = f_audio_unbind;
audio->card.func.set_alt = f_audio_set_alt;
audio->card.func.setup = f_audio_setup;
audio->card.func.disable = f_audio_disable;
control_selector_init(audio);
INIT_WORK(&audio->playback_work, f_audio_playback_work);
status = usb_add_function(c, &audio->card.func);
if (status)
goto add_fail;
INFO(c->cdev, "audio_buf_size %d, req_buf_size %d, req_count %d\n",
audio_buf_size, req_buf_size, req_count);
return status;
add_fail:
gaudio_cleanup();
setup_fail:
kfree(audio);
return status;
}