mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 14:06:14 +07:00
db67befa3d
T5/T6 can have different pack and pad boundary value. This patch sets packing boundary based on cache line size and PCI-E maximum payload size and sets smallest padding boundary value. Signed-off-by: Varun Prakash <varun@chelsio.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
1722 lines
46 KiB
C
1722 lines
46 KiB
C
/*
|
|
* This file is part of the Chelsio FCoE driver for Linux.
|
|
*
|
|
* Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/page.h>
|
|
#include <linux/cache.h>
|
|
|
|
#include "t4_values.h"
|
|
#include "csio_hw.h"
|
|
#include "csio_wr.h"
|
|
#include "csio_mb.h"
|
|
#include "csio_defs.h"
|
|
|
|
int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
|
|
static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
|
|
|
|
int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
|
|
static int csio_sge_timer_reg = 1;
|
|
|
|
#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
|
|
csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
|
|
|
|
static void
|
|
csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
|
|
{
|
|
sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
|
|
reg * sizeof(uint32_t));
|
|
}
|
|
|
|
/* Free list buffer size */
|
|
static inline uint32_t
|
|
csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
|
|
{
|
|
return sge->sge_fl_buf_size[buf->paddr & 0xF];
|
|
}
|
|
|
|
/* Size of the egress queue status page */
|
|
static inline uint32_t
|
|
csio_wr_qstat_pgsz(struct csio_hw *hw)
|
|
{
|
|
return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
|
|
}
|
|
|
|
/* Ring freelist doorbell */
|
|
static inline void
|
|
csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
|
|
{
|
|
/*
|
|
* Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
|
|
* number of bytes in the freelist queue. This translates to atleast
|
|
* 8 freelist buffer pointers (since each pointer is 8 bytes).
|
|
*/
|
|
if (flq->inc_idx >= 8) {
|
|
csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
|
|
PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
|
|
MYPF_REG(SGE_PF_KDOORBELL_A));
|
|
flq->inc_idx &= 7;
|
|
}
|
|
}
|
|
|
|
/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
|
|
static void
|
|
csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
|
|
{
|
|
csio_wr_reg32(hw, CIDXINC_V(0) |
|
|
INGRESSQID_V(iqid) |
|
|
TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
|
|
MYPF_REG(SGE_PF_GTS_A));
|
|
}
|
|
|
|
/*
|
|
* csio_wr_fill_fl - Populate the FL buffers of a FL queue.
|
|
* @hw: HW module.
|
|
* @flq: Freelist queue.
|
|
*
|
|
* Fill up freelist buffer entries with buffers of size specified
|
|
* in the size register.
|
|
*
|
|
*/
|
|
static int
|
|
csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
__be64 *d = (__be64 *)(flq->vstart);
|
|
struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
|
|
uint64_t paddr;
|
|
int sreg = flq->un.fl.sreg;
|
|
int n = flq->credits;
|
|
|
|
while (n--) {
|
|
buf->len = sge->sge_fl_buf_size[sreg];
|
|
buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
|
|
&buf->paddr);
|
|
if (!buf->vaddr) {
|
|
csio_err(hw, "Could only fill %d buffers!\n", n + 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
paddr = buf->paddr | (sreg & 0xF);
|
|
|
|
*d++ = cpu_to_be64(paddr);
|
|
buf++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_update_fl -
|
|
* @hw: HW module.
|
|
* @flq: Freelist queue.
|
|
*
|
|
*
|
|
*/
|
|
static inline void
|
|
csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
|
|
{
|
|
|
|
flq->inc_idx += n;
|
|
flq->pidx += n;
|
|
if (unlikely(flq->pidx >= flq->credits))
|
|
flq->pidx -= (uint16_t)flq->credits;
|
|
|
|
CSIO_INC_STATS(flq, n_flq_refill);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_alloc_q - Allocate a WR queue and initialize it.
|
|
* @hw: HW module
|
|
* @qsize: Size of the queue in bytes
|
|
* @wrsize: Since of WR in this queue, if fixed.
|
|
* @type: Type of queue (Ingress/Egress/Freelist)
|
|
* @owner: Module that owns this queue.
|
|
* @nflb: Number of freelist buffers for FL.
|
|
* @sreg: What is the FL buffer size register?
|
|
* @iq_int_handler: Ingress queue handler in INTx mode.
|
|
*
|
|
* This function allocates and sets up a queue for the caller
|
|
* of size qsize, aligned at the required boundary. This is subject to
|
|
* be free entries being available in the queue array. If one is found,
|
|
* it is initialized with the allocated queue, marked as being used (owner),
|
|
* and a handle returned to the caller in form of the queue's index
|
|
* into the q_arr array.
|
|
* If user has indicated a freelist (by specifying nflb > 0), create
|
|
* another queue (with its own index into q_arr) for the freelist. Allocate
|
|
* memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
|
|
* idx in the ingress queue's flq.idx. This is how a Freelist is associated
|
|
* with its owning ingress queue.
|
|
*/
|
|
int
|
|
csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
|
|
uint16_t type, void *owner, uint32_t nflb, int sreg,
|
|
iq_handler_t iq_intx_handler)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q, *flq;
|
|
int free_idx = wrm->free_qidx;
|
|
int ret_idx = free_idx;
|
|
uint32_t qsz;
|
|
int flq_idx;
|
|
|
|
if (free_idx >= wrm->num_q) {
|
|
csio_err(hw, "No more free queues.\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case CSIO_EGRESS:
|
|
qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
|
|
break;
|
|
case CSIO_INGRESS:
|
|
switch (wrsize) {
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
break;
|
|
default:
|
|
csio_err(hw, "Invalid Ingress queue WR size:%d\n",
|
|
wrsize);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Number of elements must be a multiple of 16
|
|
* So this includes status page size
|
|
*/
|
|
qsz = ALIGN(qsize/wrsize, 16) * wrsize;
|
|
|
|
break;
|
|
case CSIO_FREELIST:
|
|
qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
|
|
break;
|
|
default:
|
|
csio_err(hw, "Invalid queue type: 0x%x\n", type);
|
|
return -1;
|
|
}
|
|
|
|
q = wrm->q_arr[free_idx];
|
|
|
|
q->vstart = pci_zalloc_consistent(hw->pdev, qsz, &q->pstart);
|
|
if (!q->vstart) {
|
|
csio_err(hw,
|
|
"Failed to allocate DMA memory for "
|
|
"queue at id: %d size: %d\n", free_idx, qsize);
|
|
return -1;
|
|
}
|
|
|
|
q->type = type;
|
|
q->owner = owner;
|
|
q->pidx = q->cidx = q->inc_idx = 0;
|
|
q->size = qsz;
|
|
q->wr_sz = wrsize; /* If using fixed size WRs */
|
|
|
|
wrm->free_qidx++;
|
|
|
|
if (type == CSIO_INGRESS) {
|
|
/* Since queue area is set to zero */
|
|
q->un.iq.genbit = 1;
|
|
|
|
/*
|
|
* Ingress queue status page size is always the size of
|
|
* the ingress queue entry.
|
|
*/
|
|
q->credits = (qsz - q->wr_sz) / q->wr_sz;
|
|
q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
|
|
- q->wr_sz);
|
|
|
|
/* Allocate memory for FL if requested */
|
|
if (nflb > 0) {
|
|
flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
|
|
sizeof(__be64), CSIO_FREELIST,
|
|
owner, 0, sreg, NULL);
|
|
if (flq_idx == -1) {
|
|
csio_err(hw,
|
|
"Failed to allocate FL queue"
|
|
" for IQ idx:%d\n", free_idx);
|
|
return -1;
|
|
}
|
|
|
|
/* Associate the new FL with the Ingress quue */
|
|
q->un.iq.flq_idx = flq_idx;
|
|
|
|
flq = wrm->q_arr[q->un.iq.flq_idx];
|
|
flq->un.fl.bufs = kcalloc(flq->credits,
|
|
sizeof(struct csio_dma_buf),
|
|
GFP_KERNEL);
|
|
if (!flq->un.fl.bufs) {
|
|
csio_err(hw,
|
|
"Failed to allocate FL queue bufs"
|
|
" for IQ idx:%d\n", free_idx);
|
|
return -1;
|
|
}
|
|
|
|
flq->un.fl.packen = 0;
|
|
flq->un.fl.offset = 0;
|
|
flq->un.fl.sreg = sreg;
|
|
|
|
/* Fill up the free list buffers */
|
|
if (csio_wr_fill_fl(hw, flq))
|
|
return -1;
|
|
|
|
/*
|
|
* Make sure in a FLQ, atleast 1 credit (8 FL buffers)
|
|
* remains unpopulated,otherwise HW thinks
|
|
* FLQ is empty.
|
|
*/
|
|
flq->pidx = flq->inc_idx = flq->credits - 8;
|
|
} else {
|
|
q->un.iq.flq_idx = -1;
|
|
}
|
|
|
|
/* Associate the IQ INTx handler. */
|
|
q->un.iq.iq_intx_handler = iq_intx_handler;
|
|
|
|
csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
|
|
|
|
} else if (type == CSIO_EGRESS) {
|
|
q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
|
|
q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
|
|
- csio_wr_qstat_pgsz(hw));
|
|
csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
|
|
} else { /* Freelist */
|
|
q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
|
|
q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
|
|
- csio_wr_qstat_pgsz(hw));
|
|
csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
|
|
}
|
|
|
|
return ret_idx;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_create_rsp - Response handler for IQ creation.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @iq_idx: Ingress queue that got created.
|
|
*
|
|
* Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
|
|
*/
|
|
static int
|
|
csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
|
|
{
|
|
struct csio_iq_params iqp;
|
|
enum fw_retval retval;
|
|
uint32_t iq_id;
|
|
int flq_idx;
|
|
|
|
memset(&iqp, 0, sizeof(struct csio_iq_params));
|
|
|
|
csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
|
|
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_q_iqid(hw, iq_idx) = iqp.iqid;
|
|
csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
|
|
csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
|
|
csio_q_inc_idx(hw, iq_idx) = 0;
|
|
|
|
/* Actual iq-id. */
|
|
iq_id = iqp.iqid - hw->wrm.fw_iq_start;
|
|
|
|
/* Set the iq-id to iq map table. */
|
|
if (iq_id >= CSIO_MAX_IQ) {
|
|
csio_err(hw,
|
|
"Exceeding MAX_IQ(%d) supported!"
|
|
" iqid:%d rel_iqid:%d FW iq_start:%d\n",
|
|
CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
csio_q_set_intr_map(hw, iq_idx, iq_id);
|
|
|
|
/*
|
|
* During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
|
|
* ingress context of this queue. This will block interrupts to
|
|
* this queue until the next GTS write. Therefore, we do a
|
|
* 0-cidx increment GTS write for this queue just to clear the
|
|
* interrupt_sent bit. This will re-enable interrupts to this
|
|
* queue.
|
|
*/
|
|
csio_wr_sge_intr_enable(hw, iqp.physiqid);
|
|
|
|
flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
|
|
if (flq_idx != -1) {
|
|
struct csio_q *flq = hw->wrm.q_arr[flq_idx];
|
|
|
|
csio_q_flid(hw, flq_idx) = iqp.fl0id;
|
|
csio_q_cidx(hw, flq_idx) = 0;
|
|
csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
|
|
csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
|
|
|
|
/* Now update SGE about the buffers allocated during init */
|
|
csio_wr_ring_fldb(hw, flq);
|
|
}
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_create - Configure an Ingress queue with FW.
|
|
* @hw: The HW module.
|
|
* @priv: Private data object.
|
|
* @iq_idx: Ingress queue index in the WR module.
|
|
* @vec: MSIX vector.
|
|
* @portid: PCIE Channel to be associated with this queue.
|
|
* @async: Is this a FW asynchronous message handling queue?
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
|
|
* with alloc/write bits set.
|
|
*/
|
|
int
|
|
csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
|
|
uint32_t vec, uint8_t portid, bool async,
|
|
void (*cbfn) (struct csio_hw *, struct csio_mb *))
|
|
{
|
|
struct csio_mb *mbp;
|
|
struct csio_iq_params iqp;
|
|
int flq_idx;
|
|
|
|
memset(&iqp, 0, sizeof(struct csio_iq_params));
|
|
csio_q_portid(hw, iq_idx) = portid;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
csio_err(hw, "IQ command out of memory!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
switch (hw->intr_mode) {
|
|
case CSIO_IM_INTX:
|
|
case CSIO_IM_MSI:
|
|
/* For interrupt forwarding queue only */
|
|
if (hw->intr_iq_idx == iq_idx)
|
|
iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
|
|
else
|
|
iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
|
|
iqp.iqandstindex =
|
|
csio_q_physiqid(hw, hw->intr_iq_idx);
|
|
break;
|
|
case CSIO_IM_MSIX:
|
|
iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
|
|
iqp.iqandstindex = (uint16_t)vec;
|
|
break;
|
|
case CSIO_IM_NONE:
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Pass in the ingress queue cmd parameters */
|
|
iqp.pfn = hw->pfn;
|
|
iqp.vfn = 0;
|
|
iqp.iq_start = 1;
|
|
iqp.viid = 0;
|
|
iqp.type = FW_IQ_TYPE_FL_INT_CAP;
|
|
iqp.iqasynch = async;
|
|
if (csio_intr_coalesce_cnt)
|
|
iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
|
|
else
|
|
iqp.iqanus = X_UPDATESCHEDULING_TIMER;
|
|
iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
|
|
iqp.iqpciech = portid;
|
|
iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
|
|
|
|
switch (csio_q_wr_sz(hw, iq_idx)) {
|
|
case 16:
|
|
iqp.iqesize = 0; break;
|
|
case 32:
|
|
iqp.iqesize = 1; break;
|
|
case 64:
|
|
iqp.iqesize = 2; break;
|
|
case 128:
|
|
iqp.iqesize = 3; break;
|
|
}
|
|
|
|
iqp.iqsize = csio_q_size(hw, iq_idx) /
|
|
csio_q_wr_sz(hw, iq_idx);
|
|
iqp.iqaddr = csio_q_pstart(hw, iq_idx);
|
|
|
|
flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
|
|
if (flq_idx != -1) {
|
|
enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
|
|
struct csio_q *flq = hw->wrm.q_arr[flq_idx];
|
|
|
|
iqp.fl0paden = 1;
|
|
iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
|
|
iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
|
|
iqp.fl0fbmax = ((chip == CHELSIO_T5) ?
|
|
X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
|
|
iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
|
|
iqp.fl0addr = csio_q_pstart(hw, flq_idx);
|
|
}
|
|
|
|
csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of IQ cmd failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_create_rsp - Response handler for EQ creation.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @eq_idx: Egress queue that got created.
|
|
*
|
|
* Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
|
|
*/
|
|
static int
|
|
csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
|
|
{
|
|
struct csio_eq_params eqp;
|
|
enum fw_retval retval;
|
|
|
|
memset(&eqp, 0, sizeof(struct csio_eq_params));
|
|
|
|
csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
|
|
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
|
|
csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
|
|
csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
|
|
csio_q_inc_idx(hw, eq_idx) = 0;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_create - Configure an Egress queue with FW.
|
|
* @hw: HW module.
|
|
* @priv: Private data.
|
|
* @eq_idx: Egress queue index in the WR module.
|
|
* @iq_idx: Associated ingress queue index.
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API configures a offload egress queue with FW by issuing a
|
|
* FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
|
|
*/
|
|
int
|
|
csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
|
|
int iq_idx, uint8_t portid,
|
|
void (*cbfn) (struct csio_hw *, struct csio_mb *))
|
|
{
|
|
struct csio_mb *mbp;
|
|
struct csio_eq_params eqp;
|
|
|
|
memset(&eqp, 0, sizeof(struct csio_eq_params));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
csio_err(hw, "EQ command out of memory!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
eqp.pfn = hw->pfn;
|
|
eqp.vfn = 0;
|
|
eqp.eqstart = 1;
|
|
eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
|
|
eqp.iqid = csio_q_iqid(hw, iq_idx);
|
|
eqp.fbmin = X_FETCHBURSTMIN_64B;
|
|
eqp.fbmax = X_FETCHBURSTMAX_512B;
|
|
eqp.cidxfthresh = 0;
|
|
eqp.pciechn = portid;
|
|
eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
|
|
eqp.eqaddr = csio_q_pstart(hw, eq_idx);
|
|
|
|
csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
|
|
&eqp, cbfn);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_destroy_rsp - Response handler for IQ removal.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @iq_idx: Ingress queue that was freed.
|
|
*
|
|
* Handle FW_IQ_CMD (free) mailbox completion.
|
|
*/
|
|
static int
|
|
csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
|
|
{
|
|
enum fw_retval retval = csio_mb_fw_retval(mbp);
|
|
int rv = 0;
|
|
|
|
if (retval != FW_SUCCESS)
|
|
rv = -EINVAL;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_destroy - Free an ingress queue.
|
|
* @hw: The HW module.
|
|
* @priv: Private data object.
|
|
* @iq_idx: Ingress queue index to destroy
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API frees an ingress queue by issuing the FW_IQ_CMD
|
|
* with the free bit set.
|
|
*/
|
|
static int
|
|
csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
|
|
void (*cbfn)(struct csio_hw *, struct csio_mb *))
|
|
{
|
|
int rv = 0;
|
|
struct csio_mb *mbp;
|
|
struct csio_iq_params iqp;
|
|
int flq_idx;
|
|
|
|
memset(&iqp, 0, sizeof(struct csio_iq_params));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp)
|
|
return -ENOMEM;
|
|
|
|
iqp.pfn = hw->pfn;
|
|
iqp.vfn = 0;
|
|
iqp.iqid = csio_q_iqid(hw, iq_idx);
|
|
iqp.type = FW_IQ_TYPE_FL_INT_CAP;
|
|
|
|
flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
|
|
if (flq_idx != -1)
|
|
iqp.fl0id = csio_q_flid(hw, flq_idx);
|
|
else
|
|
iqp.fl0id = 0xFFFF;
|
|
|
|
iqp.fl1id = 0xFFFF;
|
|
|
|
csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
|
|
|
|
rv = csio_mb_issue(hw, mbp);
|
|
if (rv != 0) {
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return rv;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @eq_idx: Egress queue that was freed.
|
|
*
|
|
* Handle FW_OFLD_EQ_CMD (free) mailbox completion.
|
|
*/
|
|
static int
|
|
csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
|
|
{
|
|
enum fw_retval retval = csio_mb_fw_retval(mbp);
|
|
int rv = 0;
|
|
|
|
if (retval != FW_SUCCESS)
|
|
rv = -EINVAL;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_destroy - Free an Egress queue.
|
|
* @hw: The HW module.
|
|
* @priv: Private data object.
|
|
* @eq_idx: Egress queue index to destroy
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
|
|
* with the free bit set.
|
|
*/
|
|
static int
|
|
csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
|
|
void (*cbfn) (struct csio_hw *, struct csio_mb *))
|
|
{
|
|
int rv = 0;
|
|
struct csio_mb *mbp;
|
|
struct csio_eq_params eqp;
|
|
|
|
memset(&eqp, 0, sizeof(struct csio_eq_params));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp)
|
|
return -ENOMEM;
|
|
|
|
eqp.pfn = hw->pfn;
|
|
eqp.vfn = 0;
|
|
eqp.eqid = csio_q_eqid(hw, eq_idx);
|
|
|
|
csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
|
|
|
|
rv = csio_mb_issue(hw, mbp);
|
|
if (rv != 0) {
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return rv;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
|
|
* @hw: HW module
|
|
* @qidx: Egress queue index
|
|
*
|
|
* Cleanup the Egress queue status page.
|
|
*/
|
|
static void
|
|
csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
|
|
{
|
|
struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
|
|
struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
|
|
|
|
memset(stp, 0, sizeof(*stp));
|
|
}
|
|
|
|
/*
|
|
* csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
|
|
* @hw: HW module
|
|
* @qidx: Ingress queue index
|
|
*
|
|
* Cleanup the footer entries in the given ingress queue,
|
|
* set to 1 the internal copy of genbit.
|
|
*/
|
|
static void
|
|
csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q = wrm->q_arr[qidx];
|
|
void *wr;
|
|
struct csio_iqwr_footer *ftr;
|
|
uint32_t i = 0;
|
|
|
|
/* set to 1 since we are just about zero out genbit */
|
|
q->un.iq.genbit = 1;
|
|
|
|
for (i = 0; i < q->credits; i++) {
|
|
/* Get the WR */
|
|
wr = (void *)((uintptr_t)q->vstart +
|
|
(i * q->wr_sz));
|
|
/* Get the footer */
|
|
ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
|
|
(q->wr_sz - sizeof(*ftr)));
|
|
/* Zero out footer */
|
|
memset(ftr, 0, sizeof(*ftr));
|
|
}
|
|
}
|
|
|
|
int
|
|
csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
|
|
{
|
|
int i, flq_idx;
|
|
struct csio_q *q;
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
int rv;
|
|
|
|
for (i = 0; i < wrm->free_qidx; i++) {
|
|
q = wrm->q_arr[i];
|
|
|
|
switch (q->type) {
|
|
case CSIO_EGRESS:
|
|
if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
|
|
csio_wr_cleanup_eq_stpg(hw, i);
|
|
if (!cmd) {
|
|
csio_q_eqid(hw, i) = CSIO_MAX_QID;
|
|
continue;
|
|
}
|
|
|
|
rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
|
|
if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
|
|
cmd = false;
|
|
|
|
csio_q_eqid(hw, i) = CSIO_MAX_QID;
|
|
}
|
|
case CSIO_INGRESS:
|
|
if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
|
|
csio_wr_cleanup_iq_ftr(hw, i);
|
|
if (!cmd) {
|
|
csio_q_iqid(hw, i) = CSIO_MAX_QID;
|
|
flq_idx = csio_q_iq_flq_idx(hw, i);
|
|
if (flq_idx != -1)
|
|
csio_q_flid(hw, flq_idx) =
|
|
CSIO_MAX_QID;
|
|
continue;
|
|
}
|
|
|
|
rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
|
|
if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
|
|
cmd = false;
|
|
|
|
csio_q_iqid(hw, i) = CSIO_MAX_QID;
|
|
flq_idx = csio_q_iq_flq_idx(hw, i);
|
|
if (flq_idx != -1)
|
|
csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_get - Get requested size of WR entry/entries from queue.
|
|
* @hw: HW module.
|
|
* @qidx: Index of queue.
|
|
* @size: Cumulative size of Work request(s).
|
|
* @wrp: Work request pair.
|
|
*
|
|
* If requested credits are available, return the start address of the
|
|
* work request in the work request pair. Set pidx accordingly and
|
|
* return.
|
|
*
|
|
* NOTE about WR pair:
|
|
* ==================
|
|
* A WR can start towards the end of a queue, and then continue at the
|
|
* beginning, since the queue is considered to be circular. This will
|
|
* require a pair of address/size to be passed back to the caller -
|
|
* hence Work request pair format.
|
|
*/
|
|
int
|
|
csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
|
|
struct csio_wr_pair *wrp)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q = wrm->q_arr[qidx];
|
|
void *cwr = (void *)((uintptr_t)(q->vstart) +
|
|
(q->pidx * CSIO_QCREDIT_SZ));
|
|
struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
|
|
uint16_t cidx = q->cidx = ntohs(stp->cidx);
|
|
uint16_t pidx = q->pidx;
|
|
uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
|
|
int req_credits = req_sz / CSIO_QCREDIT_SZ;
|
|
int credits;
|
|
|
|
CSIO_DB_ASSERT(q->owner != NULL);
|
|
CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
|
|
CSIO_DB_ASSERT(cidx <= q->credits);
|
|
|
|
/* Calculate credits */
|
|
if (pidx > cidx) {
|
|
credits = q->credits - (pidx - cidx) - 1;
|
|
} else if (cidx > pidx) {
|
|
credits = cidx - pidx - 1;
|
|
} else {
|
|
/* cidx == pidx, empty queue */
|
|
credits = q->credits;
|
|
CSIO_INC_STATS(q, n_qempty);
|
|
}
|
|
|
|
/*
|
|
* Check if we have enough credits.
|
|
* credits = 1 implies queue is full.
|
|
*/
|
|
if (!credits || (req_credits > credits)) {
|
|
CSIO_INC_STATS(q, n_qfull);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* If we are here, we have enough credits to satisfy the
|
|
* request. Check if we are near the end of q, and if WR spills over.
|
|
* If it does, use the first addr/size to cover the queue until
|
|
* the end. Fit the remainder portion of the request at the top
|
|
* of queue and return it in the second addr/len. Set pidx
|
|
* accordingly.
|
|
*/
|
|
if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
|
|
wrp->addr1 = cwr;
|
|
wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
|
|
wrp->addr2 = q->vstart;
|
|
wrp->size2 = req_sz - wrp->size1;
|
|
q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
|
|
CSIO_QCREDIT_SZ);
|
|
CSIO_INC_STATS(q, n_qwrap);
|
|
CSIO_INC_STATS(q, n_eq_wr_split);
|
|
} else {
|
|
wrp->addr1 = cwr;
|
|
wrp->size1 = req_sz;
|
|
wrp->addr2 = NULL;
|
|
wrp->size2 = 0;
|
|
q->pidx += (uint16_t)req_credits;
|
|
|
|
/* We are the end of queue, roll back pidx to top of queue */
|
|
if (unlikely(q->pidx == q->credits)) {
|
|
q->pidx = 0;
|
|
CSIO_INC_STATS(q, n_qwrap);
|
|
}
|
|
}
|
|
|
|
q->inc_idx = (uint16_t)req_credits;
|
|
|
|
CSIO_INC_STATS(q, n_tot_reqs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_copy_to_wrp - Copies given data into WR.
|
|
* @data_buf - Data buffer
|
|
* @wrp - Work request pair.
|
|
* @wr_off - Work request offset.
|
|
* @data_len - Data length.
|
|
*
|
|
* Copies the given data in Work Request. Work request pair(wrp) specifies
|
|
* address information of Work request.
|
|
* Returns: none
|
|
*/
|
|
void
|
|
csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
|
|
uint32_t wr_off, uint32_t data_len)
|
|
{
|
|
uint32_t nbytes;
|
|
|
|
/* Number of space available in buffer addr1 of WRP */
|
|
nbytes = ((wrp->size1 - wr_off) >= data_len) ?
|
|
data_len : (wrp->size1 - wr_off);
|
|
|
|
memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
|
|
data_len -= nbytes;
|
|
|
|
/* Write the remaining data from the begining of circular buffer */
|
|
if (data_len) {
|
|
CSIO_DB_ASSERT(data_len <= wrp->size2);
|
|
CSIO_DB_ASSERT(wrp->addr2 != NULL);
|
|
memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_wr_issue - Notify chip of Work request.
|
|
* @hw: HW module.
|
|
* @qidx: Index of queue.
|
|
* @prio: 0: Low priority, 1: High priority
|
|
*
|
|
* Rings the SGE Doorbell by writing the current producer index of the passed
|
|
* in queue into the register.
|
|
*
|
|
*/
|
|
int
|
|
csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q = wrm->q_arr[qidx];
|
|
|
|
CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
|
|
|
|
wmb();
|
|
/* Ring SGE Doorbell writing q->pidx into it */
|
|
csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
|
|
PIDX_T5_V(q->inc_idx) | DBTYPE_F,
|
|
MYPF_REG(SGE_PF_KDOORBELL_A));
|
|
q->inc_idx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint32_t
|
|
csio_wr_avail_qcredits(struct csio_q *q)
|
|
{
|
|
if (q->pidx > q->cidx)
|
|
return q->pidx - q->cidx;
|
|
else if (q->cidx > q->pidx)
|
|
return q->credits - (q->cidx - q->pidx);
|
|
else
|
|
return 0; /* cidx == pidx, empty queue */
|
|
}
|
|
|
|
/*
|
|
* csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
|
|
* @hw: HW module.
|
|
* @flq: The freelist queue.
|
|
*
|
|
* Invalidate the driver's version of a freelist buffer entry,
|
|
* without freeing the associated the DMA memory. The entry
|
|
* to be invalidated is picked up from the current Free list
|
|
* queue cidx.
|
|
*
|
|
*/
|
|
static inline void
|
|
csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
|
|
{
|
|
flq->cidx++;
|
|
if (flq->cidx == flq->credits) {
|
|
flq->cidx = 0;
|
|
CSIO_INC_STATS(flq, n_qwrap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_wr_process_fl - Process a freelist completion.
|
|
* @hw: HW module.
|
|
* @q: The ingress queue attached to the Freelist.
|
|
* @wr: The freelist completion WR in the ingress queue.
|
|
* @len_to_qid: The lower 32-bits of the first flit of the RSP footer
|
|
* @iq_handler: Caller's handler for this completion.
|
|
* @priv: Private pointer of caller
|
|
*
|
|
*/
|
|
static inline void
|
|
csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
|
|
void *wr, uint32_t len_to_qid,
|
|
void (*iq_handler)(struct csio_hw *, void *,
|
|
uint32_t, struct csio_fl_dma_buf *,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
struct csio_fl_dma_buf flb;
|
|
struct csio_dma_buf *buf, *fbuf;
|
|
uint32_t bufsz, len, lastlen = 0;
|
|
int n;
|
|
struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
|
|
|
|
CSIO_DB_ASSERT(flq != NULL);
|
|
|
|
len = len_to_qid;
|
|
|
|
if (len & IQWRF_NEWBUF) {
|
|
if (flq->un.fl.offset > 0) {
|
|
csio_wr_inval_flq_buf(hw, flq);
|
|
flq->un.fl.offset = 0;
|
|
}
|
|
len = IQWRF_LEN_GET(len);
|
|
}
|
|
|
|
CSIO_DB_ASSERT(len != 0);
|
|
|
|
flb.totlen = len;
|
|
|
|
/* Consume all freelist buffers used for len bytes */
|
|
for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
|
|
buf = &flq->un.fl.bufs[flq->cidx];
|
|
bufsz = csio_wr_fl_bufsz(sge, buf);
|
|
|
|
fbuf->paddr = buf->paddr;
|
|
fbuf->vaddr = buf->vaddr;
|
|
|
|
flb.offset = flq->un.fl.offset;
|
|
lastlen = min(bufsz, len);
|
|
fbuf->len = lastlen;
|
|
|
|
len -= lastlen;
|
|
if (!len)
|
|
break;
|
|
csio_wr_inval_flq_buf(hw, flq);
|
|
}
|
|
|
|
flb.defer_free = flq->un.fl.packen ? 0 : 1;
|
|
|
|
iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
|
|
&flb, priv);
|
|
|
|
if (flq->un.fl.packen)
|
|
flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
|
|
else
|
|
csio_wr_inval_flq_buf(hw, flq);
|
|
|
|
}
|
|
|
|
/*
|
|
* csio_is_new_iqwr - Is this a new Ingress queue entry ?
|
|
* @q: Ingress quueue.
|
|
* @ftr: Ingress queue WR SGE footer.
|
|
*
|
|
* The entry is new if our generation bit matches the corresponding
|
|
* bit in the footer of the current WR.
|
|
*/
|
|
static inline bool
|
|
csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
|
|
{
|
|
return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
|
|
}
|
|
|
|
/*
|
|
* csio_wr_process_iq - Process elements in Ingress queue.
|
|
* @hw: HW pointer
|
|
* @qidx: Index of queue
|
|
* @iq_handler: Handler for this queue
|
|
* @priv: Caller's private pointer
|
|
*
|
|
* This routine walks through every entry of the ingress queue, calling
|
|
* the provided iq_handler with the entry, until the generation bit
|
|
* flips.
|
|
*/
|
|
int
|
|
csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
|
|
void (*iq_handler)(struct csio_hw *, void *,
|
|
uint32_t, struct csio_fl_dma_buf *,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
|
|
struct csio_iqwr_footer *ftr;
|
|
uint32_t wr_type, fw_qid, qid;
|
|
struct csio_q *q_completed;
|
|
struct csio_q *flq = csio_iq_has_fl(q) ?
|
|
wrm->q_arr[q->un.iq.flq_idx] : NULL;
|
|
int rv = 0;
|
|
|
|
/* Get the footer */
|
|
ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
|
|
(q->wr_sz - sizeof(*ftr)));
|
|
|
|
/*
|
|
* When q wrapped around last time, driver should have inverted
|
|
* ic.genbit as well.
|
|
*/
|
|
while (csio_is_new_iqwr(q, ftr)) {
|
|
|
|
CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
|
|
(uintptr_t)q->vwrap);
|
|
rmb();
|
|
wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
|
|
|
|
switch (wr_type) {
|
|
case X_RSPD_TYPE_CPL:
|
|
/* Subtract footer from WR len */
|
|
iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
|
|
break;
|
|
case X_RSPD_TYPE_FLBUF:
|
|
csio_wr_process_fl(hw, q, wr,
|
|
ntohl(ftr->pldbuflen_qid),
|
|
iq_handler, priv);
|
|
break;
|
|
case X_RSPD_TYPE_INTR:
|
|
fw_qid = ntohl(ftr->pldbuflen_qid);
|
|
qid = fw_qid - wrm->fw_iq_start;
|
|
q_completed = hw->wrm.intr_map[qid];
|
|
|
|
if (unlikely(qid ==
|
|
csio_q_physiqid(hw, hw->intr_iq_idx))) {
|
|
/*
|
|
* We are already in the Forward Interrupt
|
|
* Interrupt Queue Service! Do-not service
|
|
* again!
|
|
*
|
|
*/
|
|
} else {
|
|
CSIO_DB_ASSERT(q_completed);
|
|
CSIO_DB_ASSERT(
|
|
q_completed->un.iq.iq_intx_handler);
|
|
|
|
/* Call the queue handler. */
|
|
q_completed->un.iq.iq_intx_handler(hw, NULL,
|
|
0, NULL, (void *)q_completed);
|
|
}
|
|
break;
|
|
default:
|
|
csio_warn(hw, "Unknown resp type 0x%x received\n",
|
|
wr_type);
|
|
CSIO_INC_STATS(q, n_rsp_unknown);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ingress *always* has fixed size WR entries. Therefore,
|
|
* there should always be complete WRs towards the end of
|
|
* queue.
|
|
*/
|
|
if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
|
|
|
|
/* Roll over to start of queue */
|
|
q->cidx = 0;
|
|
wr = q->vstart;
|
|
|
|
/* Toggle genbit */
|
|
q->un.iq.genbit ^= 0x1;
|
|
|
|
CSIO_INC_STATS(q, n_qwrap);
|
|
} else {
|
|
q->cidx++;
|
|
wr = (void *)((uintptr_t)(q->vstart) +
|
|
(q->cidx * q->wr_sz));
|
|
}
|
|
|
|
ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
|
|
(q->wr_sz - sizeof(*ftr)));
|
|
q->inc_idx++;
|
|
|
|
} /* while (q->un.iq.genbit == hdr->genbit) */
|
|
|
|
/*
|
|
* We need to re-arm SGE interrupts in case we got a stray interrupt,
|
|
* especially in msix mode. With INTx, this may be a common occurence.
|
|
*/
|
|
if (unlikely(!q->inc_idx)) {
|
|
CSIO_INC_STATS(q, n_stray_comp);
|
|
rv = -EINVAL;
|
|
goto restart;
|
|
}
|
|
|
|
/* Replenish free list buffers if pending falls below low water mark */
|
|
if (flq) {
|
|
uint32_t avail = csio_wr_avail_qcredits(flq);
|
|
if (avail <= 16) {
|
|
/* Make sure in FLQ, atleast 1 credit (8 FL buffers)
|
|
* remains unpopulated otherwise HW thinks
|
|
* FLQ is empty.
|
|
*/
|
|
csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
|
|
csio_wr_ring_fldb(hw, flq);
|
|
}
|
|
}
|
|
|
|
restart:
|
|
/* Now inform SGE about our incremental index value */
|
|
csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) |
|
|
INGRESSQID_V(q->un.iq.physiqid) |
|
|
TIMERREG_V(csio_sge_timer_reg),
|
|
MYPF_REG(SGE_PF_GTS_A));
|
|
q->stats.n_tot_rsps += q->inc_idx;
|
|
|
|
q->inc_idx = 0;
|
|
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
|
|
void (*iq_handler)(struct csio_hw *, void *,
|
|
uint32_t, struct csio_fl_dma_buf *,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *iq = wrm->q_arr[qidx];
|
|
|
|
return csio_wr_process_iq(hw, iq, iq_handler, priv);
|
|
}
|
|
|
|
static int
|
|
csio_closest_timer(struct csio_sge *s, int time)
|
|
{
|
|
int i, delta, match = 0, min_delta = INT_MAX;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
|
|
delta = time - s->timer_val[i];
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta < min_delta) {
|
|
min_delta = delta;
|
|
match = i;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
static int
|
|
csio_closest_thresh(struct csio_sge *s, int cnt)
|
|
{
|
|
int i, delta, match = 0, min_delta = INT_MAX;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
|
|
delta = cnt - s->counter_val[i];
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta < min_delta) {
|
|
min_delta = delta;
|
|
match = i;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
static void
|
|
csio_wr_fixup_host_params(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
uint32_t clsz = L1_CACHE_BYTES;
|
|
uint32_t s_hps = PAGE_SHIFT - 10;
|
|
uint32_t stat_len = clsz > 64 ? 128 : 64;
|
|
u32 fl_align = clsz < 32 ? 32 : clsz;
|
|
u32 pack_align;
|
|
u32 ingpad, ingpack;
|
|
int pcie_cap;
|
|
|
|
csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
|
|
HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
|
|
HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
|
|
HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
|
|
SGE_HOST_PAGE_SIZE_A);
|
|
|
|
/* T5 introduced the separation of the Free List Padding and
|
|
* Packing Boundaries. Thus, we can select a smaller Padding
|
|
* Boundary to avoid uselessly chewing up PCIe Link and Memory
|
|
* Bandwidth, and use a Packing Boundary which is large enough
|
|
* to avoid false sharing between CPUs, etc.
|
|
*
|
|
* For the PCI Link, the smaller the Padding Boundary the
|
|
* better. For the Memory Controller, a smaller Padding
|
|
* Boundary is better until we cross under the Memory Line
|
|
* Size (the minimum unit of transfer to/from Memory). If we
|
|
* have a Padding Boundary which is smaller than the Memory
|
|
* Line Size, that'll involve a Read-Modify-Write cycle on the
|
|
* Memory Controller which is never good.
|
|
*/
|
|
|
|
/* We want the Packing Boundary to be based on the Cache Line
|
|
* Size in order to help avoid False Sharing performance
|
|
* issues between CPUs, etc. We also want the Packing
|
|
* Boundary to incorporate the PCI-E Maximum Payload Size. We
|
|
* get best performance when the Packing Boundary is a
|
|
* multiple of the Maximum Payload Size.
|
|
*/
|
|
pack_align = fl_align;
|
|
pcie_cap = pci_find_capability(hw->pdev, PCI_CAP_ID_EXP);
|
|
if (pcie_cap) {
|
|
u32 mps, mps_log;
|
|
u16 devctl;
|
|
|
|
/* The PCIe Device Control Maximum Payload Size field
|
|
* [bits 7:5] encodes sizes as powers of 2 starting at
|
|
* 128 bytes.
|
|
*/
|
|
pci_read_config_word(hw->pdev,
|
|
pcie_cap + PCI_EXP_DEVCTL,
|
|
&devctl);
|
|
mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
|
|
mps = 1 << mps_log;
|
|
if (mps > pack_align)
|
|
pack_align = mps;
|
|
}
|
|
|
|
/* T5/T6 have a special interpretation of the "0"
|
|
* value for the Packing Boundary. This corresponds to 16
|
|
* bytes instead of the expected 32 bytes.
|
|
*/
|
|
if (pack_align <= 16) {
|
|
ingpack = INGPACKBOUNDARY_16B_X;
|
|
fl_align = 16;
|
|
} else if (pack_align == 32) {
|
|
ingpack = INGPACKBOUNDARY_64B_X;
|
|
fl_align = 64;
|
|
} else {
|
|
u32 pack_align_log = fls(pack_align) - 1;
|
|
|
|
ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
|
|
fl_align = pack_align;
|
|
}
|
|
|
|
/* Use the smallest Ingress Padding which isn't smaller than
|
|
* the Memory Controller Read/Write Size. We'll take that as
|
|
* being 8 bytes since we don't know of any system with a
|
|
* wider Memory Controller Bus Width.
|
|
*/
|
|
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
|
|
ingpad = INGPADBOUNDARY_32B_X;
|
|
else
|
|
ingpad = T6_INGPADBOUNDARY_8B_X;
|
|
|
|
csio_set_reg_field(hw, SGE_CONTROL_A,
|
|
INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
|
|
EGRSTATUSPAGESIZE_F,
|
|
INGPADBOUNDARY_V(ingpad) |
|
|
EGRSTATUSPAGESIZE_V(stat_len != 64));
|
|
csio_set_reg_field(hw, SGE_CONTROL2_A,
|
|
INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
|
|
INGPACKBOUNDARY_V(ingpack));
|
|
|
|
/* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
|
|
csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
|
|
|
|
/*
|
|
* If using hard params, the following will get set correctly
|
|
* in csio_wr_set_sge().
|
|
*/
|
|
if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
|
|
csio_wr_reg32(hw,
|
|
(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
|
|
fl_align - 1) & ~(fl_align - 1),
|
|
SGE_FL_BUFFER_SIZE2_A);
|
|
csio_wr_reg32(hw,
|
|
(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
|
|
fl_align - 1) & ~(fl_align - 1),
|
|
SGE_FL_BUFFER_SIZE3_A);
|
|
}
|
|
|
|
sge->csio_fl_align = fl_align;
|
|
|
|
csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
|
|
|
|
/* default value of rx_dma_offset of the NIC driver */
|
|
csio_set_reg_field(hw, SGE_CONTROL_A,
|
|
PKTSHIFT_V(PKTSHIFT_M),
|
|
PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
|
|
|
|
csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
|
|
CSUM_HAS_PSEUDO_HDR_F, 0);
|
|
}
|
|
|
|
static void
|
|
csio_init_intr_coalesce_parms(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
|
|
csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
|
|
if (csio_intr_coalesce_cnt) {
|
|
csio_sge_thresh_reg = 0;
|
|
csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
|
|
return;
|
|
}
|
|
|
|
csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_get_sge - Get SGE register values.
|
|
* @hw: HW module.
|
|
*
|
|
* Used by non-master functions and by master-functions relying on config file.
|
|
*/
|
|
static void
|
|
csio_wr_get_sge(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
uint32_t ingpad;
|
|
int i;
|
|
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
|
|
u32 ingress_rx_threshold;
|
|
|
|
sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
|
|
|
|
ingpad = INGPADBOUNDARY_G(sge->sge_control);
|
|
|
|
switch (ingpad) {
|
|
case X_INGPCIEBOUNDARY_32B:
|
|
sge->csio_fl_align = 32; break;
|
|
case X_INGPCIEBOUNDARY_64B:
|
|
sge->csio_fl_align = 64; break;
|
|
case X_INGPCIEBOUNDARY_128B:
|
|
sge->csio_fl_align = 128; break;
|
|
case X_INGPCIEBOUNDARY_256B:
|
|
sge->csio_fl_align = 256; break;
|
|
case X_INGPCIEBOUNDARY_512B:
|
|
sge->csio_fl_align = 512; break;
|
|
case X_INGPCIEBOUNDARY_1024B:
|
|
sge->csio_fl_align = 1024; break;
|
|
case X_INGPCIEBOUNDARY_2048B:
|
|
sge->csio_fl_align = 2048; break;
|
|
case X_INGPCIEBOUNDARY_4096B:
|
|
sge->csio_fl_align = 4096; break;
|
|
}
|
|
|
|
for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
|
|
csio_get_flbuf_size(hw, sge, i);
|
|
|
|
timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
|
|
timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
|
|
timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
|
|
|
|
sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE0_G(timer_value_0_and_1));
|
|
sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE1_G(timer_value_0_and_1));
|
|
sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE2_G(timer_value_2_and_3));
|
|
sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE3_G(timer_value_2_and_3));
|
|
sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE4_G(timer_value_4_and_5));
|
|
sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE5_G(timer_value_4_and_5));
|
|
|
|
ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
|
|
sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
|
|
sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
|
|
sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
|
|
sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
|
|
|
|
csio_init_intr_coalesce_parms(hw);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_set_sge - Initialize SGE registers
|
|
* @hw: HW module.
|
|
*
|
|
* Used by Master function to initialize SGE registers in the absence
|
|
* of a config file.
|
|
*/
|
|
static void
|
|
csio_wr_set_sge(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
int i;
|
|
|
|
/*
|
|
* Set up our basic SGE mode to deliver CPL messages to our Ingress
|
|
* Queue and Packet Date to the Free List.
|
|
*/
|
|
csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
|
|
|
|
sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
|
|
|
|
/* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
|
|
|
|
/*
|
|
* Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
|
|
* and generate an interrupt when this occurs so we can recover.
|
|
*/
|
|
csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
|
|
LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
|
|
LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
|
|
csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
|
|
HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
|
|
HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
|
|
|
|
csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
|
|
ENABLE_DROP_F);
|
|
|
|
/* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
|
|
|
|
CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
|
|
csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
|
|
& ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
|
|
csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
|
|
& ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
|
|
CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
|
|
CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
|
|
CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
|
|
CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
|
|
CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
|
|
|
|
for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
|
|
csio_get_flbuf_size(hw, sge, i);
|
|
|
|
/* Initialize interrupt coalescing attributes */
|
|
sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
|
|
sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
|
|
sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
|
|
sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
|
|
sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
|
|
sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
|
|
|
|
sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
|
|
sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
|
|
sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
|
|
sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
|
|
|
|
csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
|
|
THRESHOLD_1_V(sge->counter_val[1]) |
|
|
THRESHOLD_2_V(sge->counter_val[2]) |
|
|
THRESHOLD_3_V(sge->counter_val[3]),
|
|
SGE_INGRESS_RX_THRESHOLD_A);
|
|
|
|
csio_wr_reg32(hw,
|
|
TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
|
|
TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
|
|
SGE_TIMER_VALUE_0_AND_1_A);
|
|
|
|
csio_wr_reg32(hw,
|
|
TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
|
|
TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
|
|
SGE_TIMER_VALUE_2_AND_3_A);
|
|
|
|
csio_wr_reg32(hw,
|
|
TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
|
|
TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
|
|
SGE_TIMER_VALUE_4_AND_5_A);
|
|
|
|
csio_init_intr_coalesce_parms(hw);
|
|
}
|
|
|
|
void
|
|
csio_wr_sge_init(struct csio_hw *hw)
|
|
{
|
|
/*
|
|
* If we are master and chip is not initialized:
|
|
* - If we plan to use the config file, we need to fixup some
|
|
* host specific registers, and read the rest of the SGE
|
|
* configuration.
|
|
* - If we dont plan to use the config file, we need to initialize
|
|
* SGE entirely, including fixing the host specific registers.
|
|
* If we are master and chip is initialized, just read and work off of
|
|
* the already initialized SGE values.
|
|
* If we arent the master, we are only allowed to read and work off of
|
|
* the already initialized SGE values.
|
|
*
|
|
* Therefore, before calling this function, we assume that the master-
|
|
* ship of the card, state and whether to use config file or not, have
|
|
* already been decided.
|
|
*/
|
|
if (csio_is_hw_master(hw)) {
|
|
if (hw->fw_state != CSIO_DEV_STATE_INIT)
|
|
csio_wr_fixup_host_params(hw);
|
|
|
|
if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
|
|
csio_wr_get_sge(hw);
|
|
else
|
|
csio_wr_set_sge(hw);
|
|
} else
|
|
csio_wr_get_sge(hw);
|
|
}
|
|
|
|
/*
|
|
* csio_wrm_init - Initialize Work request module.
|
|
* @wrm: WR module
|
|
* @hw: HW pointer
|
|
*
|
|
* Allocates memory for an array of queue pointers starting at q_arr.
|
|
*/
|
|
int
|
|
csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
|
|
{
|
|
int i;
|
|
|
|
if (!wrm->num_q) {
|
|
csio_err(hw, "Num queues is not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
|
|
if (!wrm->q_arr)
|
|
goto err;
|
|
|
|
for (i = 0; i < wrm->num_q; i++) {
|
|
wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
|
|
if (!wrm->q_arr[i]) {
|
|
while (--i >= 0)
|
|
kfree(wrm->q_arr[i]);
|
|
goto err_free_arr;
|
|
}
|
|
}
|
|
wrm->free_qidx = 0;
|
|
|
|
return 0;
|
|
|
|
err_free_arr:
|
|
kfree(wrm->q_arr);
|
|
err:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* csio_wrm_exit - Initialize Work request module.
|
|
* @wrm: WR module
|
|
* @hw: HW module
|
|
*
|
|
* Uninitialize WR module. Free q_arr and pointers in it.
|
|
* We have the additional job of freeing the DMA memory associated
|
|
* with the queues.
|
|
*/
|
|
void
|
|
csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
|
|
{
|
|
int i;
|
|
uint32_t j;
|
|
struct csio_q *q;
|
|
struct csio_dma_buf *buf;
|
|
|
|
for (i = 0; i < wrm->num_q; i++) {
|
|
q = wrm->q_arr[i];
|
|
|
|
if (wrm->free_qidx && (i < wrm->free_qidx)) {
|
|
if (q->type == CSIO_FREELIST) {
|
|
if (!q->un.fl.bufs)
|
|
continue;
|
|
for (j = 0; j < q->credits; j++) {
|
|
buf = &q->un.fl.bufs[j];
|
|
if (!buf->vaddr)
|
|
continue;
|
|
pci_free_consistent(hw->pdev, buf->len,
|
|
buf->vaddr,
|
|
buf->paddr);
|
|
}
|
|
kfree(q->un.fl.bufs);
|
|
}
|
|
pci_free_consistent(hw->pdev, q->size,
|
|
q->vstart, q->pstart);
|
|
}
|
|
kfree(q);
|
|
}
|
|
|
|
hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
|
|
|
|
kfree(wrm->q_arr);
|
|
}
|