linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/mac.c
Chun-Yeow Yeoh 44d6fa90a8 ath10k: allow the supported rate change by reassociate peer
IBSS mode requires the changing of supported rate. Do this
by reassociate the peer. The investigation shows that if move
from legacy to HT, the rate control won't work after changing
the supported rate. But once changing the supported rate to HT,
user can assign the TxRate in HT mode.

Signed-off-by: Chun-Yeow Yeoh <yeohchunyeow@gmail.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2014-03-11 12:18:39 +02:00

4621 lines
113 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mac.h"
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include "hif.h"
#include "core.h"
#include "debug.h"
#include "wmi.h"
#include "htt.h"
#include "txrx.h"
/**********/
/* Crypto */
/**********/
static int ath10k_send_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr)
{
struct wmi_vdev_install_key_arg arg = {
.vdev_id = arvif->vdev_id,
.key_idx = key->keyidx,
.key_len = key->keylen,
.key_data = key->key,
.macaddr = macaddr,
};
lockdep_assert_held(&arvif->ar->conf_mutex);
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
arg.key_flags = WMI_KEY_PAIRWISE;
else
arg.key_flags = WMI_KEY_GROUP;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_CCMP:
arg.key_cipher = WMI_CIPHER_AES_CCM;
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
break;
case WLAN_CIPHER_SUITE_TKIP:
arg.key_cipher = WMI_CIPHER_TKIP;
arg.key_txmic_len = 8;
arg.key_rxmic_len = 8;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
arg.key_cipher = WMI_CIPHER_WEP;
/* AP/IBSS mode requires self-key to be groupwise
* Otherwise pairwise key must be set */
if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN))
arg.key_flags = WMI_KEY_PAIRWISE;
break;
default:
ath10k_warn("cipher %d is not supported\n", key->cipher);
return -EOPNOTSUPP;
}
if (cmd == DISABLE_KEY) {
arg.key_cipher = WMI_CIPHER_NONE;
arg.key_data = NULL;
}
return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
}
static int ath10k_install_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->install_key_done);
ret = ath10k_send_key(arvif, key, cmd, macaddr);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ);
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
if (arvif->wep_keys[i] == NULL)
continue;
ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY,
addr);
if (ret)
return ret;
peer->keys[i] = arvif->wep_keys[i];
}
return 0;
}
static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
const u8 *addr)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
int first_errno = 0;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
spin_unlock_bh(&ar->data_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == NULL)
continue;
ret = ath10k_install_key(arvif, peer->keys[i],
DISABLE_KEY, addr);
if (ret && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn("could not remove peer wep key %d (%d)\n",
i, ret);
peer->keys[i] = NULL;
}
return first_errno;
}
static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = arvif->ar;
struct ath10k_peer *peer;
u8 addr[ETH_ALEN];
int first_errno = 0;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
for (;;) {
/* since ath10k_install_key we can't hold data_lock all the
* time, so we try to remove the keys incrementally */
spin_lock_bh(&ar->data_lock);
i = 0;
list_for_each_entry(peer, &ar->peers, list) {
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (peer->keys[i] == key) {
memcpy(addr, peer->addr, ETH_ALEN);
peer->keys[i] = NULL;
break;
}
}
if (i < ARRAY_SIZE(peer->keys))
break;
}
spin_unlock_bh(&ar->data_lock);
if (i == ARRAY_SIZE(peer->keys))
break;
ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr);
if (ret && first_errno == 0)
first_errno = ret;
if (ret)
ath10k_warn("could not remove key for %pM\n", addr);
}
return first_errno;
}
/*********************/
/* General utilities */
/*********************/
static inline enum wmi_phy_mode
chan_to_phymode(const struct cfg80211_chan_def *chandef)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (chandef->chan->band) {
case IEEE80211_BAND_2GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11G;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NG_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NG_HT40;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
phymode = MODE_UNKNOWN;
break;
}
break;
case IEEE80211_BAND_5GHZ:
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
phymode = MODE_11A;
break;
case NL80211_CHAN_WIDTH_20:
phymode = MODE_11NA_HT20;
break;
case NL80211_CHAN_WIDTH_40:
phymode = MODE_11NA_HT40;
break;
case NL80211_CHAN_WIDTH_80:
phymode = MODE_11AC_VHT80;
break;
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
phymode = MODE_UNKNOWN;
break;
}
break;
default:
break;
}
WARN_ON(phymode == MODE_UNKNOWN);
return phymode;
}
static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_create(ar, vdev_id, addr);
if (ret) {
ath10k_warn("Failed to create wmi peer %pM on vdev %i: %i\n",
addr, vdev_id, ret);
return ret;
}
ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
if (ret) {
ath10k_warn("Failed to wait for created wmi peer %pM on vdev %i: %i\n",
addr, vdev_id, ret);
return ret;
}
spin_lock_bh(&ar->data_lock);
ar->num_peers++;
spin_unlock_bh(&ar->data_lock);
return 0;
}
static int ath10k_mac_set_kickout(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
u32 param;
int ret;
param = ar->wmi.pdev_param->sta_kickout_th;
ret = ath10k_wmi_pdev_set_param(ar, param,
ATH10K_KICKOUT_THRESHOLD);
if (ret) {
ath10k_warn("Failed to set kickout threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MIN_IDLE);
if (ret) {
ath10k_warn("Failed to set keepalive minimum idle time on vdev %i : %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_IDLE);
if (ret) {
ath10k_warn("Failed to set keepalive maximum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
if (ret) {
ath10k_warn("Failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
if (value != 0xFFFFFFFF)
value = min_t(u32, arvif->ar->hw->wiphy->rts_threshold,
ATH10K_RTS_MAX);
vdev_param = ar->wmi.vdev_param->rts_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
if (value != 0xFFFFFFFF)
value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold,
ATH10K_FRAGMT_THRESHOLD_MIN,
ATH10K_FRAGMT_THRESHOLD_MAX);
vdev_param = ar->wmi.vdev_param->fragmentation_threshold;
return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
}
static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
if (ret)
return ret;
ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
if (ret)
return ret;
spin_lock_bh(&ar->data_lock);
ar->num_peers--;
spin_unlock_bh(&ar->data_lock);
return 0;
}
static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
if (peer->vdev_id != vdev_id)
continue;
ath10k_warn("removing stale peer %pM from vdev_id %d\n",
peer->addr, vdev_id);
list_del(&peer->list);
kfree(peer);
ar->num_peers--;
}
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_peer_cleanup_all(struct ath10k *ar)
{
struct ath10k_peer *peer, *tmp;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
list_del(&peer->list);
kfree(peer);
}
ar->num_peers = 0;
spin_unlock_bh(&ar->data_lock);
}
/************************/
/* Interface management */
/************************/
static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = wait_for_completion_timeout(&ar->vdev_setup_done,
ATH10K_VDEV_SETUP_TIMEOUT_HZ);
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int ath10k_vdev_start(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct cfg80211_chan_def *chandef = &ar->chandef;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
arg.vdev_id = arvif->vdev_id;
arg.dtim_period = arvif->dtim_period;
arg.bcn_intval = arvif->beacon_interval;
arg.channel.freq = chandef->chan->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.min_power = 0;
arg.channel.max_power = chandef->chan->max_power * 2;
arg.channel.max_reg_power = chandef->chan->max_reg_power * 2;
arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2;
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
arg.ssid = arvif->u.ap.ssid;
arg.ssid_len = arvif->u.ap.ssid_len;
arg.hidden_ssid = arvif->u.ap.hidden_ssid;
/* For now allow DFS for AP mode */
arg.channel.chan_radar =
!!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
} else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
arg.ssid = arvif->vif->bss_conf.ssid;
arg.ssid_len = arvif->vif->bss_conf.ssid_len;
}
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d start center_freq %d phymode %s\n",
arg.vdev_id, arg.channel.freq,
ath10k_wmi_phymode_str(arg.channel.mode));
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn("WMI vdev %i start failed: ret %d\n",
arg.vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("vdev %i setup failed %d\n",
arg.vdev_id, ret);
return ret;
}
return ret;
}
static int ath10k_vdev_stop(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
if (ret) {
ath10k_warn("WMI vdev %i stop failed: ret %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("vdev %i setup sync failed %d\n",
arvif->vdev_id, ret);
return ret;
}
return ret;
}
static int ath10k_monitor_start(struct ath10k *ar, int vdev_id)
{
struct cfg80211_chan_def *chandef = &ar->chandef;
struct ieee80211_channel *channel = chandef->chan;
struct wmi_vdev_start_request_arg arg = {};
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (!ar->monitor_present) {
ath10k_warn("mac montor stop -- monitor is not present\n");
return -EINVAL;
}
arg.vdev_id = vdev_id;
arg.channel.freq = channel->center_freq;
arg.channel.band_center_freq1 = chandef->center_freq1;
/* TODO setup this dynamically, what in case we
don't have any vifs? */
arg.channel.mode = chan_to_phymode(chandef);
arg.channel.chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
arg.channel.min_power = 0;
arg.channel.max_power = channel->max_power * 2;
arg.channel.max_reg_power = channel->max_reg_power * 2;
arg.channel.max_antenna_gain = channel->max_antenna_gain * 2;
ret = ath10k_wmi_vdev_start(ar, &arg);
if (ret) {
ath10k_warn("Monitor vdev %i start failed: ret %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_vdev_setup_sync(ar);
if (ret) {
ath10k_warn("Monitor vdev %i setup failed %d\n",
vdev_id, ret);
return ret;
}
ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
if (ret) {
ath10k_warn("Monitor vdev %i up failed: %d\n",
vdev_id, ret);
goto vdev_stop;
}
ar->monitor_vdev_id = vdev_id;
ar->monitor_enabled = true;
return 0;
vdev_stop:
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Monitor vdev %i stop failed: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
static int ath10k_monitor_stop(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (!ar->monitor_present) {
ath10k_warn("mac montor stop -- monitor is not present\n");
return -EINVAL;
}
if (!ar->monitor_enabled) {
ath10k_warn("mac montor stop -- monitor is not enabled\n");
return -EINVAL;
}
ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Monitor vdev %i down failed: %d\n",
ar->monitor_vdev_id, ret);
ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Monitor vdev %i stop failed: %d\n",
ar->monitor_vdev_id, ret);
ret = ath10k_vdev_setup_sync(ar);
if (ret)
ath10k_warn("Monitor_down sync failed, vdev %i: %d\n",
ar->monitor_vdev_id, ret);
ar->monitor_enabled = false;
return ret;
}
static int ath10k_monitor_create(struct ath10k *ar)
{
int bit, ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (ar->monitor_present) {
ath10k_warn("Monitor mode already enabled\n");
return 0;
}
bit = ffs(ar->free_vdev_map);
if (bit == 0) {
ath10k_warn("No free VDEV slots\n");
return -ENOMEM;
}
ar->monitor_vdev_id = bit - 1;
ar->free_vdev_map &= ~(1 << ar->monitor_vdev_id);
ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
WMI_VDEV_TYPE_MONITOR,
0, ar->mac_addr);
if (ret) {
ath10k_warn("WMI vdev %i monitor create failed: ret %d\n",
ar->monitor_vdev_id, ret);
goto vdev_fail;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
ar->monitor_vdev_id);
ar->monitor_present = true;
return 0;
vdev_fail:
/*
* Restore the ID to the global map.
*/
ar->free_vdev_map |= 1 << (ar->monitor_vdev_id);
return ret;
}
static int ath10k_monitor_destroy(struct ath10k *ar)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (!ar->monitor_present)
return 0;
ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
if (ret) {
ath10k_warn("WMI vdev %i monitor delete failed: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
ar->free_vdev_map |= 1 << (ar->monitor_vdev_id);
ar->monitor_present = false;
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
ar->monitor_vdev_id);
return ret;
}
static int ath10k_start_cac(struct ath10k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ret = ath10k_monitor_create(ar);
if (ret) {
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
return ret;
}
ret = ath10k_monitor_start(ar, ar->monitor_vdev_id);
if (ret) {
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ath10k_monitor_destroy(ar);
return ret;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
ar->monitor_vdev_id);
return 0;
}
static int ath10k_stop_cac(struct ath10k *ar)
{
lockdep_assert_held(&ar->conf_mutex);
/* CAC is not running - do nothing */
if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags))
return 0;
ath10k_monitor_stop(ar);
ath10k_monitor_destroy(ar);
clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
ath10k_dbg(ATH10K_DBG_MAC, "mac cac finished\n");
return 0;
}
static const char *ath10k_dfs_state(enum nl80211_dfs_state dfs_state)
{
switch (dfs_state) {
case NL80211_DFS_USABLE:
return "USABLE";
case NL80211_DFS_UNAVAILABLE:
return "UNAVAILABLE";
case NL80211_DFS_AVAILABLE:
return "AVAILABLE";
default:
WARN_ON(1);
return "bug";
}
}
static void ath10k_config_radar_detection(struct ath10k *ar)
{
struct ieee80211_channel *chan = ar->hw->conf.chandef.chan;
bool radar = ar->hw->conf.radar_enabled;
bool chan_radar = !!(chan->flags & IEEE80211_CHAN_RADAR);
enum nl80211_dfs_state dfs_state = chan->dfs_state;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_dbg(ATH10K_DBG_MAC,
"mac radar config update: chan %dMHz radar %d chan radar %d chan state %s\n",
chan->center_freq, radar, chan_radar,
ath10k_dfs_state(dfs_state));
/*
* It's safe to call it even if CAC is not started.
* This call here guarantees changing channel, etc. will stop CAC.
*/
ath10k_stop_cac(ar);
if (!radar)
return;
if (!chan_radar)
return;
if (dfs_state != NL80211_DFS_USABLE)
return;
ret = ath10k_start_cac(ar);
if (ret) {
/*
* Not possible to start CAC on current channel so starting
* radiation is not allowed, make this channel DFS_UNAVAILABLE
* by indicating that radar was detected.
*/
ath10k_warn("failed to start CAC (%d)\n", ret);
ieee80211_radar_detected(ar->hw);
}
}
static void ath10k_control_beaconing(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info)
{
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->enable_beacon) {
ath10k_vdev_stop(arvif);
arvif->is_started = false;
arvif->is_up = false;
spin_lock_bh(&arvif->ar->data_lock);
if (arvif->beacon) {
dma_unmap_single(arvif->ar->dev,
ATH10K_SKB_CB(arvif->beacon)->paddr,
arvif->beacon->len, DMA_TO_DEVICE);
dev_kfree_skb_any(arvif->beacon);
arvif->beacon = NULL;
arvif->beacon_sent = false;
}
spin_unlock_bh(&arvif->ar->data_lock);
return;
}
arvif->tx_seq_no = 0x1000;
ret = ath10k_vdev_start(arvif);
if (ret)
return;
arvif->aid = 0;
memcpy(arvif->bssid, info->bssid, ETH_ALEN);
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn("Failed to bring up vdev %d: %i\n",
arvif->vdev_id, ret);
ath10k_vdev_stop(arvif);
return;
}
arvif->is_started = true;
arvif->is_up = true;
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
}
static void ath10k_control_ibss(struct ath10k_vif *arvif,
struct ieee80211_bss_conf *info,
const u8 self_peer[ETH_ALEN])
{
u32 vdev_param;
int ret = 0;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->ibss_joined) {
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer);
if (ret)
ath10k_warn("Failed to delete IBSS self peer:%pM for VDEV:%d ret:%d\n",
self_peer, arvif->vdev_id, ret);
if (is_zero_ether_addr(arvif->bssid))
return;
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id,
arvif->bssid);
if (ret) {
ath10k_warn("Failed to delete IBSS BSSID peer:%pM for VDEV:%d ret:%d\n",
arvif->bssid, arvif->vdev_id, ret);
return;
}
memset(arvif->bssid, 0, ETH_ALEN);
return;
}
ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer);
if (ret) {
ath10k_warn("Failed to create IBSS self peer:%pM for VDEV:%d ret:%d\n",
self_peer, arvif->vdev_id, ret);
return;
}
vdev_param = arvif->ar->wmi.vdev_param->atim_window;
ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
ATH10K_DEFAULT_ATIM);
if (ret)
ath10k_warn("Failed to set IBSS ATIM for VDEV:%d ret:%d\n",
arvif->vdev_id, ret);
}
/*
* Review this when mac80211 gains per-interface powersave support.
*/
static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
{
struct ath10k *ar = arvif->ar;
struct ieee80211_conf *conf = &ar->hw->conf;
enum wmi_sta_powersave_param param;
enum wmi_sta_ps_mode psmode;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (arvif->vif->type != NL80211_IFTYPE_STATION)
return 0;
if (conf->flags & IEEE80211_CONF_PS) {
psmode = WMI_STA_PS_MODE_ENABLED;
param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
conf->dynamic_ps_timeout);
if (ret) {
ath10k_warn("Failed to set inactivity time for vdev %d: %i\n",
arvif->vdev_id, ret);
return ret;
}
} else {
psmode = WMI_STA_PS_MODE_DISABLED;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
arvif->vdev_id, psmode ? "enable" : "disable");
ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
if (ret) {
ath10k_warn("Failed to set PS Mode: %d for VDEV: %d\n",
psmode, arvif->vdev_id);
return ret;
}
return 0;
}
/**********************/
/* Station management */
/**********************/
static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
memcpy(arg->addr, sta->addr, ETH_ALEN);
arg->vdev_id = arvif->vdev_id;
arg->peer_aid = sta->aid;
arg->peer_flags |= WMI_PEER_AUTH;
if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
/*
* Seems FW have problems with Power Save in STA
* mode when we setup this parameter to high (eg. 5).
* Often we see that FW don't send NULL (with clean P flags)
* frame even there is info about buffered frames in beacons.
* Sometimes we have to wait more than 10 seconds before FW
* will wakeup. Often sending one ping from AP to our device
* just fail (more than 50%).
*
* Seems setting this FW parameter to 1 couse FW
* will check every beacon and will wakup immediately
* after detection buffered data.
*/
arg->peer_listen_intval = 1;
else
arg->peer_listen_intval = ar->hw->conf.listen_interval;
arg->peer_num_spatial_streams = 1;
/*
* The assoc capabilities are available only in managed mode.
*/
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && bss_conf)
arg->peer_caps = bss_conf->assoc_capability;
}
static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
struct ath10k_vif *arvif,
struct wmi_peer_assoc_complete_arg *arg)
{
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_bss_conf *info = &vif->bss_conf;
struct cfg80211_bss *bss;
const u8 *rsnie = NULL;
const u8 *wpaie = NULL;
lockdep_assert_held(&ar->conf_mutex);
bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan,
info->bssid, NULL, 0, 0, 0);
if (bss) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
ies = rcu_dereference(bss->ies);
wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
ies->data,
ies->len);
rcu_read_unlock();
cfg80211_put_bss(ar->hw->wiphy, bss);
}
/* FIXME: base on RSN IE/WPA IE is a correct idea? */
if (rsnie || wpaie) {
ath10k_dbg(ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY;
}
if (wpaie) {
ath10k_dbg(ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY;
}
}
static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
const struct ieee80211_supported_band *sband;
const struct ieee80211_rate *rates;
u32 ratemask;
int i;
lockdep_assert_held(&ar->conf_mutex);
sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band];
ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band];
rates = sband->bitrates;
rateset->num_rates = 0;
for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
if (!(ratemask & 1))
continue;
rateset->rates[rateset->num_rates] = rates->hw_value;
rateset->num_rates++;
}
}
static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
int i, n;
lockdep_assert_held(&ar->conf_mutex);
if (!ht_cap->ht_supported)
return;
arg->peer_flags |= WMI_PEER_HT;
arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ht_cap->ampdu_factor)) - 1;
arg->peer_mpdu_density =
ath10k_parse_mpdudensity(ht_cap->ampdu_density);
arg->peer_ht_caps = ht_cap->cap;
arg->peer_rate_caps |= WMI_RC_HT_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
arg->peer_flags |= WMI_PEER_LDPC;
if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
arg->peer_flags |= WMI_PEER_40MHZ;
arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
}
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
arg->peer_flags |= WMI_PEER_STBC;
}
if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
arg->peer_rate_caps |= stbc;
arg->peer_flags |= WMI_PEER_STBC;
}
if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
arg->peer_rate_caps |= WMI_RC_TS_FLAG;
else if (ht_cap->mcs.rx_mask[1])
arg->peer_rate_caps |= WMI_RC_DS_FLAG;
for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++)
if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8))
arg->peer_ht_rates.rates[n++] = i;
/*
* This is a workaround for HT-enabled STAs which break the spec
* and have no HT capabilities RX mask (no HT RX MCS map).
*
* As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
* MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
*
* Firmware asserts if such situation occurs.
*/
if (n == 0) {
arg->peer_ht_rates.num_rates = 8;
for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
arg->peer_ht_rates.rates[i] = i;
} else {
arg->peer_ht_rates.num_rates = n;
arg->peer_num_spatial_streams = sta->rx_nss;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
arg->addr,
arg->peer_ht_rates.num_rates,
arg->peer_num_spatial_streams);
}
static int ath10k_peer_assoc_qos_ap(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
u32 uapsd = 0;
u32 max_sp = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (sta->wme && sta->uapsd_queues) {
ath10k_dbg(ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
sta->uapsd_queues, sta->max_sp);
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
max_sp = sta->max_sp;
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_UAPSD,
uapsd);
if (ret) {
ath10k_warn("failed to set ap ps peer param uapsd for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
sta->addr,
WMI_AP_PS_PEER_PARAM_MAX_SP,
max_sp);
if (ret) {
ath10k_warn("failed to set ap ps peer param max sp for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
/* TODO setup this based on STA listen interval and
beacon interval. Currently we don't know
sta->listen_interval - mac80211 patch required.
Currently use 10 seconds */
ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
WMI_AP_PS_PEER_PARAM_AGEOUT_TIME, 10);
if (ret) {
ath10k_warn("failed to set ap ps peer param ageout time for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
}
return 0;
}
static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
u8 ampdu_factor;
if (!vht_cap->vht_supported)
return;
arg->peer_flags |= WMI_PEER_VHT;
arg->peer_vht_caps = vht_cap->cap;
ampdu_factor = (vht_cap->cap &
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
* zero in VHT IE. Using it would result in degraded throughput.
* arg->peer_max_mpdu at this point contains HT max_mpdu so keep
* it if VHT max_mpdu is smaller. */
arg->peer_max_mpdu = max(arg->peer_max_mpdu,
(1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1);
if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
arg->peer_flags |= WMI_PEER_80MHZ;
arg->peer_vht_rates.rx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.rx_highest);
arg->peer_vht_rates.rx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
arg->peer_vht_rates.tx_max_rate =
__le16_to_cpu(vht_cap->vht_mcs.tx_highest);
arg->peer_vht_rates.tx_mcs_set =
__le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map);
ath10k_dbg(ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
sta->addr, arg->peer_max_mpdu, arg->peer_flags);
}
static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_AP:
if (sta->wme)
arg->peer_flags |= WMI_PEER_QOS;
if (sta->wme && sta->uapsd_queues) {
arg->peer_flags |= WMI_PEER_APSD;
arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
}
break;
case WMI_VDEV_TYPE_STA:
if (bss_conf->qos)
arg->peer_flags |= WMI_PEER_QOS;
break;
default:
break;
}
}
static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct wmi_peer_assoc_complete_arg *arg)
{
enum wmi_phy_mode phymode = MODE_UNKNOWN;
switch (ar->hw->conf.chandef.chan->band) {
case IEEE80211_BAND_2GHZ:
if (sta->ht_cap.ht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NG_HT40;
else
phymode = MODE_11NG_HT20;
} else {
phymode = MODE_11G;
}
break;
case IEEE80211_BAND_5GHZ:
/*
* Check VHT first.
*/
if (sta->vht_cap.vht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
phymode = MODE_11AC_VHT80;
else if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11AC_VHT40;
else if (sta->bandwidth == IEEE80211_STA_RX_BW_20)
phymode = MODE_11AC_VHT20;
} else if (sta->ht_cap.ht_supported) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NA_HT40;
else
phymode = MODE_11NA_HT20;
} else {
phymode = MODE_11A;
}
break;
default:
break;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
sta->addr, ath10k_wmi_phymode_str(phymode));
arg->peer_phymode = phymode;
WARN_ON(phymode == MODE_UNKNOWN);
}
static int ath10k_peer_assoc_prepare(struct ath10k *ar,
struct ath10k_vif *arvif,
struct ieee80211_sta *sta,
struct ieee80211_bss_conf *bss_conf,
struct wmi_peer_assoc_complete_arg *arg)
{
lockdep_assert_held(&ar->conf_mutex);
memset(arg, 0, sizeof(*arg));
ath10k_peer_assoc_h_basic(ar, arvif, sta, bss_conf, arg);
ath10k_peer_assoc_h_crypto(ar, arvif, arg);
ath10k_peer_assoc_h_rates(ar, sta, arg);
ath10k_peer_assoc_h_ht(ar, sta, arg);
ath10k_peer_assoc_h_vht(ar, sta, arg);
ath10k_peer_assoc_h_qos(ar, arvif, sta, bss_conf, arg);
ath10k_peer_assoc_h_phymode(ar, arvif, sta, arg);
return 0;
}
static const u32 ath10k_smps_map[] = {
[WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
[WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
[WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
[WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
};
static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif,
const u8 *addr,
const struct ieee80211_sta_ht_cap *ht_cap)
{
int smps;
if (!ht_cap->ht_supported)
return 0;
smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
if (smps >= ARRAY_SIZE(ath10k_smps_map))
return -EINVAL;
return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr,
WMI_PEER_SMPS_STATE,
ath10k_smps_map[smps]);
}
/* can be called only in mac80211 callbacks due to `key_count` usage */
static void ath10k_bss_assoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ieee80211_sta_ht_cap ht_cap;
struct wmi_peer_assoc_complete_arg peer_arg;
struct ieee80211_sta *ap_sta;
int ret;
lockdep_assert_held(&ar->conf_mutex);
rcu_read_lock();
ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!ap_sta) {
ath10k_warn("Failed to find station entry for %pM, vdev %i\n",
bss_conf->bssid, arvif->vdev_id);
rcu_read_unlock();
return;
}
/* ap_sta must be accessed only within rcu section which must be left
* before calling ath10k_setup_peer_smps() which might sleep. */
ht_cap = ap_sta->ht_cap;
ret = ath10k_peer_assoc_prepare(ar, arvif, ap_sta,
bss_conf, &peer_arg);
if (ret) {
ath10k_warn("Peer assoc prepare failed for %pM vdev %i\n: %d",
bss_conf->bssid, arvif->vdev_id, ret);
rcu_read_unlock();
return;
}
rcu_read_unlock();
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn("Peer assoc failed for %pM vdev %i\n: %d",
bss_conf->bssid, arvif->vdev_id, ret);
return;
}
ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap);
if (ret) {
ath10k_warn("failed to setup peer SMPS for vdev %i: %d\n",
arvif->vdev_id, ret);
return;
}
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d up (associated) bssid %pM aid %d\n",
arvif->vdev_id, bss_conf->bssid, bss_conf->aid);
arvif->aid = bss_conf->aid;
memcpy(arvif->bssid, bss_conf->bssid, ETH_ALEN);
ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
if (ret) {
ath10k_warn("VDEV: %d up failed: ret %d\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = true;
}
/*
* FIXME: flush TIDs
*/
static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret;
lockdep_assert_held(&ar->conf_mutex);
/*
* For some reason, calling VDEV-DOWN before VDEV-STOP
* makes the FW to send frames via HTT after disassociation.
* No idea why this happens, even though VDEV-DOWN is supposed
* to be analogous to link down, so just stop the VDEV.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d stop (disassociated\n",
arvif->vdev_id);
/* FIXME: check return value */
ret = ath10k_vdev_stop(arvif);
/*
* If we don't call VDEV-DOWN after VDEV-STOP FW will remain active and
* report beacons from previously associated network through HTT.
* This in turn would spam mac80211 WARN_ON if we bring down all
* interfaces as it expects there is no rx when no interface is
* running.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d down\n", arvif->vdev_id);
/* FIXME: why don't we print error if wmi call fails? */
ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
arvif->def_wep_key_idx = 0;
arvif->is_started = false;
arvif->is_up = false;
}
static int ath10k_station_assoc(struct ath10k *ar, struct ath10k_vif *arvif,
struct ieee80211_sta *sta, bool reassoc)
{
struct wmi_peer_assoc_complete_arg peer_arg;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_peer_assoc_prepare(ar, arvif, sta, NULL, &peer_arg);
if (ret) {
ath10k_warn("WMI peer assoc prepare failed for %pM vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
peer_arg.peer_reassoc = reassoc;
ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
if (ret) {
ath10k_warn("Peer assoc failed for STA %pM vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, &sta->ht_cap);
if (ret) {
ath10k_warn("failed to setup peer SMPS for vdev: %d\n", ret);
return ret;
}
ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
if (ret) {
ath10k_warn("could not install peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
if (ret) {
ath10k_warn("could not set qos params for STA %pM for vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
return ret;
}
static int ath10k_station_disassoc(struct ath10k *ar, struct ath10k_vif *arvif,
struct ieee80211_sta *sta)
{
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_clear_peer_keys(arvif, sta->addr);
if (ret) {
ath10k_warn("could not clear all peer wep keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return ret;
}
/**************/
/* Regulatory */
/**************/
static int ath10k_update_channel_list(struct ath10k *ar)
{
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_supported_band **bands;
enum ieee80211_band band;
struct ieee80211_channel *channel;
struct wmi_scan_chan_list_arg arg = {0};
struct wmi_channel_arg *ch;
bool passive;
int len;
int ret;
int i;
lockdep_assert_held(&ar->conf_mutex);
bands = hw->wiphy->bands;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
if (bands[band]->channels[i].flags &
IEEE80211_CHAN_DISABLED)
continue;
arg.n_channels++;
}
}
len = sizeof(struct wmi_channel_arg) * arg.n_channels;
arg.channels = kzalloc(len, GFP_KERNEL);
if (!arg.channels)
return -ENOMEM;
ch = arg.channels;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
channel = &bands[band]->channels[i];
if (channel->flags & IEEE80211_CHAN_DISABLED)
continue;
ch->allow_ht = true;
/* FIXME: when should we really allow VHT? */
ch->allow_vht = true;
ch->allow_ibss =
!(channel->flags & IEEE80211_CHAN_NO_IR);
ch->ht40plus =
!(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
ch->chan_radar =
!!(channel->flags & IEEE80211_CHAN_RADAR);
passive = channel->flags & IEEE80211_CHAN_NO_IR;
ch->passive = passive;
ch->freq = channel->center_freq;
ch->min_power = 0;
ch->max_power = channel->max_power * 2;
ch->max_reg_power = channel->max_reg_power * 2;
ch->max_antenna_gain = channel->max_antenna_gain * 2;
ch->reg_class_id = 0; /* FIXME */
/* FIXME: why use only legacy modes, why not any
* HT/VHT modes? Would that even make any
* difference? */
if (channel->band == IEEE80211_BAND_2GHZ)
ch->mode = MODE_11G;
else
ch->mode = MODE_11A;
if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
continue;
ath10k_dbg(ATH10K_DBG_WMI,
"mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
ch - arg.channels, arg.n_channels,
ch->freq, ch->max_power, ch->max_reg_power,
ch->max_antenna_gain, ch->mode);
ch++;
}
}
ret = ath10k_wmi_scan_chan_list(ar, &arg);
kfree(arg.channels);
return ret;
}
static void ath10k_regd_update(struct ath10k *ar)
{
struct reg_dmn_pair_mapping *regpair;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_update_channel_list(ar);
if (ret)
ath10k_warn("could not update channel list (%d)\n", ret);
regpair = ar->ath_common.regulatory.regpair;
/* Target allows setting up per-band regdomain but ath_common provides
* a combined one only */
ret = ath10k_wmi_pdev_set_regdomain(ar,
regpair->reg_domain,
regpair->reg_domain, /* 2ghz */
regpair->reg_domain, /* 5ghz */
regpair->reg_2ghz_ctl,
regpair->reg_5ghz_ctl);
if (ret)
ath10k_warn("could not set pdev regdomain (%d)\n", ret);
}
static void ath10k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath10k *ar = hw->priv;
bool result;
ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
ath10k_dbg(ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
request->dfs_region);
result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
request->dfs_region);
if (!result)
ath10k_warn("dfs region 0x%X not supported, will trigger radar for every pulse\n",
request->dfs_region);
}
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON)
ath10k_regd_update(ar);
mutex_unlock(&ar->conf_mutex);
}
/***************/
/* TX handlers */
/***************/
static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr)
{
if (ieee80211_is_mgmt(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_MGMT;
if (!ieee80211_is_data_qos(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
if (!is_unicast_ether_addr(ieee80211_get_DA(hdr)))
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
}
static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar,
struct ieee80211_tx_info *info)
{
if (info->control.vif)
return ath10k_vif_to_arvif(info->control.vif)->vdev_id;
if (ar->monitor_enabled)
return ar->monitor_vdev_id;
ath10k_warn("could not resolve vdev id\n");
return 0;
}
/*
* Frames sent to the FW have to be in "Native Wifi" format.
* Strip the QoS field from the 802.11 header.
*/
static void ath10k_tx_h_qos_workaround(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
u8 *qos_ctl;
if (!ieee80211_is_data_qos(hdr->frame_control))
return;
qos_ctl = ieee80211_get_qos_ctl(hdr);
memmove(skb->data + IEEE80211_QOS_CTL_LEN,
skb->data, (void *)qos_ctl - (void *)skb->data);
skb_pull(skb, IEEE80211_QOS_CTL_LEN);
}
static void ath10k_tx_wep_key_work(struct work_struct *work)
{
struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
wep_key_work);
int ret, keyidx = arvif->def_wep_key_newidx;
if (arvif->def_wep_key_idx == keyidx)
return;
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
arvif->vdev_id, keyidx);
ret = ath10k_wmi_vdev_set_param(arvif->ar,
arvif->vdev_id,
arvif->ar->wmi.vdev_param->def_keyid,
keyidx);
if (ret) {
ath10k_warn("could not update wep keyidx (%d)\n", ret);
return;
}
arvif->def_wep_key_idx = keyidx;
}
static void ath10k_tx_h_update_wep_key(struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k *ar = arvif->ar;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_key_conf *key = info->control.hw_key;
if (!ieee80211_has_protected(hdr->frame_control))
return;
if (!key)
return;
if (key->cipher != WLAN_CIPHER_SUITE_WEP40 &&
key->cipher != WLAN_CIPHER_SUITE_WEP104)
return;
if (key->keyidx == arvif->def_wep_key_idx)
return;
/* FIXME: Most likely a few frames will be TXed with an old key. Simply
* queueing frames until key index is updated is not an option because
* sk_buff may need more processing to be done, e.g. offchannel */
arvif->def_wep_key_newidx = key->keyidx;
ieee80211_queue_work(ar->hw, &arvif->wep_key_work);
}
static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
/* This is case only for P2P_GO */
if (arvif->vdev_type != WMI_VDEV_TYPE_AP ||
arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
return;
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
spin_lock_bh(&ar->data_lock);
if (arvif->u.ap.noa_data)
if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
GFP_ATOMIC))
memcpy(skb_put(skb, arvif->u.ap.noa_len),
arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
spin_unlock_bh(&ar->data_lock);
}
}
static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int ret = 0;
if (ar->htt.target_version_major >= 3) {
/* Since HTT 3.0 there is no separate mgmt tx command */
ret = ath10k_htt_tx(&ar->htt, skb);
goto exit;
}
if (ieee80211_is_mgmt(hdr->frame_control)) {
if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->fw_features)) {
if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >=
ATH10K_MAX_NUM_MGMT_PENDING) {
ath10k_warn("wmi mgmt_tx queue limit reached\n");
ret = -EBUSY;
goto exit;
}
skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb);
ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
} else {
ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
}
} else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
ar->fw_features) &&
ieee80211_is_nullfunc(hdr->frame_control)) {
/* FW does not report tx status properly for NullFunc frames
* unless they are sent through mgmt tx path. mac80211 sends
* those frames when it detects link/beacon loss and depends
* on the tx status to be correct. */
ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
} else {
ret = ath10k_htt_tx(&ar->htt, skb);
}
exit:
if (ret) {
ath10k_warn("tx failed (%d). dropping packet.\n", ret);
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_offchan_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
struct ath10k_peer *peer;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
const u8 *peer_addr;
int vdev_id;
int ret;
/* FW requirement: We must create a peer before FW will send out
* an offchannel frame. Otherwise the frame will be stuck and
* never transmitted. We delete the peer upon tx completion.
* It is unlikely that a peer for offchannel tx will already be
* present. However it may be in some rare cases so account for that.
* Otherwise we might remove a legitimate peer and break stuff. */
for (;;) {
skb = skb_dequeue(&ar->offchan_tx_queue);
if (!skb)
break;
mutex_lock(&ar->conf_mutex);
ath10k_dbg(ATH10K_DBG_MAC, "mac offchannel skb %p\n",
skb);
hdr = (struct ieee80211_hdr *)skb->data;
peer_addr = ieee80211_get_DA(hdr);
vdev_id = ATH10K_SKB_CB(skb)->vdev_id;
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (peer)
/* FIXME: should this use ath10k_warn()? */
ath10k_dbg(ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n",
peer_addr, vdev_id);
if (!peer) {
ret = ath10k_peer_create(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn("peer %pM on vdev %d not created (%d)\n",
peer_addr, vdev_id, ret);
}
spin_lock_bh(&ar->data_lock);
reinit_completion(&ar->offchan_tx_completed);
ar->offchan_tx_skb = skb;
spin_unlock_bh(&ar->data_lock);
ath10k_tx_htt(ar, skb);
ret = wait_for_completion_timeout(&ar->offchan_tx_completed,
3 * HZ);
if (ret <= 0)
ath10k_warn("timed out waiting for offchannel skb %p\n",
skb);
if (!peer) {
ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
if (ret)
ath10k_warn("peer %pM on vdev %d not deleted (%d)\n",
peer_addr, vdev_id, ret);
}
mutex_unlock(&ar->conf_mutex);
}
}
void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
{
struct sk_buff *skb;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ieee80211_free_txskb(ar->hw, skb);
}
}
void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
{
struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
struct sk_buff *skb;
int ret;
for (;;) {
skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
if (!skb)
break;
ret = ath10k_wmi_mgmt_tx(ar, skb);
if (ret) {
ath10k_warn("wmi mgmt_tx failed (%d)\n", ret);
ieee80211_free_txskb(ar->hw, skb);
}
}
}
/************/
/* Scanning */
/************/
/*
* This gets called if we dont get a heart-beat during scan.
* This may indicate the FW has hung and we need to abort the
* scan manually to prevent cancel_hw_scan() from deadlocking
*/
void ath10k_reset_scan(unsigned long ptr)
{
struct ath10k *ar = (struct ath10k *)ptr;
spin_lock_bh(&ar->data_lock);
if (!ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_warn("scan timeout. resetting. fw issue?\n");
if (ar->scan.is_roc)
ieee80211_remain_on_channel_expired(ar->hw);
else
ieee80211_scan_completed(ar->hw, 1 /* aborted */);
ar->scan.in_progress = false;
complete_all(&ar->scan.completed);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_abort_scan(struct ath10k *ar)
{
struct wmi_stop_scan_arg arg = {
.req_id = 1, /* FIXME */
.req_type = WMI_SCAN_STOP_ONE,
.u.scan_id = ATH10K_SCAN_ID,
};
int ret;
lockdep_assert_held(&ar->conf_mutex);
del_timer_sync(&ar->scan.timeout);
spin_lock_bh(&ar->data_lock);
if (!ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
return 0;
}
ar->scan.aborting = true;
spin_unlock_bh(&ar->data_lock);
ret = ath10k_wmi_stop_scan(ar, &arg);
if (ret) {
ath10k_warn("could not submit wmi stop scan (%d)\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.in_progress = false;
ath10k_offchan_tx_purge(ar);
spin_unlock_bh(&ar->data_lock);
return -EIO;
}
ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ);
if (ret == 0)
ath10k_warn("timed out while waiting for scan to stop\n");
/* scan completion may be done right after we timeout here, so let's
* check the in_progress and tell mac80211 scan is completed. if we
* don't do that and FW fails to send us scan completion indication
* then userspace won't be able to scan anymore */
ret = 0;
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
ath10k_warn("could not stop scan. its still in progress\n");
ar->scan.in_progress = false;
ath10k_offchan_tx_purge(ar);
ret = -ETIMEDOUT;
}
spin_unlock_bh(&ar->data_lock);
return ret;
}
static int ath10k_start_scan(struct ath10k *ar,
const struct wmi_start_scan_arg *arg)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath10k_wmi_start_scan(ar, arg);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ);
if (ret == 0) {
ath10k_abort_scan(ar);
return ret;
}
/* the scan can complete earlier, before we even
* start the timer. in that case the timer handler
* checks ar->scan.in_progress and bails out if its
* false. Add a 200ms margin to account event/command
* processing. */
mod_timer(&ar->scan.timeout, jiffies +
msecs_to_jiffies(arg->max_scan_time+200));
return 0;
}
/**********************/
/* mac80211 callbacks */
/**********************/
static void ath10k_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath10k *ar = hw->priv;
u8 tid, vdev_id;
/* We should disable CCK RATE due to P2P */
if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
ath10k_dbg(ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
/* we must calculate tid before we apply qos workaround
* as we'd lose the qos control field */
tid = ath10k_tx_h_get_tid(hdr);
vdev_id = ath10k_tx_h_get_vdev_id(ar, info);
/* it makes no sense to process injected frames like that */
if (info->control.vif &&
info->control.vif->type != NL80211_IFTYPE_MONITOR) {
ath10k_tx_h_qos_workaround(hw, control, skb);
ath10k_tx_h_update_wep_key(skb);
ath10k_tx_h_add_p2p_noa_ie(ar, skb);
ath10k_tx_h_seq_no(skb);
}
ATH10K_SKB_CB(skb)->vdev_id = vdev_id;
ATH10K_SKB_CB(skb)->htt.is_offchan = false;
ATH10K_SKB_CB(skb)->htt.tid = tid;
if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
spin_lock_bh(&ar->data_lock);
ATH10K_SKB_CB(skb)->htt.is_offchan = true;
ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id;
spin_unlock_bh(&ar->data_lock);
ath10k_dbg(ATH10K_DBG_MAC, "queued offchannel skb %p\n", skb);
skb_queue_tail(&ar->offchan_tx_queue, skb);
ieee80211_queue_work(hw, &ar->offchan_tx_work);
return;
}
ath10k_tx_htt(ar, skb);
}
/*
* Initialize various parameters with default vaules.
*/
void ath10k_halt(struct ath10k *ar)
{
lockdep_assert_held(&ar->conf_mutex);
ath10k_stop_cac(ar);
del_timer_sync(&ar->scan.timeout);
ath10k_offchan_tx_purge(ar);
ath10k_mgmt_over_wmi_tx_purge(ar);
ath10k_peer_cleanup_all(ar);
ath10k_core_stop(ar);
ath10k_hif_power_down(ar);
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
del_timer(&ar->scan.timeout);
ar->scan.in_progress = false;
ieee80211_scan_completed(ar->hw, true);
}
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_start(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (ar->state != ATH10K_STATE_OFF &&
ar->state != ATH10K_STATE_RESTARTING) {
ret = -EINVAL;
goto exit;
}
ret = ath10k_hif_power_up(ar);
if (ret) {
ath10k_err("could not init hif (%d)\n", ret);
ar->state = ATH10K_STATE_OFF;
goto exit;
}
ret = ath10k_core_start(ar);
if (ret) {
ath10k_err("could not init core (%d)\n", ret);
ath10k_hif_power_down(ar);
ar->state = ATH10K_STATE_OFF;
goto exit;
}
if (ar->state == ATH10K_STATE_OFF)
ar->state = ATH10K_STATE_ON;
else if (ar->state == ATH10K_STATE_RESTARTING)
ar->state = ATH10K_STATE_RESTARTED;
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1);
if (ret)
ath10k_warn("could not enable WMI_PDEV_PARAM_PMF_QOS (%d)\n",
ret);
ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1);
if (ret)
ath10k_warn("could not init WMI_PDEV_PARAM_DYNAMIC_BW (%d)\n",
ret);
/*
* By default FW set ARP frames ac to voice (6). In that case ARP
* exchange is not working properly for UAPSD enabled AP. ARP requests
* which arrives with access category 0 are processed by network stack
* and send back with access category 0, but FW changes access category
* to 6. Set ARP frames access category to best effort (0) solves
* this problem.
*/
ret = ath10k_wmi_pdev_set_param(ar,
ar->wmi.pdev_param->arp_ac_override, 0);
if (ret) {
ath10k_warn("could not set arp ac override parameter: %d\n",
ret);
goto exit;
}
ath10k_regd_update(ar);
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_stop(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_ON ||
ar->state == ATH10K_STATE_RESTARTED ||
ar->state == ATH10K_STATE_WEDGED)
ath10k_halt(ar);
ar->state = ATH10K_STATE_OFF;
mutex_unlock(&ar->conf_mutex);
ath10k_mgmt_over_wmi_tx_purge(ar);
cancel_work_sync(&ar->offchan_tx_work);
cancel_work_sync(&ar->wmi_mgmt_tx_work);
cancel_work_sync(&ar->restart_work);
}
static int ath10k_config_ps(struct ath10k *ar)
{
struct ath10k_vif *arvif;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ret = ath10k_mac_vif_setup_ps(arvif);
if (ret) {
ath10k_warn("could not setup powersave (%d)\n", ret);
break;
}
}
return ret;
}
static const char *chandef_get_width(enum nl80211_chan_width width)
{
switch (width) {
case NL80211_CHAN_WIDTH_20_NOHT:
return "20 (noht)";
case NL80211_CHAN_WIDTH_20:
return "20";
case NL80211_CHAN_WIDTH_40:
return "40";
case NL80211_CHAN_WIDTH_80:
return "80";
case NL80211_CHAN_WIDTH_80P80:
return "80+80";
case NL80211_CHAN_WIDTH_160:
return "160";
case NL80211_CHAN_WIDTH_5:
return "5";
case NL80211_CHAN_WIDTH_10:
return "10";
}
return "?";
}
static void ath10k_config_chan(struct ath10k *ar)
{
struct ath10k_vif *arvif;
bool monitor_was_enabled;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath10k_dbg(ATH10K_DBG_MAC,
"mac config channel to %dMHz (cf1 %dMHz cf2 %dMHz width %s)\n",
ar->chandef.chan->center_freq,
ar->chandef.center_freq1,
ar->chandef.center_freq2,
chandef_get_width(ar->chandef.width));
/* First stop monitor interface. Some FW versions crash if there's a
* lone monitor interface. */
monitor_was_enabled = ar->monitor_enabled;
if (ar->monitor_enabled)
ath10k_monitor_stop(ar);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (!arvif->is_started)
continue;
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
continue;
ret = ath10k_vdev_stop(arvif);
if (ret) {
ath10k_warn("could not stop vdev %d (%d)\n",
arvif->vdev_id, ret);
continue;
}
}
/* all vdevs are now stopped - now attempt to restart them */
list_for_each_entry(arvif, &ar->arvifs, list) {
if (!arvif->is_started)
continue;
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
continue;
ret = ath10k_vdev_start(arvif);
if (ret) {
ath10k_warn("could not start vdev %d (%d)\n",
arvif->vdev_id, ret);
continue;
}
if (!arvif->is_up)
continue;
ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
arvif->bssid);
if (ret) {
ath10k_warn("could not bring vdev up %d (%d)\n",
arvif->vdev_id, ret);
continue;
}
}
if (monitor_was_enabled)
ath10k_monitor_start(ar, ar->monitor_vdev_id);
}
static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath10k *ar = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
int ret = 0;
u32 param;
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ath10k_dbg(ATH10K_DBG_MAC,
"mac config channel %d mhz flags 0x%x\n",
conf->chandef.chan->center_freq,
conf->chandef.chan->flags);
spin_lock_bh(&ar->data_lock);
ar->rx_channel = conf->chandef.chan;
spin_unlock_bh(&ar->data_lock);
ath10k_config_radar_detection(ar);
if (!cfg80211_chandef_identical(&ar->chandef, &conf->chandef)) {
ar->chandef = conf->chandef;
ath10k_config_chan(ar);
}
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
ath10k_dbg(ATH10K_DBG_MAC, "mac config power %d\n",
hw->conf.power_level);
param = ar->wmi.pdev_param->txpower_limit2g;
ret = ath10k_wmi_pdev_set_param(ar, param,
hw->conf.power_level * 2);
if (ret)
ath10k_warn("mac failed to set 2g txpower %d (%d)\n",
hw->conf.power_level, ret);
param = ar->wmi.pdev_param->txpower_limit5g;
ret = ath10k_wmi_pdev_set_param(ar, param,
hw->conf.power_level * 2);
if (ret)
ath10k_warn("mac failed to set 5g txpower %d (%d)\n",
hw->conf.power_level, ret);
}
if (changed & IEEE80211_CONF_CHANGE_PS)
ath10k_config_ps(ar);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
if (conf->flags & IEEE80211_CONF_MONITOR)
ret = ath10k_monitor_create(ar);
else
ret = ath10k_monitor_destroy(ar);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
/*
* TODO:
* Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
* because we will send mgmt frames without CCK. This requirement
* for P2P_FIND/GO_NEG should be handled by checking CCK flag
* in the TX packet.
*/
static int ath10k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
enum wmi_sta_powersave_param param;
int ret = 0;
u32 value;
int bit;
u32 vdev_param;
mutex_lock(&ar->conf_mutex);
memset(arvif, 0, sizeof(*arvif));
arvif->ar = ar;
arvif->vif = vif;
INIT_WORK(&arvif->wep_key_work, ath10k_tx_wep_key_work);
INIT_LIST_HEAD(&arvif->list);
if ((vif->type == NL80211_IFTYPE_MONITOR) && ar->monitor_present) {
ath10k_warn("Only one monitor interface allowed\n");
ret = -EBUSY;
goto err;
}
bit = ffs(ar->free_vdev_map);
if (bit == 0) {
ret = -EBUSY;
goto err;
}
arvif->vdev_id = bit - 1;
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
if (ar->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
switch (vif->type) {
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_STATION:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
break;
case NL80211_IFTYPE_ADHOC:
arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
break;
case NL80211_IFTYPE_AP:
arvif->vdev_type = WMI_VDEV_TYPE_AP;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
break;
case NL80211_IFTYPE_MONITOR:
arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
break;
default:
WARN_ON(1);
break;
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d\n",
arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype);
ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
arvif->vdev_subtype, vif->addr);
if (ret) {
ath10k_warn("WMI vdev %i create failed: ret %d\n",
arvif->vdev_id, ret);
goto err;
}
ar->free_vdev_map &= ~BIT(arvif->vdev_id);
list_add(&arvif->list, &ar->arvifs);
vdev_param = ar->wmi.vdev_param->def_keyid;
ret = ath10k_wmi_vdev_set_param(ar, 0, vdev_param,
arvif->def_wep_key_idx);
if (ret) {
ath10k_warn("Failed to set vdev %i default keyid: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
vdev_param = ar->wmi.vdev_param->tx_encap_type;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
ATH10K_HW_TXRX_NATIVE_WIFI);
/* 10.X firmware does not support this VDEV parameter. Do not warn */
if (ret && ret != -EOPNOTSUPP) {
ath10k_warn("Failed to set vdev %i TX encap: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr);
if (ret) {
ath10k_warn("Failed to create vdev %i peer for AP: %d\n",
arvif->vdev_id, ret);
goto err_vdev_delete;
}
ret = ath10k_mac_set_kickout(arvif);
if (ret) {
ath10k_warn("Failed to set vdev %i kickout parameters: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("Failed to set vdev %i RX wake policy: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("Failed to set vdev %i TX wake thresh: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param, value);
if (ret) {
ath10k_warn("Failed to set vdev %i PSPOLL count: %d\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
}
ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
if (ret) {
ath10k_warn("failed to set rts threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold);
if (ret) {
ath10k_warn("failed to set frag threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
goto err_peer_delete;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
ar->monitor_present = true;
mutex_unlock(&ar->conf_mutex);
return 0;
err_peer_delete:
if (arvif->vdev_type == WMI_VDEV_TYPE_AP)
ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
err_vdev_delete:
ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
ar->free_vdev_map &= ~BIT(arvif->vdev_id);
list_del(&arvif->list);
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret;
mutex_lock(&ar->conf_mutex);
cancel_work_sync(&arvif->wep_key_work);
spin_lock_bh(&ar->data_lock);
if (arvif->beacon) {
dev_kfree_skb_any(arvif->beacon);
arvif->beacon = NULL;
}
spin_unlock_bh(&ar->data_lock);
ar->free_vdev_map |= 1 << (arvif->vdev_id);
list_del(&arvif->list);
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, vif->addr);
if (ret)
ath10k_warn("Failed to remove peer for AP vdev %i: %d\n",
arvif->vdev_id, ret);
kfree(arvif->u.ap.noa_data);
}
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
arvif->vdev_id);
ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
if (ret)
ath10k_warn("WMI vdev %i delete failed: %d\n",
arvif->vdev_id, ret);
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
ar->monitor_present = false;
ath10k_peer_cleanup(ar, arvif->vdev_id);
mutex_unlock(&ar->conf_mutex);
}
/*
* FIXME: Has to be verified.
*/
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_PSPOLL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_PROBE_REQ | \
FIF_FCSFAIL)
static void ath10k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
ar->filter_flags = *total_flags;
/* Monitor must not be started if it wasn't created first.
* Promiscuous mode may be started on a non-monitor interface - in
* such case the monitor vdev is not created so starting the
* monitor makes no sense. Since ath10k uses no special RX filters
* (only BSS filter in STA mode) there's no need for any special
* action here. */
if ((ar->filter_flags & FIF_PROMISC_IN_BSS) &&
!ar->monitor_enabled && ar->monitor_present) {
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor %d start\n",
ar->monitor_vdev_id);
ret = ath10k_monitor_start(ar, ar->monitor_vdev_id);
if (ret)
ath10k_warn("Unable to start monitor mode\n");
} else if (!(ar->filter_flags & FIF_PROMISC_IN_BSS) &&
ar->monitor_enabled && ar->monitor_present) {
ath10k_dbg(ATH10K_DBG_MAC, "mac monitor %d stop\n",
ar->monitor_vdev_id);
ret = ath10k_monitor_stop(ar);
if (ret)
ath10k_warn("Unable to stop monitor mode\n");
}
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
int ret = 0;
u32 vdev_param, pdev_param;
mutex_lock(&ar->conf_mutex);
if (changed & BSS_CHANGED_IBSS)
ath10k_control_ibss(arvif, info, vif->addr);
if (changed & BSS_CHANGED_BEACON_INT) {
arvif->beacon_interval = info->beacon_int;
vdev_param = ar->wmi.vdev_param->beacon_interval;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->beacon_interval);
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d beacon_interval %d\n",
arvif->vdev_id, arvif->beacon_interval);
if (ret)
ath10k_warn("Failed to set beacon interval for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BEACON) {
ath10k_dbg(ATH10K_DBG_MAC,
"vdev %d set beacon tx mode to staggered\n",
arvif->vdev_id);
pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
WMI_BEACON_STAGGERED_MODE);
if (ret)
ath10k_warn("Failed to set beacon mode for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BEACON_INFO) {
arvif->dtim_period = info->dtim_period;
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d dtim_period %d\n",
arvif->vdev_id, arvif->dtim_period);
vdev_param = ar->wmi.vdev_param->dtim_period;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
arvif->dtim_period);
if (ret)
ath10k_warn("Failed to set dtim period for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_SSID &&
vif->type == NL80211_IFTYPE_AP) {
arvif->u.ap.ssid_len = info->ssid_len;
if (info->ssid_len)
memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len);
arvif->u.ap.hidden_ssid = info->hidden_ssid;
}
if (changed & BSS_CHANGED_BSSID) {
if (!is_zero_ether_addr(info->bssid)) {
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d create peer %pM\n",
arvif->vdev_id, info->bssid);
ret = ath10k_peer_create(ar, arvif->vdev_id,
info->bssid);
if (ret)
ath10k_warn("Failed to add peer %pM for vdev %d when changing bssid: %i\n",
info->bssid, arvif->vdev_id, ret);
if (vif->type == NL80211_IFTYPE_STATION) {
/*
* this is never erased as we it for crypto key
* clearing; this is FW requirement
*/
memcpy(arvif->bssid, info->bssid, ETH_ALEN);
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d start %pM\n",
arvif->vdev_id, info->bssid);
ret = ath10k_vdev_start(arvif);
if (ret) {
ath10k_warn("failed to start vdev %i: %d\n",
arvif->vdev_id, ret);
goto exit;
}
arvif->is_started = true;
}
/*
* Mac80211 does not keep IBSS bssid when leaving IBSS,
* so driver need to store it. It is needed when leaving
* IBSS in order to remove BSSID peer.
*/
if (vif->type == NL80211_IFTYPE_ADHOC)
memcpy(arvif->bssid, info->bssid,
ETH_ALEN);
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
ath10k_control_beaconing(arvif, info);
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
u32 cts_prot;
if (info->use_cts_prot)
cts_prot = 1;
else
cts_prot = 0;
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n",
arvif->vdev_id, cts_prot);
vdev_param = ar->wmi.vdev_param->enable_rtscts;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
cts_prot);
if (ret)
ath10k_warn("Failed to set CTS prot for vdev %d: %d\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
u32 slottime;
if (info->use_short_slot)
slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
else
slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
arvif->vdev_id, slottime);
vdev_param = ar->wmi.vdev_param->slot_time;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
slottime);
if (ret)
ath10k_warn("Failed to set erp slot for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
u32 preamble;
if (info->use_short_preamble)
preamble = WMI_VDEV_PREAMBLE_SHORT;
else
preamble = WMI_VDEV_PREAMBLE_LONG;
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d preamble %dn",
arvif->vdev_id, preamble);
vdev_param = ar->wmi.vdev_param->preamble;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
preamble);
if (ret)
ath10k_warn("Failed to set preamble for vdev %d: %i\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_ASSOC) {
if (info->assoc)
ath10k_bss_assoc(hw, vif, info);
}
exit:
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_scan_request *req)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct wmi_start_scan_arg arg;
int ret = 0;
int i;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
ret = -EBUSY;
goto exit;
}
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
ar->scan.in_progress = true;
ar->scan.aborting = false;
ar->scan.is_roc = false;
ar->scan.vdev_id = arvif->vdev_id;
spin_unlock_bh(&ar->data_lock);
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
if (!req->no_cck)
arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES;
if (req->ie_len) {
arg.ie_len = req->ie_len;
memcpy(arg.ie, req->ie, arg.ie_len);
}
if (req->n_ssids) {
arg.n_ssids = req->n_ssids;
for (i = 0; i < arg.n_ssids; i++) {
arg.ssids[i].len = req->ssids[i].ssid_len;
arg.ssids[i].ssid = req->ssids[i].ssid;
}
} else {
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
}
if (req->n_channels) {
arg.n_channels = req->n_channels;
for (i = 0; i < arg.n_channels; i++)
arg.channels[i] = req->channels[i]->center_freq;
}
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn("could not start hw scan (%d)\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.in_progress = false;
spin_unlock_bh(&ar->data_lock);
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = ath10k_abort_scan(ar);
if (ret) {
ath10k_warn("couldn't abort scan (%d). forcefully sending scan completion to mac80211\n",
ret);
ieee80211_scan_completed(hw, 1 /* aborted */);
}
mutex_unlock(&ar->conf_mutex);
}
static void ath10k_set_key_h_def_keyidx(struct ath10k *ar,
struct ath10k_vif *arvif,
enum set_key_cmd cmd,
struct ieee80211_key_conf *key)
{
u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
int ret;
/* 10.1 firmware branch requires default key index to be set to group
* key index after installing it. Otherwise FW/HW Txes corrupted
* frames with multi-vif APs. This is not required for main firmware
* branch (e.g. 636).
*
* FIXME: This has been tested only in AP. It remains unknown if this
* is required for multi-vif STA interfaces on 10.1 */
if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
return;
if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
return;
if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
return;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
return;
if (cmd != SET_KEY)
return;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
key->keyidx);
if (ret)
ath10k_warn("failed to set vdev %i group key as default key: %d\n",
arvif->vdev_id, ret);
}
static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k_peer *peer;
const u8 *peer_addr;
bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
key->cipher == WLAN_CIPHER_SUITE_WEP104;
int ret = 0;
if (key->keyidx > WMI_MAX_KEY_INDEX)
return -ENOSPC;
mutex_lock(&ar->conf_mutex);
if (sta)
peer_addr = sta->addr;
else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
peer_addr = vif->bss_conf.bssid;
else
peer_addr = vif->addr;
key->hw_key_idx = key->keyidx;
/* the peer should not disappear in mid-way (unless FW goes awry) since
* we already hold conf_mutex. we just make sure its there now. */
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
spin_unlock_bh(&ar->data_lock);
if (!peer) {
if (cmd == SET_KEY) {
ath10k_warn("cannot install key for non-existent peer %pM\n",
peer_addr);
ret = -EOPNOTSUPP;
goto exit;
} else {
/* if the peer doesn't exist there is no key to disable
* anymore */
goto exit;
}
}
if (is_wep) {
if (cmd == SET_KEY)
arvif->wep_keys[key->keyidx] = key;
else
arvif->wep_keys[key->keyidx] = NULL;
if (cmd == DISABLE_KEY)
ath10k_clear_vdev_key(arvif, key);
}
ret = ath10k_install_key(arvif, key, cmd, peer_addr);
if (ret) {
ath10k_warn("key installation failed for vdev %i peer %pM: %d\n",
arvif->vdev_id, peer_addr, ret);
goto exit;
}
ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
if (peer && cmd == SET_KEY)
peer->keys[key->keyidx] = key;
else if (peer && cmd == DISABLE_KEY)
peer->keys[key->keyidx] = NULL;
else if (peer == NULL)
/* impossible unless FW goes crazy */
ath10k_warn("peer %pM disappeared!\n", peer_addr);
spin_unlock_bh(&ar->data_lock);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_sta_rc_update_wk(struct work_struct *wk)
{
struct ath10k *ar;
struct ath10k_vif *arvif;
struct ath10k_sta *arsta;
struct ieee80211_sta *sta;
u32 changed, bw, nss, smps;
int err;
arsta = container_of(wk, struct ath10k_sta, update_wk);
sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
arvif = arsta->arvif;
ar = arvif->ar;
spin_lock_bh(&ar->data_lock);
changed = arsta->changed;
arsta->changed = 0;
bw = arsta->bw;
nss = arsta->nss;
smps = arsta->smps;
spin_unlock_bh(&ar->data_lock);
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_RC_BW_CHANGED) {
ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n",
sta->addr, bw);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_CHAN_WIDTH, bw);
if (err)
ath10k_warn("failed to update STA %pM peer bw %d: %d\n",
sta->addr, bw, err);
}
if (changed & IEEE80211_RC_NSS_CHANGED) {
ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM nss %d\n",
sta->addr, nss);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_NSS, nss);
if (err)
ath10k_warn("failed to update STA %pM nss %d: %d\n",
sta->addr, nss, err);
}
if (changed & IEEE80211_RC_SMPS_CHANGED) {
ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM smps %d\n",
sta->addr, smps);
err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
WMI_PEER_SMPS_STATE, smps);
if (err)
ath10k_warn("failed to update STA %pM smps %d: %d\n",
sta->addr, smps, err);
}
if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) {
ath10k_dbg(ATH10K_DBG_MAC, "mac update sta %pM supp rates\n",
sta->addr);
err = ath10k_station_assoc(ar, arvif, sta, true);
if (err)
ath10k_warn("Failed to reassociate station: %pM\n",
sta->addr);
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_sta_state(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
int max_num_peers;
int ret = 0;
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
memset(arsta, 0, sizeof(*arsta));
arsta->arvif = arvif;
INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
}
/* cancel must be done outside the mutex to avoid deadlock */
if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST))
cancel_work_sync(&arsta->update_wk);
mutex_lock(&ar->conf_mutex);
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE &&
vif->type != NL80211_IFTYPE_STATION) {
/*
* New station addition.
*/
if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features))
max_num_peers = TARGET_10X_NUM_PEERS_MAX - 1;
else
max_num_peers = TARGET_NUM_PEERS;
if (ar->num_peers >= max_num_peers) {
ath10k_warn("Number of peers exceeded: peers number %d (max peers %d)\n",
ar->num_peers, max_num_peers);
ret = -ENOBUFS;
goto exit;
}
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d peer create %pM (new sta) num_peers %d\n",
arvif->vdev_id, sta->addr, ar->num_peers);
ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn("Failed to add peer %pM for vdev %d when adding a new sta: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
/*
* Existing station deletion.
*/
ath10k_dbg(ATH10K_DBG_MAC,
"mac vdev %d peer delete %pM (sta gone)\n",
arvif->vdev_id, sta->addr);
ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
if (ret)
ath10k_warn("Failed to delete peer %pM for vdev %d: %i\n",
sta->addr, arvif->vdev_id, ret);
if (vif->type == NL80211_IFTYPE_STATION)
ath10k_bss_disassoc(hw, vif);
} else if (old_state == IEEE80211_STA_AUTH &&
new_state == IEEE80211_STA_ASSOC &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* New association.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac sta %pM associated\n",
sta->addr);
ret = ath10k_station_assoc(ar, arvif, sta, false);
if (ret)
ath10k_warn("Failed to associate station %pM for vdev %i: %i\n",
sta->addr, arvif->vdev_id, ret);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTH &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC)) {
/*
* Disassociation.
*/
ath10k_dbg(ATH10K_DBG_MAC, "mac sta %pM disassociated\n",
sta->addr);
ret = ath10k_station_disassoc(ar, arvif, sta);
if (ret)
ath10k_warn("Failed to disassociate station: %pM vdev %i ret %i\n",
sta->addr, arvif->vdev_id, ret);
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
u16 ac, bool enable)
{
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
u32 value = 0;
int ret = 0;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
switch (ac) {
case IEEE80211_AC_VO:
value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
break;
case IEEE80211_AC_VI:
value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
break;
case IEEE80211_AC_BE:
value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
break;
case IEEE80211_AC_BK:
value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
break;
}
if (enable)
arvif->u.sta.uapsd |= value;
else
arvif->u.sta.uapsd &= ~value;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_UAPSD,
arvif->u.sta.uapsd);
if (ret) {
ath10k_warn("could not set uapsd params %d\n", ret);
goto exit;
}
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
else
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_RX_WAKE_POLICY,
value);
if (ret)
ath10k_warn("could not set rx wake param %d\n", ret);
exit:
return ret;
}
static int ath10k_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 ac,
const struct ieee80211_tx_queue_params *params)
{
struct ath10k *ar = hw->priv;
struct wmi_wmm_params_arg *p = NULL;
int ret;
mutex_lock(&ar->conf_mutex);
switch (ac) {
case IEEE80211_AC_VO:
p = &ar->wmm_params.ac_vo;
break;
case IEEE80211_AC_VI:
p = &ar->wmm_params.ac_vi;
break;
case IEEE80211_AC_BE:
p = &ar->wmm_params.ac_be;
break;
case IEEE80211_AC_BK:
p = &ar->wmm_params.ac_bk;
break;
}
if (WARN_ON(!p)) {
ret = -EINVAL;
goto exit;
}
p->cwmin = params->cw_min;
p->cwmax = params->cw_max;
p->aifs = params->aifs;
/*
* The channel time duration programmed in the HW is in absolute
* microseconds, while mac80211 gives the txop in units of
* 32 microseconds.
*/
p->txop = params->txop * 32;
/* FIXME: FW accepts wmm params per hw, not per vif */
ret = ath10k_wmi_pdev_set_wmm_params(ar, &ar->wmm_params);
if (ret) {
ath10k_warn("could not set wmm params %d\n", ret);
goto exit;
}
ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
if (ret)
ath10k_warn("could not set sta uapsd %d\n", ret);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
#define ATH10K_ROC_TIMEOUT_HZ (2*HZ)
static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct wmi_start_scan_arg arg;
int ret;
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
if (ar->scan.in_progress) {
spin_unlock_bh(&ar->data_lock);
ret = -EBUSY;
goto exit;
}
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
reinit_completion(&ar->scan.on_channel);
ar->scan.in_progress = true;
ar->scan.aborting = false;
ar->scan.is_roc = true;
ar->scan.vdev_id = arvif->vdev_id;
ar->scan.roc_freq = chan->center_freq;
spin_unlock_bh(&ar->data_lock);
memset(&arg, 0, sizeof(arg));
ath10k_wmi_start_scan_init(ar, &arg);
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH10K_SCAN_ID;
arg.n_channels = 1;
arg.channels[0] = chan->center_freq;
arg.dwell_time_active = duration;
arg.dwell_time_passive = duration;
arg.max_scan_time = 2 * duration;
arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
ret = ath10k_start_scan(ar, &arg);
if (ret) {
ath10k_warn("could not start roc scan (%d)\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.in_progress = false;
spin_unlock_bh(&ar->data_lock);
goto exit;
}
ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ);
if (ret == 0) {
ath10k_warn("could not switch to channel for roc scan\n");
ath10k_abort_scan(ar);
ret = -ETIMEDOUT;
goto exit;
}
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
ath10k_abort_scan(ar);
mutex_unlock(&ar->conf_mutex);
return 0;
}
/*
* Both RTS and Fragmentation threshold are interface-specific
* in ath10k, but device-specific in mac80211.
*/
static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn("could not set rts threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath10k *ar = hw->priv;
struct ath10k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath10k_dbg(ATH10K_DBG_MAC, "mac vdev %d fragmentation threshold %d\n",
arvif->vdev_id, value);
ret = ath10k_mac_set_rts(arvif, value);
if (ret) {
ath10k_warn("could not set fragmentation threshold for vdev %d (%d)\n",
arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath10k_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
{
struct ath10k *ar = hw->priv;
bool skip;
int ret;
/* mac80211 doesn't care if we really xmit queued frames or not
* we'll collect those frames either way if we stop/delete vdevs */
if (drop)
return;
mutex_lock(&ar->conf_mutex);
if (ar->state == ATH10K_STATE_WEDGED)
goto skip;
ret = wait_event_timeout(ar->htt.empty_tx_wq, ({
bool empty;
spin_lock_bh(&ar->htt.tx_lock);
empty = (ar->htt.num_pending_tx == 0);
spin_unlock_bh(&ar->htt.tx_lock);
skip = (ar->state == ATH10K_STATE_WEDGED);
(empty || skip);
}), ATH10K_FLUSH_TIMEOUT_HZ);
if (ret <= 0 || skip)
ath10k_warn("tx not flushed (skip %i ar-state %i): %i\n",
skip, ar->state, ret);
skip:
mutex_unlock(&ar->conf_mutex);
}
/* TODO: Implement this function properly
* For now it is needed to reply to Probe Requests in IBSS mode.
* Propably we need this information from FW.
*/
static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
{
return 1;
}
#ifdef CONFIG_PM
static int ath10k_suspend(struct ieee80211_hw *hw,
struct cfg80211_wowlan *wowlan)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = ath10k_wait_for_suspend(ar, WMI_PDEV_SUSPEND);
if (ret) {
if (ret == -ETIMEDOUT)
goto resume;
ret = 1;
goto exit;
}
ret = ath10k_hif_suspend(ar);
if (ret) {
ath10k_warn("could not suspend hif (%d)\n", ret);
goto resume;
}
ret = 0;
goto exit;
resume:
ret = ath10k_wmi_pdev_resume_target(ar);
if (ret)
ath10k_warn("could not resume target (%d)\n", ret);
ret = 1;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_resume(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
int ret;
mutex_lock(&ar->conf_mutex);
ret = ath10k_hif_resume(ar);
if (ret) {
ath10k_warn("could not resume hif (%d)\n", ret);
ret = 1;
goto exit;
}
ret = ath10k_wmi_pdev_resume_target(ar);
if (ret) {
ath10k_warn("could not resume target (%d)\n", ret);
ret = 1;
goto exit;
}
ret = 0;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
#endif
static void ath10k_restart_complete(struct ieee80211_hw *hw)
{
struct ath10k *ar = hw->priv;
mutex_lock(&ar->conf_mutex);
/* If device failed to restart it will be in a different state, e.g.
* ATH10K_STATE_WEDGED */
if (ar->state == ATH10K_STATE_RESTARTED) {
ath10k_info("device successfully recovered\n");
ar->state = ATH10K_STATE_ON;
}
mutex_unlock(&ar->conf_mutex);
}
static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ath10k *ar = hw->priv;
struct ieee80211_supported_band *sband;
struct survey_info *ar_survey = &ar->survey[idx];
int ret = 0;
mutex_lock(&ar->conf_mutex);
sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband)
sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ];
if (!sband || idx >= sband->n_channels) {
ret = -ENOENT;
goto exit;
}
spin_lock_bh(&ar->data_lock);
memcpy(survey, ar_survey, sizeof(*survey));
spin_unlock_bh(&ar->data_lock);
survey->channel = &sband->channels[idx];
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
/* Helper table for legacy fixed_rate/bitrate_mask */
static const u8 cck_ofdm_rate[] = {
/* CCK */
3, /* 1Mbps */
2, /* 2Mbps */
1, /* 5.5Mbps */
0, /* 11Mbps */
/* OFDM */
3, /* 6Mbps */
7, /* 9Mbps */
2, /* 12Mbps */
6, /* 18Mbps */
1, /* 24Mbps */
5, /* 36Mbps */
0, /* 48Mbps */
4, /* 54Mbps */
};
/* Check if only one bit set */
static int ath10k_check_single_mask(u32 mask)
{
int bit;
bit = ffs(mask);
if (!bit)
return 0;
mask &= ~BIT(bit - 1);
if (mask)
return 2;
return 1;
}
static bool
ath10k_default_bitrate_mask(struct ath10k *ar,
enum ieee80211_band band,
const struct cfg80211_bitrate_mask *mask)
{
u32 legacy = 0x00ff;
u8 ht = 0xff, i;
u16 vht = 0x3ff;
switch (band) {
case IEEE80211_BAND_2GHZ:
legacy = 0x00fff;
vht = 0;
break;
case IEEE80211_BAND_5GHZ:
break;
default:
return false;
}
if (mask->control[band].legacy != legacy)
return false;
for (i = 0; i < ar->num_rf_chains; i++)
if (mask->control[band].ht_mcs[i] != ht)
return false;
for (i = 0; i < ar->num_rf_chains; i++)
if (mask->control[band].vht_mcs[i] != vht)
return false;
return true;
}
static bool
ath10k_bitrate_mask_nss(const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
u8 *fixed_nss)
{
int ht_nss = 0, vht_nss = 0, i;
/* check legacy */
if (ath10k_check_single_mask(mask->control[band].legacy))
return false;
/* check HT */
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) {
if (mask->control[band].ht_mcs[i] == 0xff)
continue;
else if (mask->control[band].ht_mcs[i] == 0x00)
break;
else
return false;
}
ht_nss = i;
/* check VHT */
for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
if (mask->control[band].vht_mcs[i] == 0x03ff)
continue;
else if (mask->control[band].vht_mcs[i] == 0x0000)
break;
else
return false;
}
vht_nss = i;
if (ht_nss > 0 && vht_nss > 0)
return false;
if (ht_nss)
*fixed_nss = ht_nss;
else if (vht_nss)
*fixed_nss = vht_nss;
else
return false;
return true;
}
static bool
ath10k_bitrate_mask_correct(const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
enum wmi_rate_preamble *preamble)
{
int legacy = 0, ht = 0, vht = 0, i;
*preamble = WMI_RATE_PREAMBLE_OFDM;
/* check legacy */
legacy = ath10k_check_single_mask(mask->control[band].legacy);
if (legacy > 1)
return false;
/* check HT */
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
ht += ath10k_check_single_mask(mask->control[band].ht_mcs[i]);
if (ht > 1)
return false;
/* check VHT */
for (i = 0; i < NL80211_VHT_NSS_MAX; i++)
vht += ath10k_check_single_mask(mask->control[band].vht_mcs[i]);
if (vht > 1)
return false;
/* Currently we support only one fixed_rate */
if ((legacy + ht + vht) != 1)
return false;
if (ht)
*preamble = WMI_RATE_PREAMBLE_HT;
else if (vht)
*preamble = WMI_RATE_PREAMBLE_VHT;
return true;
}
static bool
ath10k_bitrate_mask_rate(const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
u8 *fixed_rate,
u8 *fixed_nss)
{
u8 rate = 0, pream = 0, nss = 0, i;
enum wmi_rate_preamble preamble;
/* Check if single rate correct */
if (!ath10k_bitrate_mask_correct(mask, band, &preamble))
return false;
pream = preamble;
switch (preamble) {
case WMI_RATE_PREAMBLE_CCK:
case WMI_RATE_PREAMBLE_OFDM:
i = ffs(mask->control[band].legacy) - 1;
if (band == IEEE80211_BAND_2GHZ && i < 4)
pream = WMI_RATE_PREAMBLE_CCK;
if (band == IEEE80211_BAND_5GHZ)
i += 4;
if (i >= ARRAY_SIZE(cck_ofdm_rate))
return false;
rate = cck_ofdm_rate[i];
break;
case WMI_RATE_PREAMBLE_HT:
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
if (mask->control[band].ht_mcs[i])
break;
if (i == IEEE80211_HT_MCS_MASK_LEN)
return false;
rate = ffs(mask->control[band].ht_mcs[i]) - 1;
nss = i;
break;
case WMI_RATE_PREAMBLE_VHT:
for (i = 0; i < NL80211_VHT_NSS_MAX; i++)
if (mask->control[band].vht_mcs[i])
break;
if (i == NL80211_VHT_NSS_MAX)
return false;
rate = ffs(mask->control[band].vht_mcs[i]) - 1;
nss = i;
break;
}
*fixed_nss = nss + 1;
nss <<= 4;
pream <<= 6;
ath10k_dbg(ATH10K_DBG_MAC, "mac fixed rate pream 0x%02x nss 0x%02x rate 0x%02x\n",
pream, nss, rate);
*fixed_rate = pream | nss | rate;
return true;
}
static bool ath10k_get_fixed_rate_nss(const struct cfg80211_bitrate_mask *mask,
enum ieee80211_band band,
u8 *fixed_rate,
u8 *fixed_nss)
{
/* First check full NSS mask, if we can simply limit NSS */
if (ath10k_bitrate_mask_nss(mask, band, fixed_nss))
return true;
/* Next Check single rate is set */
return ath10k_bitrate_mask_rate(mask, band, fixed_rate, fixed_nss);
}
static int ath10k_set_fixed_rate_param(struct ath10k_vif *arvif,
u8 fixed_rate,
u8 fixed_nss,
u8 force_sgi)
{
struct ath10k *ar = arvif->ar;
u32 vdev_param;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (arvif->fixed_rate == fixed_rate &&
arvif->fixed_nss == fixed_nss &&
arvif->force_sgi == force_sgi)
goto exit;
if (fixed_rate == WMI_FIXED_RATE_NONE)
ath10k_dbg(ATH10K_DBG_MAC, "mac disable fixed bitrate mask\n");
if (force_sgi)
ath10k_dbg(ATH10K_DBG_MAC, "mac force sgi\n");
vdev_param = ar->wmi.vdev_param->fixed_rate;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, fixed_rate);
if (ret) {
ath10k_warn("Could not set fixed_rate param 0x%02x: %d\n",
fixed_rate, ret);
ret = -EINVAL;
goto exit;
}
arvif->fixed_rate = fixed_rate;
vdev_param = ar->wmi.vdev_param->nss;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
vdev_param, fixed_nss);
if (ret) {
ath10k_warn("Could not set fixed_nss param %d: %d\n",
fixed_nss, ret);
ret = -EINVAL;
goto exit;
}
arvif->fixed_nss = fixed_nss;
vdev_param = ar->wmi.vdev_param->sgi;
ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
force_sgi);
if (ret) {
ath10k_warn("Could not set sgi param %d: %d\n",
force_sgi, ret);
ret = -EINVAL;
goto exit;
}
arvif->force_sgi = force_sgi;
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath10k_set_bitrate_mask(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const struct cfg80211_bitrate_mask *mask)
{
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
struct ath10k *ar = arvif->ar;
enum ieee80211_band band = ar->hw->conf.chandef.chan->band;
u8 fixed_rate = WMI_FIXED_RATE_NONE;
u8 fixed_nss = ar->num_rf_chains;
u8 force_sgi;
force_sgi = mask->control[band].gi;
if (force_sgi == NL80211_TXRATE_FORCE_LGI)
return -EINVAL;
if (!ath10k_default_bitrate_mask(ar, band, mask)) {
if (!ath10k_get_fixed_rate_nss(mask, band,
&fixed_rate,
&fixed_nss))
return -EINVAL;
}
if (fixed_rate == WMI_FIXED_RATE_NONE && force_sgi) {
ath10k_warn("Could not force SGI usage for default rate settings\n");
return -EINVAL;
}
return ath10k_set_fixed_rate_param(arvif, fixed_rate,
fixed_nss, force_sgi);
}
static void ath10k_channel_switch_beacon(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_chan_def *chandef)
{
/* there's no need to do anything here. vif->csa_active is enough */
return;
}
static void ath10k_sta_rc_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 changed)
{
struct ath10k *ar = hw->priv;
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
u32 bw, smps;
spin_lock_bh(&ar->data_lock);
ath10k_dbg(ATH10K_DBG_MAC,
"mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
sta->addr, changed, sta->bandwidth, sta->rx_nss,
sta->smps_mode);
if (changed & IEEE80211_RC_BW_CHANGED) {
bw = WMI_PEER_CHWIDTH_20MHZ;
switch (sta->bandwidth) {
case IEEE80211_STA_RX_BW_20:
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
case IEEE80211_STA_RX_BW_40:
bw = WMI_PEER_CHWIDTH_40MHZ;
break;
case IEEE80211_STA_RX_BW_80:
bw = WMI_PEER_CHWIDTH_80MHZ;
break;
case IEEE80211_STA_RX_BW_160:
ath10k_warn("mac sta rc update for %pM: invalid bw %d\n",
sta->addr, sta->bandwidth);
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
}
arsta->bw = bw;
}
if (changed & IEEE80211_RC_NSS_CHANGED)
arsta->nss = sta->rx_nss;
if (changed & IEEE80211_RC_SMPS_CHANGED) {
smps = WMI_PEER_SMPS_PS_NONE;
switch (sta->smps_mode) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_OFF:
smps = WMI_PEER_SMPS_PS_NONE;
break;
case IEEE80211_SMPS_STATIC:
smps = WMI_PEER_SMPS_STATIC;
break;
case IEEE80211_SMPS_DYNAMIC:
smps = WMI_PEER_SMPS_DYNAMIC;
break;
case IEEE80211_SMPS_NUM_MODES:
ath10k_warn("mac sta rc update for %pM: invalid smps: %d\n",
sta->addr, sta->smps_mode);
smps = WMI_PEER_SMPS_PS_NONE;
break;
}
arsta->smps = smps;
}
arsta->changed |= changed;
spin_unlock_bh(&ar->data_lock);
ieee80211_queue_work(hw, &arsta->update_wk);
}
static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
/*
* FIXME: Return 0 for time being. Need to figure out whether FW
* has the API to fetch 64-bit local TSF
*/
return 0;
}
static const struct ieee80211_ops ath10k_ops = {
.tx = ath10k_tx,
.start = ath10k_start,
.stop = ath10k_stop,
.config = ath10k_config,
.add_interface = ath10k_add_interface,
.remove_interface = ath10k_remove_interface,
.configure_filter = ath10k_configure_filter,
.bss_info_changed = ath10k_bss_info_changed,
.hw_scan = ath10k_hw_scan,
.cancel_hw_scan = ath10k_cancel_hw_scan,
.set_key = ath10k_set_key,
.sta_state = ath10k_sta_state,
.conf_tx = ath10k_conf_tx,
.remain_on_channel = ath10k_remain_on_channel,
.cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
.set_rts_threshold = ath10k_set_rts_threshold,
.set_frag_threshold = ath10k_set_frag_threshold,
.flush = ath10k_flush,
.tx_last_beacon = ath10k_tx_last_beacon,
.restart_complete = ath10k_restart_complete,
.get_survey = ath10k_get_survey,
.set_bitrate_mask = ath10k_set_bitrate_mask,
.channel_switch_beacon = ath10k_channel_switch_beacon,
.sta_rc_update = ath10k_sta_rc_update,
.get_tsf = ath10k_get_tsf,
#ifdef CONFIG_PM
.suspend = ath10k_suspend,
.resume = ath10k_resume,
#endif
};
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.flags = (_flags), \
.hw_value = (_rateid), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static const struct ieee80211_channel ath10k_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static const struct ieee80211_channel ath10k_5ghz_channels[] = {
CHAN5G(36, 5180, 0),
CHAN5G(40, 5200, 0),
CHAN5G(44, 5220, 0),
CHAN5G(48, 5240, 0),
CHAN5G(52, 5260, 0),
CHAN5G(56, 5280, 0),
CHAN5G(60, 5300, 0),
CHAN5G(64, 5320, 0),
CHAN5G(100, 5500, 0),
CHAN5G(104, 5520, 0),
CHAN5G(108, 5540, 0),
CHAN5G(112, 5560, 0),
CHAN5G(116, 5580, 0),
CHAN5G(120, 5600, 0),
CHAN5G(124, 5620, 0),
CHAN5G(128, 5640, 0),
CHAN5G(132, 5660, 0),
CHAN5G(136, 5680, 0),
CHAN5G(140, 5700, 0),
CHAN5G(149, 5745, 0),
CHAN5G(153, 5765, 0),
CHAN5G(157, 5785, 0),
CHAN5G(161, 5805, 0),
CHAN5G(165, 5825, 0),
};
static struct ieee80211_rate ath10k_rates[] = {
/* CCK */
RATETAB_ENT(10, 0x82, 0),
RATETAB_ENT(20, 0x84, 0),
RATETAB_ENT(55, 0x8b, 0),
RATETAB_ENT(110, 0x96, 0),
/* OFDM */
RATETAB_ENT(60, 0x0c, 0),
RATETAB_ENT(90, 0x12, 0),
RATETAB_ENT(120, 0x18, 0),
RATETAB_ENT(180, 0x24, 0),
RATETAB_ENT(240, 0x30, 0),
RATETAB_ENT(360, 0x48, 0),
RATETAB_ENT(480, 0x60, 0),
RATETAB_ENT(540, 0x6c, 0),
};
#define ath10k_a_rates (ath10k_rates + 4)
#define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4)
#define ath10k_g_rates (ath10k_rates + 0)
#define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))
struct ath10k *ath10k_mac_create(void)
{
struct ieee80211_hw *hw;
struct ath10k *ar;
hw = ieee80211_alloc_hw(sizeof(struct ath10k), &ath10k_ops);
if (!hw)
return NULL;
ar = hw->priv;
ar->hw = hw;
return ar;
}
void ath10k_mac_destroy(struct ath10k *ar)
{
ieee80211_free_hw(ar->hw);
}
static const struct ieee80211_iface_limit ath10k_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION)
| BIT(NL80211_IFTYPE_P2P_CLIENT)
},
{
.max = 3,
.types = BIT(NL80211_IFTYPE_P2P_GO)
},
{
.max = 7,
.types = BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
{
.max = 8,
.types = BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_combination ath10k_if_comb[] = {
{
.limits = ath10k_if_limits,
.n_limits = ARRAY_SIZE(ath10k_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
},
};
static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
{
.limits = ath10k_10x_if_limits,
.n_limits = ARRAY_SIZE(ath10k_10x_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
#ifdef CONFIG_ATH10K_DFS_CERTIFIED
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
#endif
},
};
static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
{
struct ieee80211_sta_vht_cap vht_cap = {0};
u16 mcs_map;
int i;
vht_cap.vht_supported = 1;
vht_cap.cap = ar->vht_cap_info;
mcs_map = 0;
for (i = 0; i < 8; i++) {
if (i < ar->num_rf_chains)
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2);
else
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2);
}
vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
return vht_cap;
}
static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
{
int i;
struct ieee80211_sta_ht_cap ht_cap = {0};
if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
return ht_cap;
ht_cap.ht_supported = 1;
ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
u32 smps;
smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
ht_cap.cap |= smps;
}
if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC)
ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ar->ht_cap_info;
stbc &= WMI_HT_CAP_RX_STBC;
stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc &= IEEE80211_HT_CAP_RX_STBC;
ht_cap.cap |= stbc;
}
if (ar->ht_cap_info & WMI_HT_CAP_LDPC)
ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
/* max AMSDU is implicitly taken from vht_cap_info */
if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
for (i = 0; i < ar->num_rf_chains; i++)
ht_cap.mcs.rx_mask[i] = 0xFF;
ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
return ht_cap;
}
static void ath10k_get_arvif_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath10k_vif_iter *arvif_iter = data;
struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
if (arvif->vdev_id == arvif_iter->vdev_id)
arvif_iter->arvif = arvif;
}
struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_vif_iter arvif_iter;
u32 flags;
memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
arvif_iter.vdev_id = vdev_id;
flags = IEEE80211_IFACE_ITER_RESUME_ALL;
ieee80211_iterate_active_interfaces_atomic(ar->hw,
flags,
ath10k_get_arvif_iter,
&arvif_iter);
if (!arvif_iter.arvif) {
ath10k_warn("No VIF found for vdev %d\n", vdev_id);
return NULL;
}
return arvif_iter.arvif;
}
int ath10k_mac_register(struct ath10k *ar)
{
struct ieee80211_supported_band *band;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_sta_ht_cap ht_cap;
void *channels;
int ret;
SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
SET_IEEE80211_DEV(ar->hw, ar->dev);
ht_cap = ath10k_get_ht_cap(ar);
vht_cap = ath10k_create_vht_cap(ar);
if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
channels = kmemdup(ath10k_2ghz_channels,
sizeof(ath10k_2ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[IEEE80211_BAND_2GHZ];
band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_g_rates_size;
band->bitrates = ath10k_g_rates;
band->ht_cap = ht_cap;
/* vht is not supported in 2.4 GHz */
ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band;
}
if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
channels = kmemdup(ath10k_5ghz_channels,
sizeof(ath10k_5ghz_channels),
GFP_KERNEL);
if (!channels) {
ret = -ENOMEM;
goto err_free;
}
band = &ar->mac.sbands[IEEE80211_BAND_5GHZ];
band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
band->channels = channels;
band->n_bitrates = ath10k_a_rates_size;
band->bitrates = ath10k_a_rates;
band->ht_cap = ht_cap;
band->vht_cap = vht_cap;
ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band;
}
ar->hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP);
if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features))
ar->hw->wiphy->interface_modes |=
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
ar->hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_SUPPORTS_DYNAMIC_PS |
IEEE80211_HW_SUPPORTS_UAPSD |
IEEE80211_HW_MFP_CAPABLE |
IEEE80211_HW_REPORTS_TX_ACK_STATUS |
IEEE80211_HW_HAS_RATE_CONTROL |
IEEE80211_HW_SUPPORTS_STATIC_SMPS |
IEEE80211_HW_WANT_MONITOR_VIF |
IEEE80211_HW_AP_LINK_PS |
IEEE80211_HW_SPECTRUM_MGMT;
/* MSDU can have HTT TX fragment pushed in front. The additional 4
* bytes is used for padding/alignment if necessary. */
ar->hw->extra_tx_headroom += sizeof(struct htt_data_tx_desc_frag)*2 + 4;
if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
ar->hw->flags |= IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS;
if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW;
}
ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
ar->hw->vif_data_size = sizeof(struct ath10k_vif);
ar->hw->sta_data_size = sizeof(struct ath10k_sta);
ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
ar->hw->wiphy->max_remain_on_channel_duration = 5000;
ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
/*
* on LL hardware queues are managed entirely by the FW
* so we only advertise to mac we can do the queues thing
*/
ar->hw->queues = 4;
if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) {
ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_10x_if_comb);
} else {
ar->hw->wiphy->iface_combinations = ath10k_if_comb;
ar->hw->wiphy->n_iface_combinations =
ARRAY_SIZE(ath10k_if_comb);
}
ar->hw->netdev_features = NETIF_F_HW_CSUM;
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) {
/* Init ath dfs pattern detector */
ar->ath_common.debug_mask = ATH_DBG_DFS;
ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
NL80211_DFS_UNSET);
if (!ar->dfs_detector)
ath10k_warn("dfs pattern detector init failed\n");
}
ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
ath10k_reg_notifier);
if (ret) {
ath10k_err("Regulatory initialization failed: %i\n", ret);
goto err_free;
}
ret = ieee80211_register_hw(ar->hw);
if (ret) {
ath10k_err("ieee80211 registration failed: %d\n", ret);
goto err_free;
}
if (!ath_is_world_regd(&ar->ath_common.regulatory)) {
ret = regulatory_hint(ar->hw->wiphy,
ar->ath_common.regulatory.alpha2);
if (ret)
goto err_unregister;
}
return 0;
err_unregister:
ieee80211_unregister_hw(ar->hw);
err_free:
kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
return ret;
}
void ath10k_mac_unregister(struct ath10k *ar)
{
ieee80211_unregister_hw(ar->hw);
if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
ar->dfs_detector->exit(ar->dfs_detector);
kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
SET_IEEE80211_DEV(ar->hw, NULL);
}