mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 20:26:09 +07:00
b2b2ee350e
When IOMMU is enabled, iova -> phys address translation should be performed using iommu_ops, not dma_to_phys(). Signed-off-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
764 lines
19 KiB
C
764 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* CAAM/SEC 4.x QI transport/backend driver
|
|
* Queue Interface backend functionality
|
|
*
|
|
* Copyright 2013-2016 Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2017, 2019 NXP
|
|
*/
|
|
|
|
#include <linux/cpumask.h>
|
|
#include <linux/kthread.h>
|
|
#include <soc/fsl/qman.h>
|
|
|
|
#include "regs.h"
|
|
#include "qi.h"
|
|
#include "desc.h"
|
|
#include "intern.h"
|
|
#include "desc_constr.h"
|
|
|
|
#define PREHDR_RSLS_SHIFT 31
|
|
#define PREHDR_ABS BIT(25)
|
|
|
|
/*
|
|
* Use a reasonable backlog of frames (per CPU) as congestion threshold,
|
|
* so that resources used by the in-flight buffers do not become a memory hog.
|
|
*/
|
|
#define MAX_RSP_FQ_BACKLOG_PER_CPU 256
|
|
|
|
#define CAAM_QI_ENQUEUE_RETRIES 10000
|
|
|
|
#define CAAM_NAPI_WEIGHT 63
|
|
|
|
/*
|
|
* caam_napi - struct holding CAAM NAPI-related params
|
|
* @irqtask: IRQ task for QI backend
|
|
* @p: QMan portal
|
|
*/
|
|
struct caam_napi {
|
|
struct napi_struct irqtask;
|
|
struct qman_portal *p;
|
|
};
|
|
|
|
/*
|
|
* caam_qi_pcpu_priv - percpu private data structure to main list of pending
|
|
* responses expected on each cpu.
|
|
* @caam_napi: CAAM NAPI params
|
|
* @net_dev: netdev used by NAPI
|
|
* @rsp_fq: response FQ from CAAM
|
|
*/
|
|
struct caam_qi_pcpu_priv {
|
|
struct caam_napi caam_napi;
|
|
struct net_device net_dev;
|
|
struct qman_fq *rsp_fq;
|
|
} ____cacheline_aligned;
|
|
|
|
static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
|
|
static DEFINE_PER_CPU(int, last_cpu);
|
|
|
|
/*
|
|
* caam_qi_priv - CAAM QI backend private params
|
|
* @cgr: QMan congestion group
|
|
*/
|
|
struct caam_qi_priv {
|
|
struct qman_cgr cgr;
|
|
};
|
|
|
|
static struct caam_qi_priv qipriv ____cacheline_aligned;
|
|
|
|
/*
|
|
* This is written by only one core - the one that initialized the CGR - and
|
|
* read by multiple cores (all the others).
|
|
*/
|
|
bool caam_congested __read_mostly;
|
|
EXPORT_SYMBOL(caam_congested);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
/*
|
|
* This is a counter for the number of times the congestion group (where all
|
|
* the request and response queueus are) reached congestion. Incremented
|
|
* each time the congestion callback is called with congested == true.
|
|
*/
|
|
static u64 times_congested;
|
|
#endif
|
|
|
|
/*
|
|
* This is a a cache of buffers, from which the users of CAAM QI driver
|
|
* can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
|
|
* doing malloc on the hotpath.
|
|
* NOTE: A more elegant solution would be to have some headroom in the frames
|
|
* being processed. This could be added by the dpaa-ethernet driver.
|
|
* This would pose a problem for userspace application processing which
|
|
* cannot know of this limitation. So for now, this will work.
|
|
* NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
|
|
*/
|
|
static struct kmem_cache *qi_cache;
|
|
|
|
static void *caam_iova_to_virt(struct iommu_domain *domain,
|
|
dma_addr_t iova_addr)
|
|
{
|
|
phys_addr_t phys_addr;
|
|
|
|
phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
|
|
|
|
return phys_to_virt(phys_addr);
|
|
}
|
|
|
|
int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
|
|
{
|
|
struct qm_fd fd;
|
|
dma_addr_t addr;
|
|
int ret;
|
|
int num_retries = 0;
|
|
|
|
qm_fd_clear_fd(&fd);
|
|
qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
|
|
|
|
addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(qidev, addr)) {
|
|
dev_err(qidev, "DMA mapping error for QI enqueue request\n");
|
|
return -EIO;
|
|
}
|
|
qm_fd_addr_set64(&fd, addr);
|
|
|
|
do {
|
|
ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
|
|
if (likely(!ret))
|
|
return 0;
|
|
|
|
if (ret != -EBUSY)
|
|
break;
|
|
num_retries++;
|
|
} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
|
|
|
|
dev_err(qidev, "qman_enqueue failed: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(caam_qi_enqueue);
|
|
|
|
static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
|
|
const union qm_mr_entry *msg)
|
|
{
|
|
const struct qm_fd *fd;
|
|
struct caam_drv_req *drv_req;
|
|
struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
|
|
struct caam_drv_private *priv = dev_get_drvdata(qidev);
|
|
|
|
fd = &msg->ern.fd;
|
|
|
|
if (qm_fd_get_format(fd) != qm_fd_compound) {
|
|
dev_err(qidev, "Non-compound FD from CAAM\n");
|
|
return;
|
|
}
|
|
|
|
drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
|
|
if (!drv_req) {
|
|
dev_err(qidev,
|
|
"Can't find original request for CAAM response\n");
|
|
return;
|
|
}
|
|
|
|
dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
|
|
sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
|
|
|
|
drv_req->cbk(drv_req, -EIO);
|
|
}
|
|
|
|
static struct qman_fq *create_caam_req_fq(struct device *qidev,
|
|
struct qman_fq *rsp_fq,
|
|
dma_addr_t hwdesc,
|
|
int fq_sched_flag)
|
|
{
|
|
int ret;
|
|
struct qman_fq *req_fq;
|
|
struct qm_mcc_initfq opts;
|
|
|
|
req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
|
|
if (!req_fq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
req_fq->cb.ern = caam_fq_ern_cb;
|
|
req_fq->cb.fqs = NULL;
|
|
|
|
ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
|
|
QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
|
|
if (ret) {
|
|
dev_err(qidev, "Failed to create session req FQ\n");
|
|
goto create_req_fq_fail;
|
|
}
|
|
|
|
memset(&opts, 0, sizeof(opts));
|
|
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
|
|
QM_INITFQ_WE_CONTEXTB |
|
|
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
|
|
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
|
|
qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
|
|
opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
|
|
qm_fqd_context_a_set64(&opts.fqd, hwdesc);
|
|
opts.fqd.cgid = qipriv.cgr.cgrid;
|
|
|
|
ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
|
|
if (ret) {
|
|
dev_err(qidev, "Failed to init session req FQ\n");
|
|
goto init_req_fq_fail;
|
|
}
|
|
|
|
dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
|
|
smp_processor_id());
|
|
return req_fq;
|
|
|
|
init_req_fq_fail:
|
|
qman_destroy_fq(req_fq);
|
|
create_req_fq_fail:
|
|
kfree(req_fq);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
|
|
{
|
|
int ret;
|
|
|
|
ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
|
|
QMAN_VOLATILE_FLAG_FINISH,
|
|
QM_VDQCR_PRECEDENCE_VDQCR |
|
|
QM_VDQCR_NUMFRAMES_TILLEMPTY);
|
|
if (ret) {
|
|
dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
|
|
return ret;
|
|
}
|
|
|
|
do {
|
|
struct qman_portal *p;
|
|
|
|
p = qman_get_affine_portal(smp_processor_id());
|
|
qman_p_poll_dqrr(p, 16);
|
|
} while (fq->flags & QMAN_FQ_STATE_NE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kill_fq(struct device *qidev, struct qman_fq *fq)
|
|
{
|
|
u32 flags;
|
|
int ret;
|
|
|
|
ret = qman_retire_fq(fq, &flags);
|
|
if (ret < 0) {
|
|
dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (!ret)
|
|
goto empty_fq;
|
|
|
|
/* Async FQ retirement condition */
|
|
if (ret == 1) {
|
|
/* Retry till FQ gets in retired state */
|
|
do {
|
|
msleep(20);
|
|
} while (fq->state != qman_fq_state_retired);
|
|
|
|
WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
|
|
WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
|
|
}
|
|
|
|
empty_fq:
|
|
if (fq->flags & QMAN_FQ_STATE_NE) {
|
|
ret = empty_retired_fq(qidev, fq);
|
|
if (ret) {
|
|
dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
|
|
fq->fqid);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = qman_oos_fq(fq);
|
|
if (ret)
|
|
dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
|
|
|
|
qman_destroy_fq(fq);
|
|
kfree(fq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int empty_caam_fq(struct qman_fq *fq)
|
|
{
|
|
int ret;
|
|
struct qm_mcr_queryfq_np np;
|
|
|
|
/* Wait till the older CAAM FQ get empty */
|
|
do {
|
|
ret = qman_query_fq_np(fq, &np);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!qm_mcr_np_get(&np, frm_cnt))
|
|
break;
|
|
|
|
msleep(20);
|
|
} while (1);
|
|
|
|
/*
|
|
* Give extra time for pending jobs from this FQ in holding tanks
|
|
* to get processed
|
|
*/
|
|
msleep(20);
|
|
return 0;
|
|
}
|
|
|
|
int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
|
|
{
|
|
int ret;
|
|
u32 num_words;
|
|
struct qman_fq *new_fq, *old_fq;
|
|
struct device *qidev = drv_ctx->qidev;
|
|
|
|
num_words = desc_len(sh_desc);
|
|
if (num_words > MAX_SDLEN) {
|
|
dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Note down older req FQ */
|
|
old_fq = drv_ctx->req_fq;
|
|
|
|
/* Create a new req FQ in parked state */
|
|
new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
|
|
drv_ctx->context_a, 0);
|
|
if (IS_ERR(new_fq)) {
|
|
dev_err(qidev, "FQ allocation for shdesc update failed\n");
|
|
return PTR_ERR(new_fq);
|
|
}
|
|
|
|
/* Hook up new FQ to context so that new requests keep queuing */
|
|
drv_ctx->req_fq = new_fq;
|
|
|
|
/* Empty and remove the older FQ */
|
|
ret = empty_caam_fq(old_fq);
|
|
if (ret) {
|
|
dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
|
|
|
|
/* We can revert to older FQ */
|
|
drv_ctx->req_fq = old_fq;
|
|
|
|
if (kill_fq(qidev, new_fq))
|
|
dev_warn(qidev, "New CAAM FQ kill failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Re-initialise pre-header. Set RSLS and SDLEN.
|
|
* Update the shared descriptor for driver context.
|
|
*/
|
|
drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
|
|
num_words);
|
|
drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
|
|
memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
|
|
dma_sync_single_for_device(qidev, drv_ctx->context_a,
|
|
sizeof(drv_ctx->sh_desc) +
|
|
sizeof(drv_ctx->prehdr),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
/* Put the new FQ in scheduled state */
|
|
ret = qman_schedule_fq(new_fq);
|
|
if (ret) {
|
|
dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
|
|
|
|
/*
|
|
* We can kill new FQ and revert to old FQ.
|
|
* Since the desc is already modified, it is success case
|
|
*/
|
|
|
|
drv_ctx->req_fq = old_fq;
|
|
|
|
if (kill_fq(qidev, new_fq))
|
|
dev_warn(qidev, "New CAAM FQ kill failed\n");
|
|
} else if (kill_fq(qidev, old_fq)) {
|
|
dev_warn(qidev, "Old CAAM FQ kill failed\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(caam_drv_ctx_update);
|
|
|
|
struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
|
|
int *cpu,
|
|
u32 *sh_desc)
|
|
{
|
|
size_t size;
|
|
u32 num_words;
|
|
dma_addr_t hwdesc;
|
|
struct caam_drv_ctx *drv_ctx;
|
|
const cpumask_t *cpus = qman_affine_cpus();
|
|
|
|
num_words = desc_len(sh_desc);
|
|
if (num_words > MAX_SDLEN) {
|
|
dev_err(qidev, "Invalid descriptor len: %d words\n",
|
|
num_words);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
|
|
if (!drv_ctx)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Initialise pre-header - set RSLS and SDLEN - and shared descriptor
|
|
* and dma-map them.
|
|
*/
|
|
drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
|
|
num_words);
|
|
drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
|
|
memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
|
|
size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
|
|
hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(qidev, hwdesc)) {
|
|
dev_err(qidev, "DMA map error for preheader + shdesc\n");
|
|
kfree(drv_ctx);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
drv_ctx->context_a = hwdesc;
|
|
|
|
/* If given CPU does not own the portal, choose another one that does */
|
|
if (!cpumask_test_cpu(*cpu, cpus)) {
|
|
int *pcpu = &get_cpu_var(last_cpu);
|
|
|
|
*pcpu = cpumask_next(*pcpu, cpus);
|
|
if (*pcpu >= nr_cpu_ids)
|
|
*pcpu = cpumask_first(cpus);
|
|
*cpu = *pcpu;
|
|
|
|
put_cpu_var(last_cpu);
|
|
}
|
|
drv_ctx->cpu = *cpu;
|
|
|
|
/* Find response FQ hooked with this CPU */
|
|
drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
|
|
|
|
/* Attach request FQ */
|
|
drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
|
|
QMAN_INITFQ_FLAG_SCHED);
|
|
if (IS_ERR(drv_ctx->req_fq)) {
|
|
dev_err(qidev, "create_caam_req_fq failed\n");
|
|
dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
|
|
kfree(drv_ctx);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
drv_ctx->qidev = qidev;
|
|
return drv_ctx;
|
|
}
|
|
EXPORT_SYMBOL(caam_drv_ctx_init);
|
|
|
|
void *qi_cache_alloc(gfp_t flags)
|
|
{
|
|
return kmem_cache_alloc(qi_cache, flags);
|
|
}
|
|
EXPORT_SYMBOL(qi_cache_alloc);
|
|
|
|
void qi_cache_free(void *obj)
|
|
{
|
|
kmem_cache_free(qi_cache, obj);
|
|
}
|
|
EXPORT_SYMBOL(qi_cache_free);
|
|
|
|
static int caam_qi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
|
|
|
|
int cleaned = qman_p_poll_dqrr(np->p, budget);
|
|
|
|
if (cleaned < budget) {
|
|
napi_complete(napi);
|
|
qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
|
|
}
|
|
|
|
return cleaned;
|
|
}
|
|
|
|
void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
|
|
{
|
|
if (IS_ERR_OR_NULL(drv_ctx))
|
|
return;
|
|
|
|
/* Remove request FQ */
|
|
if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
|
|
dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
|
|
|
|
dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
|
|
sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
|
|
DMA_BIDIRECTIONAL);
|
|
kfree(drv_ctx);
|
|
}
|
|
EXPORT_SYMBOL(caam_drv_ctx_rel);
|
|
|
|
void caam_qi_shutdown(struct device *qidev)
|
|
{
|
|
int i;
|
|
struct caam_qi_priv *priv = &qipriv;
|
|
const cpumask_t *cpus = qman_affine_cpus();
|
|
|
|
for_each_cpu(i, cpus) {
|
|
struct napi_struct *irqtask;
|
|
|
|
irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
|
|
napi_disable(irqtask);
|
|
netif_napi_del(irqtask);
|
|
|
|
if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
|
|
dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
|
|
}
|
|
|
|
qman_delete_cgr_safe(&priv->cgr);
|
|
qman_release_cgrid(priv->cgr.cgrid);
|
|
|
|
kmem_cache_destroy(qi_cache);
|
|
}
|
|
|
|
static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
|
|
{
|
|
caam_congested = congested;
|
|
|
|
if (congested) {
|
|
#ifdef CONFIG_DEBUG_FS
|
|
times_congested++;
|
|
#endif
|
|
pr_debug_ratelimited("CAAM entered congestion\n");
|
|
|
|
} else {
|
|
pr_debug_ratelimited("CAAM exited congestion\n");
|
|
}
|
|
}
|
|
|
|
static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
|
|
{
|
|
/*
|
|
* In case of threaded ISR, for RT kernels in_irq() does not return
|
|
* appropriate value, so use in_serving_softirq to distinguish between
|
|
* softirq and irq contexts.
|
|
*/
|
|
if (unlikely(in_irq() || !in_serving_softirq())) {
|
|
/* Disable QMan IRQ source and invoke NAPI */
|
|
qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
|
|
np->p = p;
|
|
napi_schedule(&np->irqtask);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
|
|
struct qman_fq *rsp_fq,
|
|
const struct qm_dqrr_entry *dqrr)
|
|
{
|
|
struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
|
|
struct caam_drv_req *drv_req;
|
|
const struct qm_fd *fd;
|
|
struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
|
|
struct caam_drv_private *priv = dev_get_drvdata(qidev);
|
|
u32 status;
|
|
|
|
if (caam_qi_napi_schedule(p, caam_napi))
|
|
return qman_cb_dqrr_stop;
|
|
|
|
fd = &dqrr->fd;
|
|
status = be32_to_cpu(fd->status);
|
|
if (unlikely(status)) {
|
|
u32 ssrc = status & JRSTA_SSRC_MASK;
|
|
u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
|
|
|
|
if (ssrc != JRSTA_SSRC_CCB_ERROR ||
|
|
err_id != JRSTA_CCBERR_ERRID_ICVCHK)
|
|
dev_err(qidev, "Error: %#x in CAAM response FD\n",
|
|
status);
|
|
}
|
|
|
|
if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
|
|
dev_err(qidev, "Non-compound FD from CAAM\n");
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
|
|
if (unlikely(!drv_req)) {
|
|
dev_err(qidev,
|
|
"Can't find original request for caam response\n");
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
|
|
sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
|
|
|
|
drv_req->cbk(drv_req, status);
|
|
return qman_cb_dqrr_consume;
|
|
}
|
|
|
|
static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
|
|
{
|
|
struct qm_mcc_initfq opts;
|
|
struct qman_fq *fq;
|
|
int ret;
|
|
|
|
fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
|
|
if (!fq)
|
|
return -ENOMEM;
|
|
|
|
fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
|
|
|
|
ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
|
|
QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
|
|
if (ret) {
|
|
dev_err(qidev, "Rsp FQ create failed\n");
|
|
kfree(fq);
|
|
return -ENODEV;
|
|
}
|
|
|
|
memset(&opts, 0, sizeof(opts));
|
|
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
|
|
QM_INITFQ_WE_CONTEXTB |
|
|
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
|
|
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
|
|
QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
|
|
qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
|
|
opts.fqd.cgid = qipriv.cgr.cgrid;
|
|
opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
|
|
QM_STASHING_EXCL_DATA;
|
|
qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
|
|
|
|
ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
|
|
if (ret) {
|
|
dev_err(qidev, "Rsp FQ init failed\n");
|
|
kfree(fq);
|
|
return -ENODEV;
|
|
}
|
|
|
|
per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
|
|
|
|
dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int init_cgr(struct device *qidev)
|
|
{
|
|
int ret;
|
|
struct qm_mcc_initcgr opts;
|
|
const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
|
|
MAX_RSP_FQ_BACKLOG_PER_CPU;
|
|
|
|
ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
|
|
if (ret) {
|
|
dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
qipriv.cgr.cb = cgr_cb;
|
|
memset(&opts, 0, sizeof(opts));
|
|
opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
|
|
QM_CGR_WE_MODE);
|
|
opts.cgr.cscn_en = QM_CGR_EN;
|
|
opts.cgr.mode = QMAN_CGR_MODE_FRAME;
|
|
qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
|
|
|
|
ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
|
|
if (ret) {
|
|
dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
|
|
qipriv.cgr.cgrid);
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
|
|
return 0;
|
|
}
|
|
|
|
static int alloc_rsp_fqs(struct device *qidev)
|
|
{
|
|
int ret, i;
|
|
const cpumask_t *cpus = qman_affine_cpus();
|
|
|
|
/*Now create response FQs*/
|
|
for_each_cpu(i, cpus) {
|
|
ret = alloc_rsp_fq_cpu(qidev, i);
|
|
if (ret) {
|
|
dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_rsp_fqs(void)
|
|
{
|
|
int i;
|
|
const cpumask_t *cpus = qman_affine_cpus();
|
|
|
|
for_each_cpu(i, cpus)
|
|
kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
|
|
}
|
|
|
|
int caam_qi_init(struct platform_device *caam_pdev)
|
|
{
|
|
int err, i;
|
|
struct device *ctrldev = &caam_pdev->dev, *qidev;
|
|
struct caam_drv_private *ctrlpriv;
|
|
const cpumask_t *cpus = qman_affine_cpus();
|
|
|
|
ctrlpriv = dev_get_drvdata(ctrldev);
|
|
qidev = ctrldev;
|
|
|
|
/* Initialize the congestion detection */
|
|
err = init_cgr(qidev);
|
|
if (err) {
|
|
dev_err(qidev, "CGR initialization failed: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
/* Initialise response FQs */
|
|
err = alloc_rsp_fqs(qidev);
|
|
if (err) {
|
|
dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
|
|
free_rsp_fqs();
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Enable the NAPI contexts on each of the core which has an affine
|
|
* portal.
|
|
*/
|
|
for_each_cpu(i, cpus) {
|
|
struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
|
|
struct caam_napi *caam_napi = &priv->caam_napi;
|
|
struct napi_struct *irqtask = &caam_napi->irqtask;
|
|
struct net_device *net_dev = &priv->net_dev;
|
|
|
|
net_dev->dev = *qidev;
|
|
INIT_LIST_HEAD(&net_dev->napi_list);
|
|
|
|
netif_napi_add(net_dev, irqtask, caam_qi_poll,
|
|
CAAM_NAPI_WEIGHT);
|
|
|
|
napi_enable(irqtask);
|
|
}
|
|
|
|
qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
|
|
SLAB_CACHE_DMA, NULL);
|
|
if (!qi_cache) {
|
|
dev_err(qidev, "Can't allocate CAAM cache\n");
|
|
free_rsp_fqs();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
|
|
×_congested, &caam_fops_u64_ro);
|
|
#endif
|
|
|
|
ctrlpriv->qi_init = 1;
|
|
dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
|
|
return 0;
|
|
}
|