mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
0609ae011d
In the case where KASAN directly allocates memory to back vmalloc space, don't map the early shadow page over it. We prepopulate pgds/p4ds for the range that would otherwise be empty. This is required to get it synced to hardware on boot, allowing the lower levels of the page tables to be filled dynamically. Link: http://lkml.kernel.org/r/20191031093909.9228-5-dja@axtens.net Signed-off-by: Daniel Axtens <dja@axtens.net> Acked-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
458 lines
12 KiB
C
458 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define DISABLE_BRANCH_PROFILING
|
|
#define pr_fmt(fmt) "kasan: " fmt
|
|
|
|
/* cpu_feature_enabled() cannot be used this early */
|
|
#define USE_EARLY_PGTABLE_L5
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/e820/types.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/cpu_entry_area.h>
|
|
|
|
extern struct range pfn_mapped[E820_MAX_ENTRIES];
|
|
|
|
static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
|
|
|
|
static __init void *early_alloc(size_t size, int nid, bool should_panic)
|
|
{
|
|
void *ptr = memblock_alloc_try_nid(size, size,
|
|
__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
|
|
|
|
if (!ptr && should_panic)
|
|
panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
|
|
(void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, int nid)
|
|
{
|
|
pte_t *pte;
|
|
|
|
if (pmd_none(*pmd)) {
|
|
void *p;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PSE) &&
|
|
((end - addr) == PMD_SIZE) &&
|
|
IS_ALIGNED(addr, PMD_SIZE)) {
|
|
p = early_alloc(PMD_SIZE, nid, false);
|
|
if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
|
|
return;
|
|
else if (p)
|
|
memblock_free(__pa(p), PMD_SIZE);
|
|
}
|
|
|
|
p = early_alloc(PAGE_SIZE, nid, true);
|
|
pmd_populate_kernel(&init_mm, pmd, p);
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
pte_t entry;
|
|
void *p;
|
|
|
|
if (!pte_none(*pte))
|
|
continue;
|
|
|
|
p = early_alloc(PAGE_SIZE, nid, true);
|
|
entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
|
|
unsigned long end, int nid)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
if (pud_none(*pud)) {
|
|
void *p;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
|
|
((end - addr) == PUD_SIZE) &&
|
|
IS_ALIGNED(addr, PUD_SIZE)) {
|
|
p = early_alloc(PUD_SIZE, nid, false);
|
|
if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
|
|
return;
|
|
else if (p)
|
|
memblock_free(__pa(p), PUD_SIZE);
|
|
}
|
|
|
|
p = early_alloc(PAGE_SIZE, nid, true);
|
|
pud_populate(&init_mm, pud, p);
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (!pmd_large(*pmd))
|
|
kasan_populate_pmd(pmd, addr, next, nid);
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end, int nid)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
if (p4d_none(*p4d)) {
|
|
void *p = early_alloc(PAGE_SIZE, nid, true);
|
|
|
|
p4d_populate(&init_mm, p4d, p);
|
|
}
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (!pud_large(*pud))
|
|
kasan_populate_pud(pud, addr, next, nid);
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, int nid)
|
|
{
|
|
void *p;
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
if (pgd_none(*pgd)) {
|
|
p = early_alloc(PAGE_SIZE, nid, true);
|
|
pgd_populate(&init_mm, pgd, p);
|
|
}
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
kasan_populate_p4d(p4d, addr, next, nid);
|
|
} while (p4d++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
|
|
int nid)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
addr = addr & PAGE_MASK;
|
|
end = round_up(end, PAGE_SIZE);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
kasan_populate_pgd(pgd, addr, next, nid);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init map_range(struct range *range)
|
|
{
|
|
unsigned long start;
|
|
unsigned long end;
|
|
|
|
start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
|
|
end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
|
|
|
|
kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
|
|
}
|
|
|
|
static void __init clear_pgds(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pgd_t *pgd;
|
|
/* See comment in kasan_init() */
|
|
unsigned long pgd_end = end & PGDIR_MASK;
|
|
|
|
for (; start < pgd_end; start += PGDIR_SIZE) {
|
|
pgd = pgd_offset_k(start);
|
|
/*
|
|
* With folded p4d, pgd_clear() is nop, use p4d_clear()
|
|
* instead.
|
|
*/
|
|
if (pgtable_l5_enabled())
|
|
pgd_clear(pgd);
|
|
else
|
|
p4d_clear(p4d_offset(pgd, start));
|
|
}
|
|
|
|
pgd = pgd_offset_k(start);
|
|
for (; start < end; start += P4D_SIZE)
|
|
p4d_clear(p4d_offset(pgd, start));
|
|
}
|
|
|
|
static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
|
|
{
|
|
unsigned long p4d;
|
|
|
|
if (!pgtable_l5_enabled())
|
|
return (p4d_t *)pgd;
|
|
|
|
p4d = pgd_val(*pgd) & PTE_PFN_MASK;
|
|
p4d += __START_KERNEL_map - phys_base;
|
|
return (p4d_t *)p4d + p4d_index(addr);
|
|
}
|
|
|
|
static void __init kasan_early_p4d_populate(pgd_t *pgd,
|
|
unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
pgd_t pgd_entry;
|
|
p4d_t *p4d, p4d_entry;
|
|
unsigned long next;
|
|
|
|
if (pgd_none(*pgd)) {
|
|
pgd_entry = __pgd(_KERNPG_TABLE |
|
|
__pa_nodebug(kasan_early_shadow_p4d));
|
|
set_pgd(pgd, pgd_entry);
|
|
}
|
|
|
|
p4d = early_p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
|
|
if (!p4d_none(*p4d))
|
|
continue;
|
|
|
|
p4d_entry = __p4d(_KERNPG_TABLE |
|
|
__pa_nodebug(kasan_early_shadow_pud));
|
|
set_p4d(p4d, p4d_entry);
|
|
} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
|
|
}
|
|
|
|
static void __init kasan_map_early_shadow(pgd_t *pgd)
|
|
{
|
|
/* See comment in kasan_init() */
|
|
unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
|
|
unsigned long end = KASAN_SHADOW_END;
|
|
unsigned long next;
|
|
|
|
pgd += pgd_index(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
kasan_early_p4d_populate(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
|
|
unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
void *p;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
|
|
if (p4d_none(*p4d)) {
|
|
p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
|
|
p4d_populate(&init_mm, p4d, p);
|
|
}
|
|
} while (p4d++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init kasan_shallow_populate_pgds(void *start, void *end)
|
|
{
|
|
unsigned long addr, next;
|
|
pgd_t *pgd;
|
|
void *p;
|
|
|
|
addr = (unsigned long)start;
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, (unsigned long)end);
|
|
|
|
if (pgd_none(*pgd)) {
|
|
p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
|
|
pgd_populate(&init_mm, pgd, p);
|
|
}
|
|
|
|
/*
|
|
* we need to populate p4ds to be synced when running in
|
|
* four level mode - see sync_global_pgds_l4()
|
|
*/
|
|
kasan_shallow_populate_p4ds(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != (unsigned long)end);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_INLINE
|
|
static int kasan_die_handler(struct notifier_block *self,
|
|
unsigned long val,
|
|
void *data)
|
|
{
|
|
if (val == DIE_GPF) {
|
|
pr_emerg("CONFIG_KASAN_INLINE enabled\n");
|
|
pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kasan_die_notifier = {
|
|
.notifier_call = kasan_die_handler,
|
|
};
|
|
#endif
|
|
|
|
void __init kasan_early_init(void)
|
|
{
|
|
int i;
|
|
pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
|
|
__PAGE_KERNEL | _PAGE_ENC;
|
|
pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
|
|
pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
|
|
p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
|
|
|
|
/* Mask out unsupported __PAGE_KERNEL bits: */
|
|
pte_val &= __default_kernel_pte_mask;
|
|
pmd_val &= __default_kernel_pte_mask;
|
|
pud_val &= __default_kernel_pte_mask;
|
|
p4d_val &= __default_kernel_pte_mask;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++)
|
|
kasan_early_shadow_pte[i] = __pte(pte_val);
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++)
|
|
kasan_early_shadow_pmd[i] = __pmd(pmd_val);
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++)
|
|
kasan_early_shadow_pud[i] = __pud(pud_val);
|
|
|
|
for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
|
|
kasan_early_shadow_p4d[i] = __p4d(p4d_val);
|
|
|
|
kasan_map_early_shadow(early_top_pgt);
|
|
kasan_map_early_shadow(init_top_pgt);
|
|
}
|
|
|
|
void __init kasan_init(void)
|
|
{
|
|
int i;
|
|
void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
|
|
|
|
#ifdef CONFIG_KASAN_INLINE
|
|
register_die_notifier(&kasan_die_notifier);
|
|
#endif
|
|
|
|
memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
|
|
|
|
/*
|
|
* We use the same shadow offset for 4- and 5-level paging to
|
|
* facilitate boot-time switching between paging modes.
|
|
* As result in 5-level paging mode KASAN_SHADOW_START and
|
|
* KASAN_SHADOW_END are not aligned to PGD boundary.
|
|
*
|
|
* KASAN_SHADOW_START doesn't share PGD with anything else.
|
|
* We claim whole PGD entry to make things easier.
|
|
*
|
|
* KASAN_SHADOW_END lands in the last PGD entry and it collides with
|
|
* bunch of things like kernel code, modules, EFI mapping, etc.
|
|
* We need to take extra steps to not overwrite them.
|
|
*/
|
|
if (pgtable_l5_enabled()) {
|
|
void *ptr;
|
|
|
|
ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
|
|
memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
|
|
set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
|
|
__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
|
|
}
|
|
|
|
load_cr3(early_top_pgt);
|
|
__flush_tlb_all();
|
|
|
|
clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
|
|
|
|
kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
|
|
kasan_mem_to_shadow((void *)PAGE_OFFSET));
|
|
|
|
for (i = 0; i < E820_MAX_ENTRIES; i++) {
|
|
if (pfn_mapped[i].end == 0)
|
|
break;
|
|
|
|
map_range(&pfn_mapped[i]);
|
|
}
|
|
|
|
shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
|
|
shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
|
|
shadow_cpu_entry_begin = (void *)round_down(
|
|
(unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
|
|
|
|
shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
|
|
CPU_ENTRY_AREA_MAP_SIZE);
|
|
shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
|
|
shadow_cpu_entry_end = (void *)round_up(
|
|
(unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
|
|
|
|
kasan_populate_early_shadow(
|
|
kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
|
|
kasan_mem_to_shadow((void *)VMALLOC_START));
|
|
|
|
/*
|
|
* If we're in full vmalloc mode, don't back vmalloc space with early
|
|
* shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
|
|
* the global table and we can populate the lower levels on demand.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
|
|
kasan_shallow_populate_pgds(
|
|
kasan_mem_to_shadow((void *)VMALLOC_START),
|
|
kasan_mem_to_shadow((void *)VMALLOC_END));
|
|
else
|
|
kasan_populate_early_shadow(
|
|
kasan_mem_to_shadow((void *)VMALLOC_START),
|
|
kasan_mem_to_shadow((void *)VMALLOC_END));
|
|
|
|
kasan_populate_early_shadow(
|
|
kasan_mem_to_shadow((void *)VMALLOC_END + 1),
|
|
shadow_cpu_entry_begin);
|
|
|
|
kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
|
|
(unsigned long)shadow_cpu_entry_end, 0);
|
|
|
|
kasan_populate_early_shadow(shadow_cpu_entry_end,
|
|
kasan_mem_to_shadow((void *)__START_KERNEL_map));
|
|
|
|
kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
|
|
(unsigned long)kasan_mem_to_shadow(_end),
|
|
early_pfn_to_nid(__pa(_stext)));
|
|
|
|
kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
|
|
(void *)KASAN_SHADOW_END);
|
|
|
|
load_cr3(init_top_pgt);
|
|
__flush_tlb_all();
|
|
|
|
/*
|
|
* kasan_early_shadow_page has been used as early shadow memory, thus
|
|
* it may contain some garbage. Now we can clear and write protect it,
|
|
* since after the TLB flush no one should write to it.
|
|
*/
|
|
memset(kasan_early_shadow_page, 0, PAGE_SIZE);
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte_t pte;
|
|
pgprot_t prot;
|
|
|
|
prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
|
|
pgprot_val(prot) &= __default_kernel_pte_mask;
|
|
|
|
pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
|
|
set_pte(&kasan_early_shadow_pte[i], pte);
|
|
}
|
|
/* Flush TLBs again to be sure that write protection applied. */
|
|
__flush_tlb_all();
|
|
|
|
init_task.kasan_depth = 0;
|
|
pr_info("KernelAddressSanitizer initialized\n");
|
|
}
|