mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 16:06:12 +07:00
aef833c58d
There is a flow_stats structure defined in include/net/flow_offload.h and a follow up patch adds #include <net/flow_offload.h> to net/sch_generic.h. This breaks compilation since OVS codebase includes net/sock.h which pulls in linux/filter.h which includes net/sch_generic.h. In file included from ./include/net/sch_generic.h:18:0, from ./include/linux/filter.h:25, from ./include/net/sock.h:59, from ./include/linux/tcp.h:19, from net/openvswitch/datapath.c:24 This definition takes precedence on OVS since it is placed in the networking core, so rename flow_stats in OVS to sw_flow_stats since this structure is contained in sw_flow. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
904 lines
23 KiB
C
904 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2007-2014 Nicira, Inc.
|
|
*/
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/llc_pdu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/llc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/in.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/mpls.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <linux/icmpv6.h>
|
|
#include <linux/rculist.h>
|
|
#include <net/ip.h>
|
|
#include <net/ip_tunnels.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/mpls.h>
|
|
#include <net/ndisc.h>
|
|
#include <net/nsh.h>
|
|
|
|
#include "conntrack.h"
|
|
#include "datapath.h"
|
|
#include "flow.h"
|
|
#include "flow_netlink.h"
|
|
#include "vport.h"
|
|
|
|
u64 ovs_flow_used_time(unsigned long flow_jiffies)
|
|
{
|
|
struct timespec64 cur_ts;
|
|
u64 cur_ms, idle_ms;
|
|
|
|
ktime_get_ts64(&cur_ts);
|
|
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
|
|
cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
|
|
cur_ts.tv_nsec / NSEC_PER_MSEC;
|
|
|
|
return cur_ms - idle_ms;
|
|
}
|
|
|
|
#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
|
|
|
|
void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
|
|
const struct sk_buff *skb)
|
|
{
|
|
struct sw_flow_stats *stats;
|
|
unsigned int cpu = smp_processor_id();
|
|
int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
|
|
|
|
stats = rcu_dereference(flow->stats[cpu]);
|
|
|
|
/* Check if already have CPU-specific stats. */
|
|
if (likely(stats)) {
|
|
spin_lock(&stats->lock);
|
|
/* Mark if we write on the pre-allocated stats. */
|
|
if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
|
|
flow->stats_last_writer = cpu;
|
|
} else {
|
|
stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
|
|
spin_lock(&stats->lock);
|
|
|
|
/* If the current CPU is the only writer on the
|
|
* pre-allocated stats keep using them.
|
|
*/
|
|
if (unlikely(flow->stats_last_writer != cpu)) {
|
|
/* A previous locker may have already allocated the
|
|
* stats, so we need to check again. If CPU-specific
|
|
* stats were already allocated, we update the pre-
|
|
* allocated stats as we have already locked them.
|
|
*/
|
|
if (likely(flow->stats_last_writer != -1) &&
|
|
likely(!rcu_access_pointer(flow->stats[cpu]))) {
|
|
/* Try to allocate CPU-specific stats. */
|
|
struct sw_flow_stats *new_stats;
|
|
|
|
new_stats =
|
|
kmem_cache_alloc_node(flow_stats_cache,
|
|
GFP_NOWAIT |
|
|
__GFP_THISNODE |
|
|
__GFP_NOWARN |
|
|
__GFP_NOMEMALLOC,
|
|
numa_node_id());
|
|
if (likely(new_stats)) {
|
|
new_stats->used = jiffies;
|
|
new_stats->packet_count = 1;
|
|
new_stats->byte_count = len;
|
|
new_stats->tcp_flags = tcp_flags;
|
|
spin_lock_init(&new_stats->lock);
|
|
|
|
rcu_assign_pointer(flow->stats[cpu],
|
|
new_stats);
|
|
cpumask_set_cpu(cpu, &flow->cpu_used_mask);
|
|
goto unlock;
|
|
}
|
|
}
|
|
flow->stats_last_writer = cpu;
|
|
}
|
|
}
|
|
|
|
stats->used = jiffies;
|
|
stats->packet_count++;
|
|
stats->byte_count += len;
|
|
stats->tcp_flags |= tcp_flags;
|
|
unlock:
|
|
spin_unlock(&stats->lock);
|
|
}
|
|
|
|
/* Must be called with rcu_read_lock or ovs_mutex. */
|
|
void ovs_flow_stats_get(const struct sw_flow *flow,
|
|
struct ovs_flow_stats *ovs_stats,
|
|
unsigned long *used, __be16 *tcp_flags)
|
|
{
|
|
int cpu;
|
|
|
|
*used = 0;
|
|
*tcp_flags = 0;
|
|
memset(ovs_stats, 0, sizeof(*ovs_stats));
|
|
|
|
/* We open code this to make sure cpu 0 is always considered */
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
|
|
struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
|
|
|
|
if (stats) {
|
|
/* Local CPU may write on non-local stats, so we must
|
|
* block bottom-halves here.
|
|
*/
|
|
spin_lock_bh(&stats->lock);
|
|
if (!*used || time_after(stats->used, *used))
|
|
*used = stats->used;
|
|
*tcp_flags |= stats->tcp_flags;
|
|
ovs_stats->n_packets += stats->packet_count;
|
|
ovs_stats->n_bytes += stats->byte_count;
|
|
spin_unlock_bh(&stats->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called with ovs_mutex. */
|
|
void ovs_flow_stats_clear(struct sw_flow *flow)
|
|
{
|
|
int cpu;
|
|
|
|
/* We open code this to make sure cpu 0 is always considered */
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
|
|
struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
|
|
|
|
if (stats) {
|
|
spin_lock_bh(&stats->lock);
|
|
stats->used = 0;
|
|
stats->packet_count = 0;
|
|
stats->byte_count = 0;
|
|
stats->tcp_flags = 0;
|
|
spin_unlock_bh(&stats->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int check_header(struct sk_buff *skb, int len)
|
|
{
|
|
if (unlikely(skb->len < len))
|
|
return -EINVAL;
|
|
if (unlikely(!pskb_may_pull(skb, len)))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static bool arphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_network_offset(skb) +
|
|
sizeof(struct arp_eth_header));
|
|
}
|
|
|
|
static int check_iphdr(struct sk_buff *skb)
|
|
{
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int ip_len;
|
|
int err;
|
|
|
|
err = check_header(skb, nh_ofs + sizeof(struct iphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
ip_len = ip_hdrlen(skb);
|
|
if (unlikely(ip_len < sizeof(struct iphdr) ||
|
|
skb->len < nh_ofs + ip_len))
|
|
return -EINVAL;
|
|
|
|
skb_set_transport_header(skb, nh_ofs + ip_len);
|
|
return 0;
|
|
}
|
|
|
|
static bool tcphdr_ok(struct sk_buff *skb)
|
|
{
|
|
int th_ofs = skb_transport_offset(skb);
|
|
int tcp_len;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
|
|
return false;
|
|
|
|
tcp_len = tcp_hdrlen(skb);
|
|
if (unlikely(tcp_len < sizeof(struct tcphdr) ||
|
|
skb->len < th_ofs + tcp_len))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool udphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
}
|
|
|
|
static bool sctphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct sctphdr));
|
|
}
|
|
|
|
static bool icmphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct icmphdr));
|
|
}
|
|
|
|
static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
unsigned short frag_off;
|
|
unsigned int payload_ofs = 0;
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int nh_len;
|
|
struct ipv6hdr *nh;
|
|
int err, nexthdr, flags = 0;
|
|
|
|
err = check_header(skb, nh_ofs + sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
|
|
key->ip.proto = NEXTHDR_NONE;
|
|
key->ip.tos = ipv6_get_dsfield(nh);
|
|
key->ip.ttl = nh->hop_limit;
|
|
key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
|
|
key->ipv6.addr.src = nh->saddr;
|
|
key->ipv6.addr.dst = nh->daddr;
|
|
|
|
nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
|
|
if (flags & IP6_FH_F_FRAG) {
|
|
if (frag_off) {
|
|
key->ip.frag = OVS_FRAG_TYPE_LATER;
|
|
key->ip.proto = nexthdr;
|
|
return 0;
|
|
}
|
|
key->ip.frag = OVS_FRAG_TYPE_FIRST;
|
|
} else {
|
|
key->ip.frag = OVS_FRAG_TYPE_NONE;
|
|
}
|
|
|
|
/* Delayed handling of error in ipv6_find_hdr() as it
|
|
* always sets flags and frag_off to a valid value which may be
|
|
* used to set key->ip.frag above.
|
|
*/
|
|
if (unlikely(nexthdr < 0))
|
|
return -EPROTO;
|
|
|
|
nh_len = payload_ofs - nh_ofs;
|
|
skb_set_transport_header(skb, nh_ofs + nh_len);
|
|
key->ip.proto = nexthdr;
|
|
return nh_len;
|
|
}
|
|
|
|
static bool icmp6hdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct icmp6hdr));
|
|
}
|
|
|
|
/**
|
|
* Parse vlan tag from vlan header.
|
|
* Returns ERROR on memory error.
|
|
* Returns 0 if it encounters a non-vlan or incomplete packet.
|
|
* Returns 1 after successfully parsing vlan tag.
|
|
*/
|
|
static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
|
|
bool untag_vlan)
|
|
{
|
|
struct vlan_head *vh = (struct vlan_head *)skb->data;
|
|
|
|
if (likely(!eth_type_vlan(vh->tpid)))
|
|
return 0;
|
|
|
|
if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
|
|
return 0;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
|
|
sizeof(__be16))))
|
|
return -ENOMEM;
|
|
|
|
vh = (struct vlan_head *)skb->data;
|
|
key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
|
|
key_vh->tpid = vh->tpid;
|
|
|
|
if (unlikely(untag_vlan)) {
|
|
int offset = skb->data - skb_mac_header(skb);
|
|
u16 tci;
|
|
int err;
|
|
|
|
__skb_push(skb, offset);
|
|
err = __skb_vlan_pop(skb, &tci);
|
|
__skb_pull(skb, offset);
|
|
if (err)
|
|
return err;
|
|
__vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
|
|
} else {
|
|
__skb_pull(skb, sizeof(struct vlan_head));
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void clear_vlan(struct sw_flow_key *key)
|
|
{
|
|
key->eth.vlan.tci = 0;
|
|
key->eth.vlan.tpid = 0;
|
|
key->eth.cvlan.tci = 0;
|
|
key->eth.cvlan.tpid = 0;
|
|
}
|
|
|
|
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int res;
|
|
|
|
if (skb_vlan_tag_present(skb)) {
|
|
key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
|
|
key->eth.vlan.tpid = skb->vlan_proto;
|
|
} else {
|
|
/* Parse outer vlan tag in the non-accelerated case. */
|
|
res = parse_vlan_tag(skb, &key->eth.vlan, true);
|
|
if (res <= 0)
|
|
return res;
|
|
}
|
|
|
|
/* Parse inner vlan tag. */
|
|
res = parse_vlan_tag(skb, &key->eth.cvlan, false);
|
|
if (res <= 0)
|
|
return res;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __be16 parse_ethertype(struct sk_buff *skb)
|
|
{
|
|
struct llc_snap_hdr {
|
|
u8 dsap; /* Always 0xAA */
|
|
u8 ssap; /* Always 0xAA */
|
|
u8 ctrl;
|
|
u8 oui[3];
|
|
__be16 ethertype;
|
|
};
|
|
struct llc_snap_hdr *llc;
|
|
__be16 proto;
|
|
|
|
proto = *(__be16 *) skb->data;
|
|
__skb_pull(skb, sizeof(__be16));
|
|
|
|
if (eth_proto_is_802_3(proto))
|
|
return proto;
|
|
|
|
if (skb->len < sizeof(struct llc_snap_hdr))
|
|
return htons(ETH_P_802_2);
|
|
|
|
if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
|
|
return htons(0);
|
|
|
|
llc = (struct llc_snap_hdr *) skb->data;
|
|
if (llc->dsap != LLC_SAP_SNAP ||
|
|
llc->ssap != LLC_SAP_SNAP ||
|
|
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
|
|
return htons(ETH_P_802_2);
|
|
|
|
__skb_pull(skb, sizeof(struct llc_snap_hdr));
|
|
|
|
if (eth_proto_is_802_3(llc->ethertype))
|
|
return llc->ethertype;
|
|
|
|
return htons(ETH_P_802_2);
|
|
}
|
|
|
|
static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
|
|
int nh_len)
|
|
{
|
|
struct icmp6hdr *icmp = icmp6_hdr(skb);
|
|
|
|
/* The ICMPv6 type and code fields use the 16-bit transport port
|
|
* fields, so we need to store them in 16-bit network byte order.
|
|
*/
|
|
key->tp.src = htons(icmp->icmp6_type);
|
|
key->tp.dst = htons(icmp->icmp6_code);
|
|
memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
|
|
|
|
if (icmp->icmp6_code == 0 &&
|
|
(icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
|
|
int icmp_len = skb->len - skb_transport_offset(skb);
|
|
struct nd_msg *nd;
|
|
int offset;
|
|
|
|
/* In order to process neighbor discovery options, we need the
|
|
* entire packet.
|
|
*/
|
|
if (unlikely(icmp_len < sizeof(*nd)))
|
|
return 0;
|
|
|
|
if (unlikely(skb_linearize(skb)))
|
|
return -ENOMEM;
|
|
|
|
nd = (struct nd_msg *)skb_transport_header(skb);
|
|
key->ipv6.nd.target = nd->target;
|
|
|
|
icmp_len -= sizeof(*nd);
|
|
offset = 0;
|
|
while (icmp_len >= 8) {
|
|
struct nd_opt_hdr *nd_opt =
|
|
(struct nd_opt_hdr *)(nd->opt + offset);
|
|
int opt_len = nd_opt->nd_opt_len * 8;
|
|
|
|
if (unlikely(!opt_len || opt_len > icmp_len))
|
|
return 0;
|
|
|
|
/* Store the link layer address if the appropriate
|
|
* option is provided. It is considered an error if
|
|
* the same link layer option is specified twice.
|
|
*/
|
|
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
|
|
&& opt_len == 8) {
|
|
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
|
|
goto invalid;
|
|
ether_addr_copy(key->ipv6.nd.sll,
|
|
&nd->opt[offset+sizeof(*nd_opt)]);
|
|
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
|
|
&& opt_len == 8) {
|
|
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
|
|
goto invalid;
|
|
ether_addr_copy(key->ipv6.nd.tll,
|
|
&nd->opt[offset+sizeof(*nd_opt)]);
|
|
}
|
|
|
|
icmp_len -= opt_len;
|
|
offset += opt_len;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
invalid:
|
|
memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
|
|
memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
|
|
memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
struct nshhdr *nh;
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
u8 version, length;
|
|
int err;
|
|
|
|
err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = nsh_hdr(skb);
|
|
version = nsh_get_ver(nh);
|
|
length = nsh_hdr_len(nh);
|
|
|
|
if (version != 0)
|
|
return -EINVAL;
|
|
|
|
err = check_header(skb, nh_ofs + length);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = nsh_hdr(skb);
|
|
key->nsh.base.flags = nsh_get_flags(nh);
|
|
key->nsh.base.ttl = nsh_get_ttl(nh);
|
|
key->nsh.base.mdtype = nh->mdtype;
|
|
key->nsh.base.np = nh->np;
|
|
key->nsh.base.path_hdr = nh->path_hdr;
|
|
switch (key->nsh.base.mdtype) {
|
|
case NSH_M_TYPE1:
|
|
if (length != NSH_M_TYPE1_LEN)
|
|
return -EINVAL;
|
|
memcpy(key->nsh.context, nh->md1.context,
|
|
sizeof(nh->md1));
|
|
break;
|
|
case NSH_M_TYPE2:
|
|
memset(key->nsh.context, 0,
|
|
sizeof(nh->md1));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* key_extract - extracts a flow key from an Ethernet frame.
|
|
* @skb: sk_buff that contains the frame, with skb->data pointing to the
|
|
* Ethernet header
|
|
* @key: output flow key
|
|
*
|
|
* The caller must ensure that skb->len >= ETH_HLEN.
|
|
*
|
|
* Returns 0 if successful, otherwise a negative errno value.
|
|
*
|
|
* Initializes @skb header fields as follows:
|
|
*
|
|
* - skb->mac_header: the L2 header.
|
|
*
|
|
* - skb->network_header: just past the L2 header, or just past the
|
|
* VLAN header, to the first byte of the L2 payload.
|
|
*
|
|
* - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
|
|
* on output, then just past the IP header, if one is present and
|
|
* of a correct length, otherwise the same as skb->network_header.
|
|
* For other key->eth.type values it is left untouched.
|
|
*
|
|
* - skb->protocol: the type of the data starting at skb->network_header.
|
|
* Equals to key->eth.type.
|
|
*/
|
|
static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int error;
|
|
struct ethhdr *eth;
|
|
|
|
/* Flags are always used as part of stats */
|
|
key->tp.flags = 0;
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
/* Link layer. */
|
|
clear_vlan(key);
|
|
if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
|
|
if (unlikely(eth_type_vlan(skb->protocol)))
|
|
return -EINVAL;
|
|
|
|
skb_reset_network_header(skb);
|
|
key->eth.type = skb->protocol;
|
|
} else {
|
|
eth = eth_hdr(skb);
|
|
ether_addr_copy(key->eth.src, eth->h_source);
|
|
ether_addr_copy(key->eth.dst, eth->h_dest);
|
|
|
|
__skb_pull(skb, 2 * ETH_ALEN);
|
|
/* We are going to push all headers that we pull, so no need to
|
|
* update skb->csum here.
|
|
*/
|
|
|
|
if (unlikely(parse_vlan(skb, key)))
|
|
return -ENOMEM;
|
|
|
|
key->eth.type = parse_ethertype(skb);
|
|
if (unlikely(key->eth.type == htons(0)))
|
|
return -ENOMEM;
|
|
|
|
/* Multiple tagged packets need to retain TPID to satisfy
|
|
* skb_vlan_pop(), which will later shift the ethertype into
|
|
* skb->protocol.
|
|
*/
|
|
if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
|
|
skb->protocol = key->eth.cvlan.tpid;
|
|
else
|
|
skb->protocol = key->eth.type;
|
|
|
|
skb_reset_network_header(skb);
|
|
__skb_push(skb, skb->data - skb_mac_header(skb));
|
|
}
|
|
skb_reset_mac_len(skb);
|
|
|
|
/* Network layer. */
|
|
if (key->eth.type == htons(ETH_P_IP)) {
|
|
struct iphdr *nh;
|
|
__be16 offset;
|
|
|
|
error = check_iphdr(skb);
|
|
if (unlikely(error)) {
|
|
memset(&key->ip, 0, sizeof(key->ip));
|
|
memset(&key->ipv4, 0, sizeof(key->ipv4));
|
|
if (error == -EINVAL) {
|
|
skb->transport_header = skb->network_header;
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
nh = ip_hdr(skb);
|
|
key->ipv4.addr.src = nh->saddr;
|
|
key->ipv4.addr.dst = nh->daddr;
|
|
|
|
key->ip.proto = nh->protocol;
|
|
key->ip.tos = nh->tos;
|
|
key->ip.ttl = nh->ttl;
|
|
|
|
offset = nh->frag_off & htons(IP_OFFSET);
|
|
if (offset) {
|
|
key->ip.frag = OVS_FRAG_TYPE_LATER;
|
|
return 0;
|
|
}
|
|
if (nh->frag_off & htons(IP_MF) ||
|
|
skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
|
|
key->ip.frag = OVS_FRAG_TYPE_FIRST;
|
|
else
|
|
key->ip.frag = OVS_FRAG_TYPE_NONE;
|
|
|
|
/* Transport layer. */
|
|
if (key->ip.proto == IPPROTO_TCP) {
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->tp.src = tcp->source;
|
|
key->tp.dst = tcp->dest;
|
|
key->tp.flags = TCP_FLAGS_BE16(tcp);
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
|
|
} else if (key->ip.proto == IPPROTO_UDP) {
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->tp.src = udp->source;
|
|
key->tp.dst = udp->dest;
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
} else if (key->ip.proto == IPPROTO_SCTP) {
|
|
if (sctphdr_ok(skb)) {
|
|
struct sctphdr *sctp = sctp_hdr(skb);
|
|
key->tp.src = sctp->source;
|
|
key->tp.dst = sctp->dest;
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
} else if (key->ip.proto == IPPROTO_ICMP) {
|
|
if (icmphdr_ok(skb)) {
|
|
struct icmphdr *icmp = icmp_hdr(skb);
|
|
/* The ICMP type and code fields use the 16-bit
|
|
* transport port fields, so we need to store
|
|
* them in 16-bit network byte order. */
|
|
key->tp.src = htons(icmp->type);
|
|
key->tp.dst = htons(icmp->code);
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
}
|
|
|
|
} else if (key->eth.type == htons(ETH_P_ARP) ||
|
|
key->eth.type == htons(ETH_P_RARP)) {
|
|
struct arp_eth_header *arp;
|
|
bool arp_available = arphdr_ok(skb);
|
|
|
|
arp = (struct arp_eth_header *)skb_network_header(skb);
|
|
|
|
if (arp_available &&
|
|
arp->ar_hrd == htons(ARPHRD_ETHER) &&
|
|
arp->ar_pro == htons(ETH_P_IP) &&
|
|
arp->ar_hln == ETH_ALEN &&
|
|
arp->ar_pln == 4) {
|
|
|
|
/* We only match on the lower 8 bits of the opcode. */
|
|
if (ntohs(arp->ar_op) <= 0xff)
|
|
key->ip.proto = ntohs(arp->ar_op);
|
|
else
|
|
key->ip.proto = 0;
|
|
|
|
memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
|
|
memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
|
|
ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
|
|
ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
|
|
} else {
|
|
memset(&key->ip, 0, sizeof(key->ip));
|
|
memset(&key->ipv4, 0, sizeof(key->ipv4));
|
|
}
|
|
} else if (eth_p_mpls(key->eth.type)) {
|
|
size_t stack_len = MPLS_HLEN;
|
|
|
|
skb_set_inner_network_header(skb, skb->mac_len);
|
|
while (1) {
|
|
__be32 lse;
|
|
|
|
error = check_header(skb, skb->mac_len + stack_len);
|
|
if (unlikely(error))
|
|
return 0;
|
|
|
|
memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
|
|
|
|
if (stack_len == MPLS_HLEN)
|
|
memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
|
|
|
|
skb_set_inner_network_header(skb, skb->mac_len + stack_len);
|
|
if (lse & htonl(MPLS_LS_S_MASK))
|
|
break;
|
|
|
|
stack_len += MPLS_HLEN;
|
|
}
|
|
} else if (key->eth.type == htons(ETH_P_IPV6)) {
|
|
int nh_len; /* IPv6 Header + Extensions */
|
|
|
|
nh_len = parse_ipv6hdr(skb, key);
|
|
if (unlikely(nh_len < 0)) {
|
|
switch (nh_len) {
|
|
case -EINVAL:
|
|
memset(&key->ip, 0, sizeof(key->ip));
|
|
memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
|
|
/* fall-through */
|
|
case -EPROTO:
|
|
skb->transport_header = skb->network_header;
|
|
error = 0;
|
|
break;
|
|
default:
|
|
error = nh_len;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
if (key->ip.frag == OVS_FRAG_TYPE_LATER)
|
|
return 0;
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
|
|
key->ip.frag = OVS_FRAG_TYPE_FIRST;
|
|
|
|
/* Transport layer. */
|
|
if (key->ip.proto == NEXTHDR_TCP) {
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->tp.src = tcp->source;
|
|
key->tp.dst = tcp->dest;
|
|
key->tp.flags = TCP_FLAGS_BE16(tcp);
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
} else if (key->ip.proto == NEXTHDR_UDP) {
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->tp.src = udp->source;
|
|
key->tp.dst = udp->dest;
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
} else if (key->ip.proto == NEXTHDR_SCTP) {
|
|
if (sctphdr_ok(skb)) {
|
|
struct sctphdr *sctp = sctp_hdr(skb);
|
|
key->tp.src = sctp->source;
|
|
key->tp.dst = sctp->dest;
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
} else if (key->ip.proto == NEXTHDR_ICMP) {
|
|
if (icmp6hdr_ok(skb)) {
|
|
error = parse_icmpv6(skb, key, nh_len);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
memset(&key->tp, 0, sizeof(key->tp));
|
|
}
|
|
}
|
|
} else if (key->eth.type == htons(ETH_P_NSH)) {
|
|
error = parse_nsh(skb, key);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int res;
|
|
|
|
res = key_extract(skb, key);
|
|
if (!res)
|
|
key->mac_proto &= ~SW_FLOW_KEY_INVALID;
|
|
|
|
return res;
|
|
}
|
|
|
|
static int key_extract_mac_proto(struct sk_buff *skb)
|
|
{
|
|
switch (skb->dev->type) {
|
|
case ARPHRD_ETHER:
|
|
return MAC_PROTO_ETHERNET;
|
|
case ARPHRD_NONE:
|
|
if (skb->protocol == htons(ETH_P_TEB))
|
|
return MAC_PROTO_ETHERNET;
|
|
return MAC_PROTO_NONE;
|
|
}
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
|
|
struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int res, err;
|
|
|
|
/* Extract metadata from packet. */
|
|
if (tun_info) {
|
|
key->tun_proto = ip_tunnel_info_af(tun_info);
|
|
memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
|
|
|
|
if (tun_info->options_len) {
|
|
BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
|
|
8)) - 1
|
|
> sizeof(key->tun_opts));
|
|
|
|
ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
|
|
tun_info);
|
|
key->tun_opts_len = tun_info->options_len;
|
|
} else {
|
|
key->tun_opts_len = 0;
|
|
}
|
|
} else {
|
|
key->tun_proto = 0;
|
|
key->tun_opts_len = 0;
|
|
memset(&key->tun_key, 0, sizeof(key->tun_key));
|
|
}
|
|
|
|
key->phy.priority = skb->priority;
|
|
key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
|
|
key->phy.skb_mark = skb->mark;
|
|
key->ovs_flow_hash = 0;
|
|
res = key_extract_mac_proto(skb);
|
|
if (res < 0)
|
|
return res;
|
|
key->mac_proto = res;
|
|
key->recirc_id = 0;
|
|
|
|
err = key_extract(skb, key);
|
|
if (!err)
|
|
ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
|
|
return err;
|
|
}
|
|
|
|
int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
|
|
struct sk_buff *skb,
|
|
struct sw_flow_key *key, bool log)
|
|
{
|
|
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
|
|
u64 attrs = 0;
|
|
int err;
|
|
|
|
err = parse_flow_nlattrs(attr, a, &attrs, log);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
/* Extract metadata from netlink attributes. */
|
|
err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
|
|
if (err)
|
|
return err;
|
|
|
|
/* key_extract assumes that skb->protocol is set-up for
|
|
* layer 3 packets which is the case for other callers,
|
|
* in particular packets received from the network stack.
|
|
* Here the correct value can be set from the metadata
|
|
* extracted above.
|
|
* For L2 packet key eth type would be zero. skb protocol
|
|
* would be set to correct value later during key-extact.
|
|
*/
|
|
|
|
skb->protocol = key->eth.type;
|
|
err = key_extract(skb, key);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Check that we have conntrack original direction tuple metadata only
|
|
* for packets for which it makes sense. Otherwise the key may be
|
|
* corrupted due to overlapping key fields.
|
|
*/
|
|
if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
|
|
key->eth.type != htons(ETH_P_IP))
|
|
return -EINVAL;
|
|
if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
|
|
(key->eth.type != htons(ETH_P_IPV6) ||
|
|
sw_flow_key_is_nd(key)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|